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Introduction

Spatially tailored radio frequency (TRF) pulses have been 
used in magnetic resonance imaging (MRI) to excite 
arbitrary spatial patterns. Parallel excitation (pTx) (1-3)  
techniques exploit the additional degree of freedom 
provided by the multiple transmit channels to shorten 
the radio frequency (RF) pulse duration and/or reduce 
the specific absorption rate (SAR) (4,5). The combination 
of TRF and pTx is recognized as a promising method to 
address several challenges in the high field MRI, such as 
field inhomogeneities and large SAR (6).

One widely used pulse design method under the small-
tip-angle approximation is the spatial domain method (1). 
In this method, a specified target pattern and a k-space 
trajectory are specified and a set of linear system equations 
is built. The pulses can be designed by solving the linear 
equations using various numerical methods such as conjugate 
gradient (CG). One major problem of such a pulse design is 
the high computation cost since each iteration requires two 
matrix-vector multiplications. Generally, it can take up to  
2-5 minutes (7) to design a long pulse, with full freedom 
in pulse magnitude and phase, which can prevent the 

pTx technique from being used in real-time applications. 
Meanwhile, the linear system matrix encountered in the design 
often requires memory allocations on the level of gigabyte.

Several existing methods have been reported to accelerate 
the spatial domain pulse design. For example, by employing 
the sparsity in the excitation pattern, the design equation 
can be transformed into the sparse domain and truncated to 
reduce the computation load (8,9). However, the efficiency 
of the method depends on the sparsity of the target pattern. 
Another method (10) accelerates the design of pTx pulses 
by using the graphic processing unit (GPU). However, the 
size of the pulses (proportional to pulse length and channel 
numbers) using GPU is limited by the available memory on 
GPU (no more than 2 GB for a single GPU). Meanwhile, 
rapid design methods based on conjugate gradient approach 
have been mentioned in (11). However, details of the design 
procedures were not provided. 

In this paper, we present a detailed description of a 
fast pulse design method with Fourier domain gridding 
and a conjugate gradient method. In the method, the two 
computational expensive matrix-vector multiplications are 
substituted by two operators, which carry out the same 
physical functions as the multiplications. As a result, the 
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computation and memory cost are significantly reduced. 
This method can be loosed regarded as the transmit version 
of (12), which deals with image reconstruction from data 
acquired using multi-channel receivers. Simulation results 
show that the proposed method was able to reduce the 
pulse design time and the memory cost by a factor of 8 
and 103, respectively, all with the same excitation error and 
convergence rate

Theory and methods

Spatial tailored pulse design using the spatial domain 
method

We first briefly review the conventional spatial domain 
method (1) for spatial tailored pulse design with pTx. Under 
the small tip angle assumption (13), the excitation pattern 
of transverse magnetization and the complex RF pulse are 
Fourier pairs defined on the chosen k-space trajectory. pTx 
pattern of a multi-channel transmit system is the linear sum 
of the excitation patterns from all the channels weighted by 
the transmit sensitivity of each individual coil, i.e.,
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duration. To solve the RF pulse bl(t), Eq. [1] is discretized 
both in time and in space to,
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which can be further written in matrix form

m S Ab=∑ l l
l

[3]

where m is the vector form of the target pattern, Sl is the 
sensitivity matrix of the l-th channel (incorporating the 
constant i Mγ 0), A is the inverse Fourier encoding matrix 
defined on the k-space trajectory k



, and bl is the sampled RF 
waveform vector of the l-th channel to be assigned. 

The pulse design problem can then be formulated as a 
minimization problem,

bopt full= −argmin m A b 2 [4]

where the system matrix is defined as A S Afull ll
=∑  and the b 

vector is a stack of bl from all the channels. Due to the large 
system size, numerical methods such as CG method are 
often to solve the problem. 

RF pulse design with gridding and conjugate gradient

In solving Eq. [4] with conjugate gradient method, 
significant portion of computations (more than 90%) are 
consumed by two matrix-vector multiplications with Afull 
and A full

H . Each of these two requires nmnsnc complex scalar 
multiplications, where nm, ns and nc are the number of pixels 
in the target pattern, the number of sampled points of the 
RF pulse for a single channel, and the number of transmit 
channels, respectively.

In the proposed method, two operators G1 and G2 are 
introduced to replace the matrix-vector multiplications 
without specifying the large system matrix. The operators 
combine the gridding of k-space data, fast fourier transform 
(FFT) and the sensitivity modulation, as shown in Figure 1. 
The operators are physically equivalent to the matrix-vector 
multiplications in the process of pulse design.

The forward operator G1 on bl[t] will perform the same 
function as the matrix-vector multiplication of the pulse of 
the l-th channel, i.e.,

S Ab [ ], [ ], [t]l l l lG b t S x k= { }1

 

[5]

The A matrix represents an inverse Fourier operator 

Figure 1 Flow chart of the two operators G1 and G2 that are used 
to replace the expensive matrix-vector multiplications in the 
conventional design method.
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that maps bl[t] from the non-Cartesian excitation trajectory 
k


 (e.g., spiral trajectory) to a spatial domain pattern on the 
Cartesian grid. Thus, it can be replaced by Fourier domain 
gridding, as shown in (7), followed by an inverse FFT. In 
the process of the gridding, the pulse (k-space data) bl[t] 
is first convolved with the Kaiser-Bessel kernel and then 
sampled on the Cartesian grid with doubled resolution 
corresponding to 2× FOX (field of exciation). The reason 
of sampling on a grid with finer resolution is to reduce 
the aliasing artifact caused by the convolution kernel in 
spatial domain. Then, an inverse FFT of the Cartesian data 
generates a spatial pattern of size 2× FOX. Subsequently, 
the pattern is trimmed from the center to size of FOX and 
divided pixel-by-pixel by the inverse Fourier transform of 
the convolution kernel to compensate the convolution. After 
gridding, the pattern is multiplied by the transmit sensitivity 
S xl[ ]


 in a voxel-by-voxel fashion, and then reshaped into the 
vector form. Then, according to Eq. [5], the final pattern is 
achieved by linearly adding the patterns from all channels, 

m S Ab [ ], [ ], [t]= = { }∑ ∑l
l

l
l
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Similarly, the backward operator G2 performed on the 
spatial pattern M x[ ]



 plays the same role as the Hermitian 
transposed matrix-vector multiplication for the l-th channel,

(S A) m A S m [ ], [ ], [t]l
H H

l
H
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Specifically, in this backward operator, the spatial 
pattern is first modulated by the Hermitian transposed 
transmit sensitivity of the l-th channel as S ml

H . Then, the 
Fourier encoding matrix AH, which maps the spatial domain 
Cartesian pattern to data on the non-Cartesian k-space 
trajectory k



, is substituted by a gridding process. In this 
gridding process, the sensitivity-modulated pattern S ml

H  is 
first divided pixel-by-pixel by the inverse Fourier transform 
of the convolution kernel and zero-padded to the size of 
2× FOX. The k-space data on the Cartesian grid is then 
obtained by the FFT of the spatial pattern. Finally, the 
k-space data is convolved with the convolution kernel and 
sampled along the desired k-space trajectory k



.
The result of the Hermitian transpose multiplication 

of the system matrix is a stack of vectors from individual 
channel results obtained from Eq. [7] as,
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With these two operators, the same CG method as in the 
conventional method can be used to solve the pulse design 
problem with much higher efficiency, because the two 
multiplications required during each CG iteration are now 
be replaced by the operators.

In this paper, the gridding part in operator G1 is 
implemented using an online toolbox (14). And the gridding 
part in operator G2 is implemented with a 2D interpolation 
function in Matlab. Proper modifications including phase 
correction, zero-padding, and intensity correction are made 
in both operators. 

The approximate computation cost (number of complex 
scalar multiplications) of the operator G1 and the direct 
matrix multiplication are compared in Table 1. Parameter 
ε=2 denotes the factor of oversampling/zero-padding 
and w=6 is the size of convolution kernel. Therefore, the 
computation cost is approximately reduced by the factor 
of ns/[ log ( ) ]ω ε ε2 2

2
2 2+ +nm  with the proposed method. For 

example, for a pulse with ns=1,024 time points, a target 
pattern defined on a grid with nm=1,024 spatial points, and 
nc=8 transmit channels, the operator G1 would reduce the 
computation cost by a factor of about 12. The computation 
of A full

H m with operator G2 gains similar computational 
efficiency.

The savings in memory cost is even more significant. 
In the proposed method, only several matrices of size nmnc 
need to be saved. In the direction matrix multiplication, 
the system matrix Afull with nmnsnc elements needs to be 
stored. In the above example, the memory cost in the 
proposed method is about ~1,000 times less than that in a 
conventional method. 

Computer simulations

To evaluate the performance of the proposed design 

Table 1 Comparison of the computation cost (number of complex multiplications)

Operator G1 (Proposed as shown in Figure 1) Afullb (Conventional)

Operators ⊗ FFT ×,÷
s m cn n n

Computation load 2
m cw n n 2 2

2log ( )m m cn n nε ε 2 m cn n
FFT, fast fourier transform.
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method, a 2-D tailored pulse will be designed to excite a 
2-D pattern, which is shown in Figure 2A over a 20×20 cm2 
FOX. An 8-ch linear transmit array and a spiral trajectory 
(shown in Figure 2B) with 2× pTx acceleration are used 
in the design, with both the proposed method and the 
conventional spatial domain method. Transmit sensitivity 
is simulated using a quasi-static method. The total pulse 
length is 5.3 msec with a dwell time of 0.0026 msec. The 
same setups, including parameters, transmit sensitivities and 
the target pattern, are used in both simulations. 

To show the convergence of the design, the residual 
of each CG iteration is measured by the L2 norm of the 
current residual vector. The quantitative difference between 
the two methods in term of designed pulse, excitation error, 
design time and memory cost are compared. The excitation 
patterns for excitation error measurement are obtained 
from a Bloch simulator.

In addition, the stability of the proposed method is tested 
under inaccurate transmit B1 sensitivity is investigated 
and compared with that of the conventional method. The 
pulses are designed with the corrupted B1

+ sensitivities 
with different SNR using the conventional method and 
the proposed method. A pTx acceleration of 2 is used in all 
designs. The spiral-in trajectory and transmit sensitivity are 
the same as that in previous experiments. The excitation 
patterns are obtained using the Bloch simulator with the 
true B1

+ sensitivity without noise. In each case, complex 
Gaussian noise is added to the “true” transmit sensitivities. 
The SNR of the transmit B1 sensitivity is defined as  
SNR =10log10(Ps/Pn), where Ps is the average power of true 
B1

+ sensitivity of all the channels and Pn is the power of the 
added Gaussian noise. 

All simulations are performed in Matlab 2011b (Math 

Works, Natick, MA) on a desktop with 2.67 GHz i-7 CPU 
and 9 GB memory.

Results

The results of the computer simulations of 2D pTx pulse 
design are shown in Figure 3. Convergence behavior of 
the proposed method is shown in the residuals curve in  
Figure 3A. Its difference to that of the conventional design 
is shown in Figure 3B. As can be seen, the CG in the 
proposed method converges towards zero at the same rate 
as the conventional method and the relative difference is 
within 0.5%. This shows that the gridding introduced error 
is mall during each iteration. 

Figure 2 Computer simulations of 2-dimensional parallel 
excitation pulse design: (A) target pattern to be excited; and (B) the 
excitation k-space trajectory with acceleration of R=2.

Figure 3 Results of 2-dimensional parallel excitation pulse design: 
(A) residuals of each conjugate-gradient step in the proposed 
method; and (B) relative difference to the residuals with the 
conventional method (with matrix-vector multiplications and 
conjugate gradient); (C) Excited patterns using pulses designed by 
(left) the conventional method and (right) the proposed method. 
Note that the two methods achieved the same accuracy in term of 
NRMSE, but the proposed method is eight times faster.
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The excited patterns for the two methods are compared 
in Figure 3C. Both methods led to a normalized root mean 
square error of 5.65% in this case. This is expected because 
the maximum error of a single gridding step is controlled 
below 0.5%. Thus, the proposed method can achieve the 
same accuracy as the conventional method. Note that the 
proposed method took only 2.3 seconds to complete the 
iterations, while the conventional design method took 18 
seconds. Therefore the design efficiency is improved by 
a factor of eight in this example. In addition, the system 
matrix Afull requires 1,012 MB memory to save in the 
conventional method. In the proposed method, less more 
than 5 MB memory is required in total. 

Figure 4 shows excitation errors of the pulses designed 
using the conventional method and the proposed method 
under different perturbations. As the SNR of the B1

+ 
sensitivities increases, the error decreases for both the 
methods. The error curves of these two methods are almost 
the same. Thus, the proposed method has the same stability 
to inaccurate B1

+ measurement as the conventional method. 

Conclusions

In this work, we proposed an efficient method to RF pulses in 
pTx. The method uses data gridding and conjugate gradient 
optimization. By replacing the computationally expensive 
matrix operations with gridding-based operations, the design 
speed can be significantly improved. Computer simulations 
show that an order of magnitude computational efficiency 
is feasible without compromising the design accuracy. In 

addition, the proposed method reduced memory cost by >103 
times in the simulated studies. This eases the memory burden 
of designing longer pTx pulses with more transmit channels 
or patterns defined on finer resolution. Furthermore, this 
enables implementing the pulse designs on GPU for further 
speed-ups. The proposed method can be applied to accelerate 
other spatial domain pTx pulse designs, for example, with 
regularization terms to control the SAR. 
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