
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(3):692-702 | http://dx.doi.org/10.21037/qims.2020.02.21

Introduction

As of 2018, pancreatic cancer is the seventh leading cause 
of cancer death, having a high mortality rate, with almost 
as many deaths (n=432,000) as cases (n=459,000) (1). 
Pancreatic ductal adenocarcinoma (PDAC) is the main 

histopathological type of pancreatic cancer. Currently, 
surgery remains the only curative option for PDAC (2) but 
obtains poor outcomes. The histological grade of pancreatic 
cancer is an important independent predictor of outcome 
(3-10). Low-grade PDAC has been associated with long-
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term postoperative survival (5,8). High-grade PDAC 
tends to predict shorter survival and increased mortality 
compared with a low-grade disease (3,7). Even patients 
with the high-grade disease who undergo surgery did not 
have a significantly improved prognosis, but they might be 
affected by surgical complications and have a significantly 
worse quality of life. To some extent, the histological 
grade of PDAC might affect the treatment options (11). 
In order to improve a patient's quality of life, it is critical 
to avoid unnecessary surgical complications, select the 
best treatment plan, and prolong survival; furthermore, an 
accurate preoperative assessment of tumor grade could be 
essential for individual therapy. To date, the methods for 
grading pancreatic cancer involve invasive biopsies, which 
include endoscopic ultrasound-guided fine-needle biopsy 
(EUS-FNB) and ultrasound/computed tomography (CT)-
guided percutaneous biopsy; however, patients who undergo 
these procedures risk suffering complications such as 
pancreatitis (12). In addition, because of the heterogeneity 
of pancreatic tumors, the histopathological evaluation of 
a specimen obtained by puncture biopsy is not equivalent 
to the whole tumor (13). A safe and accurate method that 
can provide a histopathological grade of the tumor before 
surgery is needed. Traditional imaging examinations are 
widely used as noninvasive preoperative evaluation methods 
for patients with PDAC and can provide information, 
including tumor size, site, and relationship with vessels. We 
attempted to clarify the differentiation of PDAC from CT 
images further.

Radiomics (14-17) is a quantitative imaging method 
that can extract more data from digital medical images 
to improve the accuracy of clinical diagnosis, prediction, 
and prognosis, and can support personalized clinical 
decisions and improve individualized treatment options. 
Radiomics based on CT and magnetic resonance imaging 
(MRI) has been used to discern the histological grades of 
colorectal cancers (18), bladder cancers (19), hepatocellular  
carcinomas (20), non-small cell lung cancers (21), and 
gliomas (22). In our study, we attempted to perform 
radiomics for patients with PDAC by extracting and 
selecting the features on preoperative contrast-enhanced 
CT (CE-CT) images that were highly correlated with 
histological tumor grade, to develop a radiomics signature 
in the training dataset, and to validate the signature in the 
test dataset. An external validation dataset was also used for 
further testing of the accuracy of the model. The aim of 
our study was to build a predictive model for differentiating 
low-grade from high-grade PDAC.

Methods

Patients

Ethical approval was obtained for this retrospective 
study, and the requirement for informed consent was 
waived. The inclusion criteria were as follows: (I) patients 
were histopathologically confirmed to have PDAC 
postoperatively; (II) the defined histological grade was 
on patients’ reports; (III) CE-CT included the pancreatic 
parenchymal phase; and (IV) CE-CT was performed 
within 1 month before surgery. The exclusion criteria 
were as follows: (I) poor image quality, including artifacts 
(respiratory movements or metallic artifacts associated with 
a stent) in the tumor or difficulty in identifying the tumor on 
the CT scans of every phase; or (II) preoperative anticancer 
treatment. A total of 301 patients admitted to Shengjing 
Hospital of China Medical University from January 2005 
to December 2018, were finally enrolled in this study. 
They were randomly divided into a training group with 
151 patients (89 men, 62 women; age, 60.6±9.4 years)  
and a test group with 150 patients (94 men, 56 women; 
age, 60.0±9.6 years). An additional 100 patients (55 men, 
45 women; age, 59.3±8.9 years) from The First Affiliated 
Hospital of China Medical University and Liaoning 
Cancer Institute and Hospital were recruited as an external 
validation group from January 2010 to December 2018, 
with the same criteria (Figure 1). Clinical data such as age, 
gender, tumor location, and preoperative carbohydrate 
antigen 19-9 (CA19-9) level were recorded, with CA19-
9 level described as normal (0–37 U/mL) or abnormal  
(>37 U/mL).

Histological grading

All surgically removed tumors were formalin-fixed, paraffin-
embedded, and hematoxylin-eosin stained. According to 
the WHO classification of tumors of the digestive system (4th  
edition)  (23),  the classif ication of the gland is as 
follows: well, moderately, poorly differentiated, and 
undifferentiated. In our study, dichotomous statistics were 
used to classify well-differentiated (n=56) and moderately 
differentiated (n=104) versus poorly differentiated (n=133) 
and undifferentiated (n=8) cancers into low-grade (n=160) 
versus high-grade groups (n=141), respectively.

Imaging acquisition

The participants in our study underwent CE-CT via 
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multiple CT devices (Brilliance iCT; Philips Healthcare, 
USA;  Aqui l l ion ONE; Toshiba  Medica l  Systems 
Corporation, Japan; and Somatom Definition AS; Siemens, 
Germany) at the three participating centers. The imaging 
conditions satisfied the following requirements: multislice 
spiral CT scanners; scanning field of view, 35 cm × 35 cm–
40 cm × 40 cm; matrix, 512×512; thickness of reconstructed 
image, 1–3 mm; three-phase scan, preinjection phase, 
pancreatic parenchymal phase (40–45 s after injection), and 
portal phase (70–75 s after injection). The images from 
the pancreatic parenchymal phase were used for feature 
extraction in our study. The dose of iodine contrast agent 

was based on the patient’s weight (1 mL/kg), and the flow 
rate was 2.5–3.5 mL/s.

Tumor segmentation and feature extraction

The segmentation of every tumor on the training, test, 
and validation datasets was performed by the same junior 
radiologist with a working experience of 8 years. Imaging 
Biomarker Explorer (IBEX) software (V1.0β; MD Anderson 
Cancer Center, Houston, TX, USA) (24) was used. Regions 
of interest (ROIs) were manually drawn along the borders of 
the lesions on images of the pancreatic parenchymal phase. 

Figure 1 Flow chart of the patients enrolled in the training, test, and external validation datasets. PDAC, pancreatic ductal adenocarcinoma; 
CE-CT, contrast-enhanced computed tomography.
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Two weeks after the first ROIs were delineated, 30 cases 
were randomly selected for repeat delineation of the ROIs 
by the same radiologist, and the extracted features were 
evaluated by calculating the intraclass correlation coefficient 
(ICC). Another senior radiologist with a diagnostic 
experience of 20 years then performed ROI delineation 
and feature extraction on the same 30 cases. The extracted 
features from the ROIs of the first less experienced 
radiologist were compared to those from the ROIs of the 
experienced radiologist by calculating the ICC. An ICC 
>0.75 was considered to be excellent for the stability and 
reproducibility of features. The radiomics features included 
morphology, intensity-based statistics, intensity histogram, 
gray level co-occurrence matrix (GLCM), gray level run 
length matrix, and neighborhood grey tone difference 
matrix. The parameters of the features are provided in  
Table S1.

Feature selection and development of radiomics signatures

A support vector machine (SVM) method (kernel = rbf, 
C =0.78, gamma =0.00069) based on recursive feature 
elimination (RFE) was used to select features for predicting 
PDAC grade, which trained the classifier using all features, 
computed the ranking criterion for all features, and 
removed the features with smallest ranking criterion (15).  
The procedure was iterated until the number of features 
was equal to the number of predefined features. All the 
data of the selected features were normalized with z-score 
normalization in the training dataset. The test and external 
validation datasets were also normalized using the mean 
and standard deviation derived from the features of the 
training dataset. Redundant features that referred to low 
discrimination features with variances lower than the 
threshold were removed. The threshold in our study was 0.5, 
which was obtained by grid search.

The least absolute shrinkage and selection operator 
(LASSO) regression model was used to build a predictive 
classifier machine and was trained by a ten-fold cross-
validation method. We calculated a radiomics score 
(Radscore) for each patient with the following formula:

Radscore = 1

N
i ii

w x b
=

⋅ +∑ , where N is the feature number, 
wi is the weight of the ith feature, xi is the value of the ith 
selected feature, and b is biased.

Model evaluation

The model that was built from the training dataset was 

applied to the test dataset and the external validation dataset 
to assess accuracy. Receiver operating characteristic (ROC) 
curve analysis and calculations of areas under the curve 
(AUCs) were performed to determine the discriminative 
performance of the radiomics signature. The optimal cutoff 
value of the radiomics score was determined by the Youden 
index and was determined only in the training dataset, and 
then directly applied to the testing and external validation 
dataset. The corresponding sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
and accuracy were also determined.

Statistical analysis

SPSS software (version 22.0.0.0, IBM Corporation, 
Armonk, NY, USA) was used for statistical analysis. 
Continuous variables were expressed as means ± SD or 
medians and interquartile range (IQR), and categorical 
variables were expressed as numbers and percentages. 
Differences between variables of the patient groups were 
assessed by the independent t-test or Mann-Whitney U test  
for continuous variables and Fisher’s exact test or chi-
squared test for categorical variables. A two-sided P value 
<0.05 was considered statistically significant.

Multivariate logistic regression analysis was performed 
to identify independent predictors of PDAC grade and 
included items such as the Radscore and clinical variables 
(age, gender, CA19-9 levels, and tumor location).

The SVM model was used to select features, and the 
LASSO regression model was used to build a radiomics 
signature. They were all performed by PYTHON (version 
3.7.0; www.python.org).

Results

Clinicopathological characteristics

The clinicopathological characteristics of the study patients 
are shown in Tables 1,2. The differences between age, 
gender, tumor location, and CA19-9 level of the low-grade 
versus the high-grade patients were not significant. The 
P values of age, gender, tumor location, and CA19-9 level 
were 0.080, 0.420, 0.206, and 0.278 respectively in the 
training dataset; 0.557, 0.107, 0.674, and 0.271 in the test 
dataset; and 0.551, 0.511, 0.227, and 0.275 in the external 
validation dataset. The difference between the histologic 
grades in the training and external validation datasets 
was significant (P=0.005). The differences between age, 
gender, tumor location, and CA19-9 level in the training 

http://www.python.org
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and external validation datasets were not significant, and P 
values were 0.301, 0.537, 0.287, and 0.474 respectively.

Construction of radiomics signatures

A total of 1,452 features were extracted automatically by 
IBEX software. The interested reader can find the features 
in Table S1. Among these features, 614 were considered to 
have excellent robustness and reproducibility with ICCs 
>0.75. Finally, 80 important features with correspondingly 
weighted coefficients were selected from the 614 features 
and calculated by the model. The top 10 features with the 
highest weights included homogeneity, entropy, inverse 
variance, max probability, information measure correlation, 
and intensity. They are shown in Table S2. The formula for 
the radiomics score was generated by the LASSO method. 
The selected features with their corresponding weights and 
biases are shown in Table S3.

Prediction performance of the radiomics signature

The median radiomics scores of the low-grade PDAC 
patients in the training and testing groups were 0.115 T
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Table 2 Clinicopathological characteristics between the training 
and external validation datasets

Characteristics
Training  
dataset

External 
validation 
dataset

P

Age, mean ± SD, y 60.550±9.374 59.320±8.945 0.301

Gender, n (%) 0.537

Male 89 (58.9) 55 (55.0)

Female 62 (41.1) 45 (45.0)

Location, n (%) 0.287

Head and neck 102 (67.5) 61 (61.0)

Body and tail 49 (32.5) 39 (39.0)

CA19-9, n (%) 0.474

Normal (0–37 U/mL) 36 (23.8) 20 (20.0)

Abnormal (>37 U/mL) 115 (76.2) 80 (80.0)

Histopathology grade, n (%) 0.005

Low-grade 79 (52.3) 70 (70.0)

High-grade 72 (47.7) 30 (30.0)

P<0.05 indicates a statistically significant difference. CA19-9, 
carbohydrate antigen 19-9.
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(–0.087 to 0.329) and 0.304 (0.106 to 0.413), respectively. 
The median radiomics scores of the high-grade PDAC 
patients in the training and testing groups were 0.690 
(0.516 to 0.908) and 0.695 (0.559 to 0.852), respectively. 
The differences between the radiomics scores of the low-
grade versus the high-grade PDAC patients in both the 
training and test groups were significant (P<0.001; Table 1,  
Figure 2).

The AUCs of radiomics scores as predictors of tumor 
differentiation were 0.961 and 0.910 for the training and 
test groups, respectively (Figure 3). The cutoff value of the 
radiomics score was 0.426. The sensitivity, specificity, PPV, 
NPV, and accuracy of the radiomics score are shown in 
Table 3.

External validation of the predictive performance of the 
radiomics signature

In the external validation group, the median radiomics 
scores of the low-grade and high-grade patients were 0.311 
(0.147 to 0.427) and 0.535 (0.147 to 0.427), respectively, 
which was significantly different (P<0.001; Table 1, Figure 2).  
The AUC of the radiomics score for predicting histological 
grade was 0.770 (Figure 3). The sensitivity, specificity, PPV, 
NPV, and accuracy of the radiomics score are shown in 
Table 3.

Independent predictors of PDAC grade

After multivariate logistic regression analysis, the 
Radscore [odds ratio (OR) =0.003, P<0.001] was included 
in the predictive model. The P values of the remaining 
clinicopathological characteristics, including age, gender, 
CA19-9 level, and tumor site were 0.951, 0.388, 0.066, and 
0.709, respectively, and were therefore not included.

Discussion

Radiomics signatures have been widely used in radiomics 
research. As an important radiomics predictive index, 
the radiomics signature shows good discrimination  
performance (32). It combines many features of the image, 
allowing a more comprehensive analysis that results in a 
more sensitive and accurate diagnosis of a lesion than a 
few or single image indicators would (33). In our study, 
the radiomics signature based on CE-CT showed good 
performance for predicting the histological grade of PDAC. 
Our result is consistent with the findings of Huang et al. (18) 

Figure 2 Boxplots of radiomics scores between the patients grouped 
according to low-grade and high-grade tumors in the training 
dataset (A), test dataset (B), and external validation dataset (C).
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for colorectal cancers and Chen et al. (21) for non-small 
cell lung cancers. Our results also validated the conclusions 
of Choi (34) and Cassinotto (35), who assert that texture 
analysis is an important component of radiomics that 
reflects the histological differentiation of PDAC and 
correlates with patient outcomes.

In our study, the top 10 most important features 
belonged to the areas of homogeneity, entropy, inverse 
variance, max probability, information measure correlation, 
and intensity. Except for intensity, which belongs to the 
first-order feature that can reflect the gray intensity value 
of voxels, all the other features were second-order texture 
features, belonging to the GLCM. The GLCM refers to the 
spatial correlation characteristics of voxel gray values and is 
used to reflect texture (26). Homogeneity is a reflection of 
the uniformity of the distribution of voxels. Entropy refers 
to the randomness of the distribution of gray values which 
indicates the complexity of image texture: the more complex 
the image texture, the larger the entropy value. Inverse 

variance reflects local changes in image texture. If the image 
texture was relatively uniform and changed slowly between 
different regions, the inverse variance was increased. The 
max probability represents the texture feature that appears 
most frequently in the image. The features reflected the 
complexity and heterogeneity of the different aspects of 
the ROIs in the images and were combined to provide the 
radiomics signature for predicting the differentiation grade 
of each tumor.

To test the accuracy of our model further, we performed 
an external validation study (36-39). In the external 
validation dataset, the AUC of our model was 0.770, 
and the accuracy was 0.730, which was decreased in the 
prediction accuracy. This result might be related to the 
small sample size in the external validation dataset and the 
difference in sample distribution. The difference between 
the histological grades of the training and the external 
validation groups was significant (P=0.005), and the number 
of high-grade tumors in the external validation group was 

Table 3 Predictive performance of radiomics signatures

Groups AUC (95% CI) SEN SPE PPV NPV ACC

Training dataset 0.961 (0.935–0.987) 0.886 0.917 0.921 0.880 0.901

Testing dataset 0.910 (0.864–0.956) 0.778 0.899 0.900 0.775 0.833

External validation dataset 0.770 (0.661–0.878) 0.757 0.667 0.841 0.541 0.730

AUC: 0.5–0.7, low accuracy; 0.7–0.9, moderate accuracy; >0.9, high accuracy. AUC, area under the curve; CI, confidence interval; SEN, 
sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy.

Figure 3 ROC curves. (A) ROC curve of the training group. The cutoff value of radiomics score was 0.426, and the AUC was 0.961; (B) 
ROC curve of the test group, with the AUC being 0.910; (C) ROC curve of the external validation group, with AUC being 0.770. ROC, 
receiver operating characteristic; AUC, area under the curve.

ROC of training dataset

1-specificity 1-specificity 1-specificity
0.0  0.2   0.4   0.6    0.8 1.0 0.0  0.2   0.4   0.6    0.8 1.0 0.0  0.2   0.4   0.6    0.8 1.0

S
en

si
tiv

ity

S
en

si
tiv

ity

S
en

si
tiv

ity

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

ROC of internal validating dataset ROC of external validating datasetA B C



699Quantitative Imaging in Medicine and Surgery, Vol 10, No 3 March 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(3):692-702 | http://dx.doi.org/10.21037/qims.2020.02.21

significantly lower than the number of low-grade tumors. 
The differences between the groups might account for the 
reduced quality of the model evaluation of the external 
validation group. Furthermore, our data were derived from 
multiple CT systems used at different medical centers. 
Differences between acquisition protocols might be the key 
reason for the reduced predictive power of the model in the 
external validation group. A multicenter prospective study 
using standardized acquisition and reconstruction protocols 
is our goal for the future.

In this study, we classified well-differentiated and 
moderately differentiated versus poorly differentiated 
and undifferentiated cancers into low-grade versus high-
grade groups, respectively, which was consistent with the 
classification methods of Wasif and Rochefort et al. (3,4). 
This dichotomous method has been considered to reflect 
the biological behavior and outcomes of PDACs (23).  
Furthermore, there were relatively fewer cases in the 
well-differentiated group (n=56) and the undifferentiated 
group (n=8). This can be explained by the combined well 
and moderately differentiated cases versus the poorly 
differentiated and undifferentiated cases.

At present, histological grades are mainly obtained 
from FNB specimens before surgery. However, studies by 
Larghi et al. (40) have shown that the preoperative grading 
accuracy, sensitivity, and specificity of EUS-FNB were 
56%, 41%, and 78%. This result was mainly attributed to 
the limited sample size and intra-observer inconsistency. 
The prediction model we built was based on preoperative 
CT images, which display the overall characteristics of the 
lesion, and the model objectively extracts the characteristics 
of the analyzed image, thereby avoiding the interference 
associated with subjective assessments and ultimately 
improving the accuracy of the prediction. Moreover, the 
risk of complications associated with a biopsy is avoided, 
and the predictive ability of pathological differentiation of 
pancreatic adenocarcinoma is improved before surgery.

In order to predict the histological grade of the lesion 
before surgery, some researchers have attempted to 
derive increased information from the traditional imaging 
examinations at the clinics. Elias et al. (41) evaluated the 
MRIs of 33 patients with pancreatic cancer to determine 
the degree of tumor differentiation based on the clarity of 
the margin of the tumor. The results showed that 71.4% 
of the poorly marginated lesions were well to moderately 
differentiated, while only 17.6% of focally defined cancers 
were well to moderately differentiated. In our study, the 
predictive accuracy of the radiomics signature was 73%, 

which was based on a larger sample size than the study 
by Elias et al., and avoided subjective judgment. Some 
investigators have also used CT perfusion parameters 
to predict the pathological differentiation of pancreatic 
cancer (42). The sensitivity and specificity for high-grade 
pancreatic cancer provided by the assessment of blood flow 
and blood volume were 79.2% and 82.4%, and 87.5% and 
88.2%, respectively. The combination of CT perfusion 
assessments with radiomics might broaden the application 
of these techniques and provide improved results.

In addition, CA19-9 is an important tumor marker for 
pancreatic cancer and is closely related to outcomes of 
patients with pancreatic cancer (43-45). One study found 
CA19-9 produced in vitro by a pancreatic cancer cell line to 
be correlated with the histological grade of differentiation 
in vivo in nude mice (46). CA19-9 as a continuous variable 
might be more significant than a categorical variable. 
However, the data in our study came from multiple medical 
centers that evaluated patients over a long period of time, 
and the equipment and protocols were inconsistent. Thus, 
an accurate comparison between the variables of the internal 
and external validation sets was impossible. Therefore, we 
were only able to assess them as categorical variables. This 
issue needs to be resolved in future studies.

Our study has limitations. First, it only explored 
the relationship between a radiomics signature and 
the histological differentiation of PDACs but did not 
investigate the outcomes of the patients, about which 
patients and surgeons were more concerned, and for which 
further study is needed. Second, our study only analyzed the 
images of patients from the pancreatic parenchymal phase. 
Although PDAC lesions are well depicted in the pancreatic 
parenchymal phase, we still need to explore whether the 
noncontrast phase or portal vein phase will provide better 
results than the phase we investigated.

Conclusions

The CE-CT-based radiomics signature demonstrated 
moderate predictive accuracy for differentiating low-
grade from high-grade PDAC and should become a new 
noninvasive method for the preoperative prediction of 
histological grades of PDAC.
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Intensity direct (24,28) (threshold: 0–8,000)

Energy 2Energy ( )
N

i

X i=∑
Global entropy The intensity entropy among all the voxels

Global max The intensity maximum among all the voxels

Global mean The intensity mean among all the voxels

Global median The intensity median among all the voxels

Global min The intensity minimum among all the voxels

Global std The intensity standard deviation among all the voxels

Global uniformity The intensity uniformity among all the voxel

Inter quartile range The interquartile range of the intensity values among all the voxels

Kurtosis Measure the peakedness of all the voxels’ intensity

Local entropy max (I) First, at each voxel, compute entropy in its neighborhood region; (II) then, 
compute the maximum among all the voxel’s entropy calculated from (I)

Local entropy mean (I) First, at each voxel, compute entropy in its neighborhood region; (II) then, 
compute the mean among all the voxel’s entropy calculated from (I)

Local entropy median (I) First, at each voxel, compute entropy in its neighborhood region; (II) then, 
compute the median among all the voxel’s entropy calculated from (I)

Local entropy min (I) First, at each voxel, compute entropy in its neighborhood region; (II) then, 
compute the minimum among all the voxel’s entropy calculated from (I)

Local entropy std (I) First, at each voxel, compute entropy in its neighborhood region; (II) then, 
compute the standard deviation among all the voxel’s entropy calculated 
from (I)

Local range max (I) First, at each voxel, compute range value (max value–min value) in its 
neighborhood region; (II) then, compute the median among all the voxel’s 
range value calculated from (I)

Local range mean (I) First, at each voxel, compute range value (max value–min value) in its 
neighborhood region; (II) then, compute the mean among all the voxel’s 
range value calculated from (I)

Local range median (I) First, at each voxel, compute range value (max value–min value) in its 
neighborhood region; (II) then, compute the median among all the voxel’s 
range value calculated from (I)

Local range min (I) First, at each voxel, compute range value (max value–min value) in its 
neighborhood region; (II) then, compute the minimum among all the voxel’s 
range value calculated from (I)

Local range std (I) First, at each voxel, compute range value (max value–min value) in its 
neighborhood region; (II) then, compute the standard deviation among all 
the voxel’s range value calculated from (I)

Local std max (I) First, at each voxel, compute standard deviation in its neighborhood 
region; (II) then, compute the maximum among all the voxel’s standard 
deviation value calculated from (I)

Local std mean (I) First, at each voxel, compute standard deviation in its neighborhood 
region; (II) then, compute the mean among all the voxel’s standard deviation 
value calculated from (I)

Local std median (I) First, at each voxel, compute standard deviation in its neighborhood 
region; (II) then, compute the median among all the voxel’s standard 
deviation value calculated from (I)

Local std min (I) First, at each voxel, compute standard deviation in its neighborhood 
region; (II) then, compute the minimum among all the voxel’s standard 
deviation value calculated from (I)

Local std std (I) First, at each voxel, compute standard deviation in its neighborhood 
region; (II) then, compute the standard deviation all the voxel’s standard 
deviation value calculated from (I)

Mean absolute deviation The mean absolute deviation of the intensity values among all the voxels

Median absolute deviation The median absolute deviation of the intensity values among all the voxels

Percentile Percentiles of the intensity values among all the voxels. Percentile =5, 10, 
15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95

Quantile Quantiles of the intensity values among all the voxels. Quantile =0.025, 0.25, 
0.5, 0.75, 0.975

Range The intensity range (max value–min value) among all the voxels

Root mean square (RMS) 2( )
RMS

N

i
X i
N

= ∑

Skewness Measure the asymmetry of all the voxels’ intensity

Variance ( )2

1

1Variance ( )
1

N

i

X i X
N =

= −
− ∑

Intensity histogram (24,28) (number of bins =256, range: 0–4,096, range fix =1)

Inter quartile range The interquartile range of the occurrence probability values in the histogram

Kurtosis Measure the peakedness of the occurrence probability values in the 
histogram

Mean absolute deviation The mean absolute deviation of the occurrence probability values in the 
histogram

Median absolute deviation The median absolute deviation of the occurrence probability values in the 
histogram

Percentile Percentiles of the occurrence probability values in the histogram. Percentile 
=5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95

Percentile area Percentiles of values in the accumulative histogram. Percentile =5, 10, 15, 
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95

Quantile Quantiles of the occurrence probability values in the histogram. Quantile 
=0.025, 0.25, 0.5, 0.75, 0.975

Range Measure the range (max value–min value) of the occurrence probability 
values in the histogram

Skewness Measure the asymmetry of the occurrence probability values in the 
histogram

Intensity histogram gauss fit (24) (number of bins =100, range: 0–4,096, range fix =0, number of gauss =2; number of gauss fix =1)

Gauss amplitude Amplitude of each gaussian curve

Gauss area Area of each gaussian curve

Gauss mean Mean of each gaussian curve

Gauss std Standard deviation of each gaussian curve

Number of gauss The number of gaussian curve that are used to approximate the curve

Neighbor intensity difference (24,30) (the neighborhood matrix size =3, NHoodSym =1, neighborhood matrix size in Y are calculated to best 
match neighborhood physical length in X dimension, not include edge pixels for analysis, number of bins =256)

Busyness –

Coarseness –

Complexity –

Contrast –

Texture strength –

Shape (24,28,31)

Compactness 1
2
3

Compactness 1 V

Sπ
=

Compactness 2 2

3Compactness 2 36 V
S

π=

Convex (I) First, compute convex value in 2D slice-by-slice. Convex = regionprops 
(2D mask, ‘solidity’); (II) then, compute the mean of convex value among the 
slices

Convex hull volume The mean volume of the 2D convex hulls that are the convex envelopes of 
each slice's binary mask

Convex hull volume 3D 3D volume of the convex hull that is the convex envelope of binary mask

Mass –

Max 3D diameter Max 3D diameter = largest pairwise Euclidean distance between voxels on 
the surface of the tumor volume

Mean breadth Mean breath = integral of mean curvature

Number of objects –

Number of voxel The number of voxels treating the edge voxels differently

Orientation (I) First, compute orientation value in 2D slice-by-slice. Orientation 
=regionprops (2D mask, ‘orientation’); (II) then, compute the mean of 
orientation value among the slices

Roundness –

Spherical disproportion
2Spherical disproportion

4
S
Rπ

=

Sphericity 1 2(6 )
3 3Sphericity

V

S

π
=

Surface area

1

1Surface area
2

N

i i i i
i

a b a c
=

= ×∑
Surface area density Surface area density S

V
=

Volume The physical volume treating the edge voxels differently

Voxel size The physical voxel size

IBEX, Imaging Biomarker Explorer; GLCM, gray level co-occurrence matrix.
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Table S2 The top 10 features with their corresponding weight of 
the selected 80 features

Feature Weight

F2-GLCM 3; 8-4 homogeneity –0.504

F1-GLCM 25; 90-7 entropy 0.494

F2-GLCM 3; 1-4 entropy –0.476

F1-GLCM 25; 90-1 inverse variance –0.467

F2-GLCM 3; 0-7 entropy 0.461

F2-GLCM 3; 8-4 homogeneity 2 0.288

F2-GLCM 3; 8-7 max probability 0.237

F2-GLCM 3; –333-4 information measure corr 2 0.227

F4-intensity direct; 90 percentile 0.225

F2-GLCM 3; 5-4 inverse variance 0.193

GLCM, gray level co-occurrence matrix.



Table S3 The features with their corresponding weight and bias in 
radiomics score formula

Feature Weight

45-4 cluster shade –0.032

90-4 cluster shade –0.168

45-4 difference entropy –0.036

0-4 entropy –0.108

90-7 entropy 0.494

–333-4 information measure corr 2 –0.086

90-1 inverse variance –0.467

45-7 max probability –0.053

45-4 sum entropy –0.189

0-4 cluster shade 0.001

4-4 cluster shade 0.167

6-7 contrast –0.033

8-4 contrast 0.014

8-7 contrast 0.097

11-4 contrast 0.112

5-4 correlation 0.030

5-7 correlation –0.048

7-7 correlation 0.049

10-4 correlation –0.117

10-7 correlation 0.053

–333-4 difference entropy.1 –0.145

4-4 difference entropy 0.041

8-4 dissimilarity 0.086

10-1 dissimilarity –0.187

10-7 dissimilarity 0.053

0-7 entropy.1 0.461

1-4 entropy –0.476

8-4 homogeneity –0.504

8-4 homogeneity 2 0.288

10-7 homogeneity 2 –0.159

–333-4 information measure corr 1.1 0.085

5-1 information measure corr 1 0.043

5-7 information measure corr 1 0.038

9-4 information measure corr 1 0.028

11-4 information measure corr 1 0.053

–333-4 information measure corr 2.1 0.227

5-4 information measure corr 2 –0.042

6-4 information measur corr 2 0.090

9-7 information measure corr 2 0.113

10-7 information measure corr 2 –0.121

10-1 inverse diff norm –0.022

0-1 inverse variance.1 0.182

5-1 inverse variance 0.051

5-4 inverse variance 0.193

7-1 inverse variance –0.075

7-4 inverse variance –0.057

7-7 inverse variance –0.094

8-1 inverse variance –0.113

11-7 inverse variance –0.004

12-1 inverse variance 0.161

2-7 max probability 0.127

4-7 max probability –0.156

8-7 max probability 0.238

11-7 max probability –0.135

4-4 sum entropy –0.191

–333 run length nonuniformity 0.134

0 run length nonuniformity 0.102

Global min –0.003

Local std std –0.059

90 percentile 0.225

0.975 quantile –0.034

Skewness 0.023

90 percentile.1 0.025

0.975 quantile.1 –0.026

Skewness.1 0.005

7 gauss amplitude 0.158

3 gauss area 0.093

6 gauss area 0.061

1 gauss mean –0.169

2 gauss mean –0.109

3 gauss mean 0.083

7 gauss mean –0.109

2 gauss std –0.002

3 gauss std –0.078

7 gauss std –0.069

Coarseness –0.191

Complexity.1 –0.044

Convex 0.088

Max 3D diameter 0.073

Surface area density –0.063

Bias (b) 0.430
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