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Background: Bone age can reflect the true growth and development status of a child; thus, it plays a critical 
role in evaluating growth and endocrine disorders. This study established and validated an optimized Tanner-
Whitehouse 3 artificial intelligence (TW3-AI) bone age assessment (BAA) system based on a convolutional 
neural network (CNN).
Methods: A data set of 9,059 clinical radiographs of the left hand was obtained from the picture archives 
and communication systems (PACS) between January 2012 and December 2016. Among these, 8,005/9,059 
(88%) samples were treated as the training set for model implementation, 804/9,059 (9%) samples as the 
validation set for parameters optimization, and the remaining 250/9,059 (3%) samples were used to verify the 
accuracy and reliability of the model compared to that of 4 experienced endocrinologists and 2 experienced 
radiologists. The overall variation of TW3-metacarpophalangeal, radius, ulna and short bones (RUS) and 
TW3-Carpal bone score, as well as each bone (13 RUS + 7 Carpal) between reviewers and the AI, were 
compared by Bland-Altman (BA) chart and Kappa test, respectively. Furthermore, the time consumption 
between the model and reviewers was also compared.
Results: The performance of TW3-AI model was highly consistent with the reviewers’ overall estimation, 
and the root mean square (RMS) was 0.50 years. The accuracy of the BAA of the TW3-AI model was better 
than the estimate of the reviewers. Further analysis revealed that human interpretations of the male capitate, 
hamate, the first distal and fifth middle phalanx and female capitate, the trapezoid, and the third and fifth 
middle phalanx, were most inconsistent. The average image processing time was 1.5±0.2 s in the TW3-AI 
model, which was significantly shorter than manual interpretation.
Conclusions: The diagnostic performance of CNN-based TW3 BAA was accurate and timesaving, and 
possesses better stability compared to diagnostics made by experienced experts.
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Introduction

Bone age, more so than chronological age, reflects the 
actual growth and development status of a child. The 
theory of skeletal physiological maturity was first proposed 
by Franz Boas (1), and since then, bone age was used to 
describe different stages of skeletal development. Bone age 
assessment (BAA) plays a pivotal role in confirming the 
diagnosis of endocrine diseases, predicting the adult height, 
and evaluating the efficacy of the treatment. Nevertheless, 
the basis of these evaluations requires an accurate, 
consistent, and stable assessment approach.

Greulich and Pyle (GP) (2) and Tanner-Whitehouse 3 
(TW3) (3) are the most prevalently used BAA techniques. 
GP method compares  the  pat ient ’s  radiographic 
information with the nearest standard radiograph in the 
atlas. Nevertheless, the degree of accuracy can only reach 
to half a year, and the doctor’s subjectivity may cause 
significant variation between reviewers (4). However, 
due to its convenience and speed, approximately 76% of 
doctors worldwide still prefer the GP method (5). On the 
other hand, the TW3 method is based on a scoring system 
enabling the bone age estimation accuracy to be within 
a month. Specifically, the reviewer will firstly identify 
20 bones [13 radius, ulna and short bones (RUS) + 7 
Carpal], each with a categorized stage. Then, each stage 
is replaced by a score. Finally, a total score is calculated 
and transformed into the bone age. This method requires 
at least 20 minutes to complete the bone age evaluation 
for manual assessment. Although the TW3 method is 
more precise compared with the GP method, it is more 
complex and time-consuming. And, even when adopting 
the computer-aided detection (CAD) system, the rating for 
each bone still relies on a human interpretation that also 
imposes unavoidable inter- and intra-reviewer variability. 
New and advanced artificial intelligence (AI) techniques 
are urgently needed to aid the radiologist and clinicians in 
BAA.

Deep learning is a type of machine learning. When 
properly trained with a vast number of training samples, the 
algorithm can make accurate predictions for new input (6). 
In deep learning, a convolutional neural network (CNN) is 
a kind of feedforward neural networks with a deep structure 
that includes convolution or related calculations. It is widely 
used in image and video recognition, recommender systems, 
image classification, natural language processing, and 
medical image analysis (7). A CNN usually consists of an 
input and an output layer, as well as multiple hidden layers. 

The activation function is commonly a rectified linear 
unit (RELU) layer and includes pooling layers and fully 
connected layers. By using CNN, local information can 
be effectively utilized without manually selecting features. 
Also, through the sharing of perceptual fields, we can learn 
large scale images with small scale parameters. However, 
CNN is not suitable for long-distance logical reasoning, 
nor is it good at dealing cases with the feature of large shift 
or rotation.

Furthermore, the physical information of the features 
extracted by the convolutional layer is ambiguous. 
Due to the availability of big data in medical fields and 
enhanced computing power with graphics processing units 
(GPU), deep learning has been widely applied in medical 
applications, including the identification of brain tumors (8)  
and diabetic retinopathy in retinal fundus (9), early 
warning of lymph node metastases in breast cancer (10), 
and classification of skin cancer (11). Many attempts to 
automating BAA, such as BoneXpert, a system developed 
by Harvard Medical School and Stanford University, have 
been proposed over the past few years (12-14). Recently, 
AI models based on the GP method have been proven to 
possess great potential in making accurate and time-saving 
predictions (15). The following study aimed to establish 
a new large-scale, fully automated CNN-based, TW3 
BAA system, and to compare the accuracy, stability, and 
efficiency of the model with experienced endocrinologists 
and radiologists.

Methods

Data collection

The institutional review boards of our hospital approved the 
study. A total of 9,059 left-hand radiographs were obtained 
from our hospital between January 2012 and December 
2016. All images were drawn from the picture archives and 
communication systems (PACS). The radiology reports 
included the patient’s accession numbers, chronological age, 
sex, and bone age. Figure 1 shows the age distribution of the 
data sets, and Table 1 summarizes the average chronological 
age and the estimated bone age of each set.

Among the radiographs, 8,005/9,059 (88%) were 
randomly selected for the training set, 804/9,059 (9%) were 
used for validation, and the remaining 250/9,059 (3%) were 
used for the test set. The training set was used to optimize 
the model parameters, and the validation set was used to 
tune hyper-parameters to optimize the model.
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Figure 1 The age distribution of the data sets. A total of 9,059 patients were enrolled in this study; the chronologic age distributions of the 
patients were 0–18 years old for males and 0–17 years old for females, and the average age was 7.8±3.8 years old.

Table 1 The data set distribution and average chronological age and bone age

Variables
Image no. of 

males
Image no. of 

females
Total no.

Average  
chronological age

Average bone age 
(TW3-Carpal)

Average bone age  
(TW3-RUS)

Training set 2,813 5,192 8,005 7.7±3.8 6.9±3.2 7.6±3.5

Validation set 268 536 804 7.9±3.9 7.2±3.4 7.1±2.9

Test set 125 125 250 9.3±4.4 7.5±3.7 8.3±4.6

TW3, Tanner-Whitehouse 3; RUS, radius, ulna and short bones.

Data annotations

The radiograph annotation team included more than 
100 professional radiologists and endocrinologists from 
Children’s Hospital in Fujian and Zhejiang Province. 
During the annotation process, each expert evaluated the 
same image at least 3 times, and the mode value was chosen 
as his/her final annotation result. Five different reviewers 
estimated the rank (from A to I) of each hand bone. The 
result was accepted as the estimated Ground Truth (eGT) 
only when the same result was obtained from at least 3 
reviewers. Otherwise, a re-grade was needed.

Data pre-processing

Before training the model, each radiograph was first 
converted from Digital Imaging and Communications in 
Medicine (DICOM) to a portable network graphic (PNG) 
file format. The original images were further compressed 
to 256×256 pixels. The original training data set [8,005] 
was further expanded more robustly to train the model 
into more than 100,000 samples by rotating, shifting, and 

scaling the original images. The augmented parameters and 
selected value ranges are summarized in Table 2. The full 
implementation pipeline is shown in Figure 2.

Model implementation

The primary components of the model included an 
alignment module and a later classification module. The 
two modules were built on the same backbone, known as 
a deep residual network (ResNet), which is a deep CNN 
with 50 layers and about 3.6×109 floating point operations 
(FLOPS). The model was built according to an open-
source machine learning library (TensorFlow version 1.4.1; 
Google, Mountain View, CA, USA). Training of layers was 
performed by stochastic gradient descent in batches of 20 
images per step, using an Adam Optimizer with a learning 
rate of 0.001. Training on all categories was run for 80,000 
iterations since the training of the final layers for all classes 
had converged by then. After 80,000 iterations through the 
entire dataset, the training was stopped due to the absence 
of further improvement in both accuracy (Figure S1A) and 
sigmoid loss (Figure S1B).
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Left-hand radiographs were used as input data, and the 
alignment module was trained to directly regress all the 20 
ossification center regions of TW3. Figure S2 depicts a total 
of 13 ossification center regions and 1 carpal bone region, 
which were fitted by the regression algorithm.

In the classification module, the relevant 20 bones (13 
RUS, 7 Carpal) were labeled by the 59 localized points 
inferred from the alignment module, which were then 
cropped and impute into the same CNN. The relevant 
20 ossification center regions (13 RUS, 7 Carpal) inferred 
from the alignment module were then passed through a 
classification network for the labeling of their ossification 
levels. The classification module used a softmax layer to 
output multi-classification ranks ranging from A to I for 
each of the bones. Finally, the ranks for all concerned 
bones were sent into a TW3-RUS/TW3-Carpal calculator, 
summed to get the respective final score and cross-
referenced with the skeletal maturity table. The output of 
the classifier was an estimated bone age, according to TW3-
RUS and TW3-Carpal method. The scores corresponding 
to different ranks of bone development are summarized in 

Table S1 (for males) and Table S2 (for females). The Python 
code (version 3.7.3) implementing the deep CNN and 
simulation algorithms can be found online at https://github.
com/bmehighday/bone-age-algorIthm.

Statistical analysis

A mean paired inter-observer difference was calculated 
for each reviewer pair to compare the performance of the 
human reviewers to paired inter-observer. The overall 
performance of the model was assessed by comparing 
the root mean square (RMS) and mean values. RMS was 
calculated as the square root of the sum of the squares 
of the paired differences, and the mean was calculated as 
the average of the paired differences. To assess the overall 
agreement between reviewers along with the agreement 
between the model and each reviewer, 95% confidence 
limits of agreement were calculated. Bland-Altman (BA) 
plot was used to show the consistency between the model 
and reviewers. Individual bone agreements were performed 
by Fleiss’ kappa statistics (Table 3). Statistical significance 

Figure 2 Data flow diagram from raw DICOM images, and automated CNN-based TW3 BAA vs. manual human assessment. DICOM, 
Digital Imaging and Communications in Medicine; CNN, convolutional neural network; TW3, Tanner-Whitehouse 3; BAA, bone age 
assessment; PACS, picture archives and communication systems; RIS, radiology information system; PNG, portable network graphic; AI, 
artificial intelligence.

Table 2 The augmented parameters and selected value range

Augmented parameters Random rotation (degree) Random shift (pixel) Random scaling Augment factor

Value range U (–15, 15) U (–5, 5) U (0.9, 1.1) 10

Native DICOM
9,059

(PACS/RIS)

Annotation
100+ doctors

Test set
250

CNN model
(Resnet)

6 reviewer

Al prediction

Human prediction

Training set
90,000

Validation set
10,000

Pre-processing
100,000

(Convert to PNG,
downsize, augment,

crop)

https://github.com/bmehighday/bone-age-algorIthm
https://github.com/bmehighday/bone-age-algorIthm
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was determined by using paired t-tests for comparing mean 
values and F-tests for comparing variances (i.e., RMS). 
A value with P value <0.05 was considered statistically 
significant. All the statistical analyses were conducted by R 
statistical software, version 3.3.2 (R Foundation).

Results

In total, 8,809 images were obtained to train and validate 
the model, and another independent 250 images were 
used to test it. The chronologic age distributions of the 
patients were 0–18 years old for males and 0–17 years old 
for females, and the average age was 7.8±3.8 years old 
(Figure 1). The data set, mean chronologic age, and bone 
age are shown in Table 1, and the male-to-female ratio of 
the training and validation set was 3,081/8,809:5,728/8,809 
(35%:65%), and 125/250:125/250 (50%:50%) for the  
test set.

The efficiency of TW3-AI model

We compared the time consumption for BAA between 
the TW3-AI model and the endocrinologists in the test 
set. The average processing time for the TW3-AI model 
was 1.5±0.2 s, which was significantly shorter than the 
average time (525.6±55.5 s) needed for endocrinologists or 
radiologists to assess bone age according to the TW3 rule.

The diagnostic performance of the TW3-AI model

The accuracy of the diagnostic performance of the TW3-
AI model was evaluated in the test set. Tables 4,5 shows the 
statistical difference of BAA by the TW3-AI model and 
reviewers. The average RMS of the model is 0.50 years, 
which is not significantly different from the average RMS 
of the 6 reviewers, which means that the performance of the 
model was not inferior to manual assessment. Meanwhile, 
the model’s RMS was significantly lower than reviewer 5 in 
both TW3-Carpal and TW3-RUS (P<0.05), but not lower 
than the other reviewers.

The BA plot shows the difference between the model 
and the mean of the 6 reviewers in TW3-Carpal (Figure 
3A) and TW3-RUS (Figure 3B), which demonstrates a high 
consistency between the model and reviewers. However, when 
we compared the model with each reviewer individually, the 
BA plot showed a poor consistency between the model and 
reviewer 5 in TW3-Carpal (Figure S3A) and TW3-RUS 
(Figure S3B). The agreement between BAA made by the model 
and by the reviewers is shown in Figure 4A (TW3-Carpal) and 

Table 3 The interpretation of κ

κ Interpretation

<0 Poor agreement

0.01–0.20 Slight agreement

0.21–0.40 Fair agreement

0.41–0.60 Moderate agreement

0.61–0.80 Substantial agreement

0.81–1.00 Almost perfect agreement

Table 4 The statistical differences of BAA between reviewers and the TW3-Carpal system

Variables Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4 Reviewer 5 Reviewer 6 Mean

Mean

Reviewer –0.50 –0.49 0.13 –0.36 0.85 0.36 0.00

Model –0.33 –0.33 –0.23 –0.31 –0.11 –0.19 –0.25

P value <0.01 <0.01 <0.01 0.09 <0.01 <0.01 –

RMS

Reviewer 0.74 0.80 0.91 0.78 1.18 0.93 0.89

Model 0.54 0.56 0.56 0.58 0.36 0.37 0.50

P value 0.92 0.99 0.91 0.80 <0.01 0.11 –

BAA, bone age assessment; TW3, Tanner-Whitehouse 3; RMS, root mean square.
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Table 5 The statistical differences of BAA between reviewers and the TW3-RUS system

Variables Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4 Reviewer 5 Reviewer 6 Mean

Mean

Reviewer –0.66 –0.78 0.32 0.18 0.70 0.25 0.00

Model –0.3 –0.32 –0.13 –0.16 –0.07 –0.14 –0.19

P value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 –

RMS

Reviewer 0.73 0.85 0.91 0.78 1.15 1.03 0.91

Model 0.57 0.57 0.57 0.58 0.35 0.38 0.50

P value 0.85 0.65 0.71 0.94 0.011 0.11 –

BAA, bone age assessment; TW3, Tanner-Whitehouse 3; RUS, radius, ulna and short bones; RMS, root mean square.

Figure 3 The difference between the model and reviewers. (A) BA plot showing the difference of bone age estimates between the mean of 
6 human reviewers and the TW3-AI model (TW3-Carpal); (B) BA plot showing the difference of bone age estimates between the mean of 
6 human reviewers and the TW3-AI model (TW3-RUS). BA, Bland-Altman; TW3, Tanner-Whitehouse 3; AI, artificial intelligence; RUS, 
radius, ulna and short bones.

Figure 4B (TW3-RUS). All assessments are within the 95% 
confidence limits of agreement between each other.

High variability of reviewer interpretation of individual 
bones

Kappa-test was used to evaluate the consistency both 
between the TW3-AI model and reviewers, and between 
reviewers. Table 3 shows the interpretation of κ. The overall 

consistency between the model and reviewers is better 
than the between reviewers. Further analysis revealed that 
for experienced endocrinologists and radiologists, their 
interpretations were most variable in the male capitate 
and hamate, the female capitate and trapezoid in TW3-
Carpal (Figure 5A). The bones with the highest estimation 
variation in TW3-RUS were the male first distal and fifth 
middle phalanx, the female third phalanx, and the fifth 
middle phalanx (Figure 5B).
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Figure 4 The agreement between BAA made by the model and reviewers. (A) Ninety-five percent limits of agreement between bone age 
estimates of human reviewers and TW3-AI model (TW3-Carpal); (B) 95% limits of agreement between bone age estimates of human 
reviewers and TW3-AI model (TW3-RUS). TW3, Tanner-Whitehouse 3; AI, artificial intelligence; RUS, radius, ulna and short bones.
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The variation between reviewers in the assessment of 
these bones was further investigated in this study. Firstly, in 
TW3-Carpal, different reviewer interpretations occurred 
in rank B, E, F, and G when assessing the male capitate, 
while for the male hamate, rank B, F, G, and H were 
easily misestimated (Figure S4A). Similarly, for female 
samples, reviewers mostly misinterpreted rank C, E, and 
G in the capitate and rank B, E, F, and G in the trapezoid 
(Figure S4B). Secondly, in TW3-RUS, reviewers mostly 

misinterpreted rank C, D, and E in the male first distal 
phalanx, and rank B, E, and H in the fifth middle phalanx 
(Figure S4C). For female samples, rank B, E, and F in the 
fifth phalanx, and rank C, E, and F in the third middle 
phalanx were the most misinterpreted ranks (Figure S4D).

Discussion

Our group successfully established a CNN-based TW3-
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Figure 5 The variability of reviewer interpretation of individual bones. (A) The male capitate and hamate and the female capitate, and 
trapezoid were the most variable bones interpreted by reviewers according to TW3-Carpal; (B) the first distal and fifth middle phalanx 
for male, and the third and fifth middle phalanx for females are the most variable bones interpreted by reviewers according to TW3-RUS. 
TW3, Tanner-Whitehouse 3; AI, artificial intelligence; RUS, radius, ulna and short bones.
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AI BAA system, which was developed from a training set 
size of 8,005 and a validation set size of 804 clinical hand 
radiographs. The BAA of the model was nearly real-time. 
After continuous optimization, the model reached an 
accuracy within 95% of the confidence limits of agreement 
compared with that of the experts’ assessment. In a head-
to-head comparison, the consistency between the TW3-AI 

model and reviewers is better than that between reviewers. 
We concluded that our TW3-AI model performed similarly 
to experienced endocrinologists and radiologists in terms 
of the accuracy of BAA, with better stability than manual 
interpretations.

BAA is a crucial tool in pediatric clinics, which can be 
used to evaluate the current status of children's growth 
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and development, to tell the future growth potential and 
predicted adult height, and to inform the efficacy of the 
treatment for the diseases and includes characteristics like 
short stature, congenital adrenal hyperplasia, and precocious 
puberty. Consequently, an accurate, consistent, and stable 
BAA is the prerequisite for clinical endocrine work. 
However, in the endocrinology department of our hospital, 
there are more than 47,000 outpatients annually which 
challenges our endocrinologists to consistently, accurately, 
and rapidly assess bone age. Thus, the development of a 
machine learning model would solve many of the problems 
that pediatricians face every day.

To the best of our knowledge, our model is the first AI 
model based on the TW3 rule for BAA. Developed on a 
TW3 scoring system, which rates for both carpal and RUS 
bones from A to I, our model is different from most of the 
previous works based on the extraction of morphological 
features just from carpal or RUS bones (16-18). In this 
study, the age distribution of the included patients covered 
the infancy to late adolescence stages, and both carpal and 
RUS bones were used to train and validate the model. As 
a result, our model had high accuracy and stability in BAA 
and was applicable not only to young children but also to 
older teenagers.

Further analysis revealed that the bones that were most 
variably interpreted by reviewers were the capitate, hamate, 
the first distal and fifth middle phalanx of male patients; 
and the capitate, trapezoid, and the third and fifth middle 
phalanx of female patients. The underlying reason for the 
variation was that the grading and scoring of these bones 
are subjective, so inter- and intra-reviewer variation is 
inevitable. By strengthening the learning of these individual 
bones and ranks scoring, we could improve the accuracy and 
consistency of BAA in clinicians, which in turn can be used 
as a reference for future model optimization for clinicians in 
the evaluation of bone age.

Much work has been done on refining an automatic 
system to evaluate bone age. HANDX and CASAS systems 
were the earliest attempts for automatic BAA (19,20). 
Both systems were based on feature extraction of hand 
bones, and they showed better consistency than manual 
assessment. Nevertheless, they are more time-consuming 
than the manual evaluation of bone age (16). Recently, 
Harvard Medical School and Stanford University School 
of Medicine individually developed an automated deep 
learning system for BAA; both models are based on feature 
extraction (13,14). Our model was based on the TW3 rule, 
which is recognized as the most objective method used to 

evaluate bone age. It also demonstrated superior stability in 
BAA, as the RMS was 0.50 years in both TW3-Carpal and 
TW3-RUS, which was smaller compared to the RMS of 
0.67 years in the model developed by Stanford University.

There are several limitations to our model. Firstly, 
similar to the previous works in BAA, there is no gold 
standard for bone age evaluation, because the inter- and 
intra-reviewer variations are inevitable (21,22). Previous 
studies have reported a standard error of the inter-reviewer 
variation from 0.45 to 0.83 years (standard deviation of 
0.64 to 1.17 years) (12,23). In this study, the RMS of inter-
reviewer variation was 0.72 years, which is comparable with 
previous research, while the RMS between the model and 
reviewer was 0.50 years, which showed superior stability 
compared to the manual assessment. Secondly, all the 
images were obtained from our hospital, suggesting more 
images should be collected from other medical centers to 
reduce the bias. Thirdly, our model cannot detect certain 
diseases that human specialists might identify when 
analyzing the images, such as rickets, hypochondroplasia, 
and other congenital syndromes (22). Nonetheless, we 
believe that with the development of medically oriented 
machine learning techniques, the advantages of AI-model in 
BAA will become increasingly apparent.

In summary, we developed an automated CNN-based 
TW3-AI model that can estimate bone age with similar 
accuracy and superior stability compared to manual 
assessment. The highly accurate and efficient TW3-AI 
model will spare clinicians from the tedious clinical viewing 
process, and thoroughly improve the level of diagnosis and 
treatment for children’s endocrine diseases.
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Supplementary

Table S1 The scores corresponding to different grades of bone development (male)

Model Grade score bone A B C D E F G H I

TW3-RUS I metacarpus 0 6 9 14 21 26 36 49 67

III metacarpus 0 4 5 9 12 19 31 43 52

V metacarpus 0 4 6 9 14 18 29 43 52

I proximal phalanx 0 7 8 11 17 26 38 52 67

III proximal phalanx 0 4 4 9 15 23 31 40 53

V proximal phalanx 0 4 5 9 15 21 30 39 51

I distal phalanx 0 5 6 11 17 26 38 46 66

III distal phalanx 0 4 6 8 13 18 28 34 49

V distal phalanx 0 5 6 9 13 18 27 34 48

III middle phalanx 0 4 6 9 15 22 32 43 52

V middle phalanx 0 6 7 9 15 23 32 42 49

Radius 0 16 21 30 39 59 87 138 213

Ulna 0 27 30 32 40 58 107 181 –

TW3-Carpal Triquetrum 0 10 13 28 57 84 102 124 –

Lunate 0 14 22 39 58 84 101 120 –

Scaphoid 0 26 36 52 71 85 100 116 –

Trapezium 0 23 31 46 66 83 95 108 117

Trapezoid 0 27 32 42 51 77 93 115 –

Hamate 0 73 75 79 100 128 159 181 194

Capitate 0 100 104 106 113 133 160 214 –

TW3, Tanner-Whitehouse 3; RUS, radius, ulna and short bones.

Table S2 The scores corresponding to different grades of bone development (female)

Model Grade score bone A B C D E F G H I

TW3-RUS I metacarpus 0 8 12 18 24 31 43 53 67

III metacarpus 0 5 8 12 16 23 37 47 53

V metacarpus 0 6 9 12 17 23 35 48 52

I proximal phalanx 0 9 11 14 20 31 44 56 67

III proximal phalanx 0 5 7 12 19 27 37 44 54

V proximal phalanx 0 6 7 12 18 26 35 42 51

I distal phalanx 0 7 9 15 22 33 48 51 68

III distal phalanx 0 7 8 11 15 22 33 37 49

V distal phalanx 0 7 8 11 15 22 32 36 47

III middle phalanx 0 6 8 12 18 27 36 45 52

V middle phalanx 0 7 8 12 18 28 35 43 49

Radius 0 23 30 44 56 78 114 160 218

Ulna 0 30 33 37 45 74 118 173 –

TW3-Carpal Triquetrum 0 11 16 31 56 80 104 126 –

Lunate 0 16 24 40 59 84 106 122 –

Scaphoid 0 24 35 51 71 88 104 118 –

Trapezium 0 20 27 42 60 80 95 111 119

Trapezoid 0 21 30 43 53 77 97 118 –

Hamate 0 72 74 78 102 131 161 183 194

Capitate 0 84 88 91 99 121 149 203 –

TW3, Tanner-Whitehouse 3; RUS, radius, ulna and short bones.



Figure S1 Plot shows performance in the training and validation data sets using Tensor Board. (A) The accuracy was plotted against the 
training step, and (B) sigmoid loss was plotted against the training step during the training of the multi-class classifier throughout 80,000 
iterations. Plots were normalized with a smoothing factor of 0.6 to visualize the trends. Training dataset, orange; validation dataset, blue.

Figure S2 A total of 13 ossification center regions and 1 carpal bone region which were fitted by the regression algorithm.
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Figure S3 The difference of BAA between each reviewer and TW3-AI model. (A) BA plot showing the difference of bone age estimates 
between each reviewer and TW3-AI model (TW3-Carpal), which shows a poor consistency between the model and reviewer 5; (B) BA plot 
showing the difference of bone age estimates between each reviewer and TW3-AI model (TW3-RUS) shows a poor consistency between 
the model and reviewer 5. BA, Bland-Altman; TW3, Tanner-Whitehouse 3; AI, artificial intelligence; RUS, radius, ulna and short bones.
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Figure S4 A, B, C, D, E, F, G, H, and I in the abscissa represents the level of bone maturity. (A) Rank B, E, F, and G in the capitate and 
rank B, F, G, and H in the hamate are the most easily misestimated by human reviewers for males according to TW3-Carpal; (B) rank C, E, 
and G in the capitate, and rank B, E, F, and G in the trapezoid are the most easily misestimated by human reviewers for females, according 
to TW3-Carpal; (C) rank C, D, and E in the male first distal phalanx, and rank B, E, and H in the fifth middle phalanx are the most easily 
misestimated by human reviewers for males according to TW3-RUS; (D) rank B, E, and F in the fifth phalanx, and rank C, E, and F in the 
third middle phalanx are the most easily misestimated by human reviewers for females according to TW3-RUS. TW3, Tanner-Whitehouse 3; 
RUS, radius, ulna and short bones.
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A       B       C       D       E       F       G       H       I

A       B       C       D       E       F       G       H       I

A        C        D        E       F        G        H        I

A       B       C       D       E       F       G       H       I

A       B       C       D       E       F       G       H       I

K
ap

pa
K

ap
pa

K
ap

pa
K

ap
pa

K
ap

pa

K
ap

pa
K

ap
pa

Capitate

Hamate

Trapeziod

V Middle

V Middle III Middle

I Distal

A

B

C

D
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