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Background: We demonstrate an innovative approach of automated sleep recording formed on the 
electroencephalogram (EEG) with one channel. 
Methods: In this study, double-density dual-tree discrete wavelet transformation (DDDTDWT) was 
used for decomposing the image, and marginal Fisher analysis (MFA) was used for reducing the dimension. 
A proposed model on unprocessed EEG models was used on monitored training of 5-group sleep phase 
forecasting. 
Results: Our network includes a 14-row structure, and a 30-s period was extracted as input in order 
to be categorized which is followed by second and third period prior to the first 30-s period. Another 
consecutive period for temporal tissue was added which is not required to a signal preprocess and attribute 
data derivation phase. Our means of evaluating and improving our approach was to use input from the Sleep 
Heart Health Study (SHHS), which is a large study field aimed at using research from numerous centers and 
people and which studies the records of specialist-rated polysomnography (PSG). Performance measures 
could reach the desired level, which is a precision of 0.87 and a Cohen’s kappa of 0.81. 
Conclusions: The use of a large, collaborative study of specialist graders can enhance the likelihood of 
good globalization. Overall, the novel approach learned by our network showcases the models based on each 
category.
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Introduction

There is little doubt that sleep is one of the most essential 
aspects of an individual’s health. A number of illnesses, 
including hypersomnia, insomnia, sleep-oriented breathing 
difficulties, circadian rhythm sleep-wake disorder, sleep 
movement disorders, and parasomnia, are associated with 
sleep, with polysomnography (PSG) being the primarily 
approach for finding, suppressing, or curing these sleep-
related illnesses. A gathering of numerous signals used 
for monitoring the sleep of a patient under watch is 
called a polysomnogram. A polysomnogram works by 
gathering and using derived physiological signals, like 
electroencephalograms (EEG) and electromyograms 
(EMG), and ambient signals, like microphones and 
accelerometers.

Sleep staging includes distributing data gathered form 
PSG into consecutive short periods of 20 or 30 s, and 
sorting these periods into a distinct sleep phase alongside 
a few other candidates chosen based on sorting rules (1,2). 
We are able to use this approach on a full polysomnogram 
or on subcategories of its channels with the help of an 
educated operator or computer-oriented algorithm. From 
time to time, algorithms can be used by operators for pre-
recording.

A hypnogram is the continuous exhibition of night-
long sleep levels and is useful for diagnosing or clarifying 
sleep disorders. Properly dividing sleep time into distinct 
phases is considered to be an arduous task, requiring 
specialists to spend substantial time and energy on its 
completion. Furthermore, the conditions of grading are 
highly dependent on the skills and fatigue of the grader, and 
the acceptance of the results between the graders does not 
often exceed 90% (3,4). For this reason, computer-aided 
automated algorithms are used to divide the sleep time into 
separate phases.

Although the main focus of our discussion here is 
concerned with the first steps of multichannel analyzing 
systems, sleep phasing with a single channel is a promising 
approach, as it provides a system that is light, portable, and 
unobtrusively applicable on mobile devices, meaning it can 
facilitate undisturbed sleep due being less bulky, having 
fewer parts, and using 2 to 3 electrodes. Most research 
done on automated sleep recording originates from single-
channel EEG using a two-phase method. The first phase 
entails deriving attributes from the time waveform, and the 
second phase involves having a highly trained organizer 
forecast the sleep phases using the data derived from the 

waveforms. In terms of sorting, the usual approaches consist 
of decision trees and arbitrary forests (5), support vector 
machines (SVM) (6), and neural network (NN)-based 
methods (7). Alternatively, entropy with numerous scales, 
auto declining attributes, and linear separator analysis were 
used by the authors of (8). Zhu et al. (9) used attributes 
from a diversity visibility graph and sorted them via an 
SVM. Fraiwan et al. (5) focused on using time-frequency 
attributes, Renyi’s entropy attributes, and an arbitrary forest 
sorter. Meanwhile, Hassan and Bhuiyan (10) were able to 
acquire attributes from observational mode disintegration 
and sort them based on bootstrap aggregation with decision 
trees. They (11) also experimented with spectral attributes 
from an adjustable Q-factor wavelet change and an arbitrary 
forest categorizer. Sharma et al. (12) used frequentative 
refinement, a separated energy splitting algorithm, and 
different organizers, whereas Hsu et al. (13) used frequent 
neural organizers on attributes related to energy.

Recently, researchers have chosen to use end-to-
end trained NN organizers, which can be used both as 
attribute extractors and organizers. Garcia-Molina et al. (7)  
performed research with a heap of infrequent auto-
encoders and (14) the use of cascade neural networks 
(CNNs). In another study (15), CNN preprocessing was 
completed via coupling to a double-routed long interim 
momentary network (LSTM). The outcomes for this array 
of approaches reported in the literature above can be found 
in Table 1. 

We here present a new methodology of sleep phasing 
achieved by a single-channel EEG utilizing a double-density 
dual-tree discrete wavelet transformation (DDDTDWT)-
based decomposition of the image and a marginal Fisher 
analysis (MFA)-based reduction of the dimension on an 
unprocessed signal model. Related models  include image 
recognition (18,19), innate language processing (20), 
advocate systems (21), and different monitored arrangement 
understanding functions. Here, we hope to demonstrate 
the importance of DDDTDWT and MFA as useful tools 
capable of aiding reliable sleep recording performance on a 
large sleep recording database comprising multiple centers. 
These systems may also be useful in other domains like in 
brain illnesses where repeated EEG documentation has 
seen growing interest. This end-to-end approach also has 
the advantage of not requiring an engineering phase for 
attributes. Our network, illustrated in “Methods” section,  
has the ability to learn attribute discoverers suitable to the 
task of categorizing, and thus have a higher likelihood of 
yielding accurate results than those attributes extracted 
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by humans. As described in “Results” and “Discussion” 
sections, this approach can be very powerful if used on a 
large sleep recording database.

Methods

Data procurement

A group of 50 healthy and 43 ischemic cardiac illness 
(ICI) cases were evaluated, and a total of 279 ultrasound 
images were obtained which were based on the signs and 
assessments of left ventricular ejection fraction (LVEF), 
with LVEF rates lower than 45% implying significant 
results for ICI cases (22). The volunteers who came for 
periodic inspections were assumed to be healthy cases. The 
GE VIVID 7 health check and DICOM four-chamber left 
ventricular images were used. The images were converted 
into 800×600 JPG format. Three images were chosen from 
every case in total (the main image, along with the 20th 
preceding image and the 20th successive image to the main 
image). 

Data preparation for processes

Preparation of the data is an essential step in the signal 
assessment, as it can enhance the total efficiency of 
the technique. In this preparation, all of the EEGs are 

improved contrast-wise using contrast-limited adaptive 
histogram equalization (CLAHE) (23). Next, the artifacts 
are omitted from the image by mathematical morphology 
(closing operator) with a circular shape where the element 
structure is 5 (24). In the next stage, a narrow box is created 
for limiting the region of interest (ROI) (4 chambers of the 
heart) using the modified element assessment.

DDDTDWT technique

The DDDTDWT is a multi-resolution technique that is 
added to the discrete wavelet transform (DWT) (25,26). 
It is used to exploit the benefits of double-density DWT 
and dual-tree DWT at the same time (25). Another 
interpretation of dual-tree DWT is WT with complex 
magnitudes (25). In comparison to the critically-sampled 
DWT, the dual-tree DWT performs well in different 
processing of images (27,28). As shown in Figure 1, 
the DDDTDWT uses repeated filter groups that are 
oversampled and work in parallel. Four different wavelets 
and 2 different scale equations are used for its derivation. 
Eq. [1] can be used to state it.

( ) ( ), ,,
1, 2

h i g it t
i
ψ ψ

=
[1]

In which wavelets Ψh,x(t) and Ψh,x+1(t) have a difference 

Figure 1 Repeated filter banks of the double-density dual-tree discrete wavelet transformation technique (disintegration side). 
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of 0.5, which also is the case for Ψg,x(t) and Ψg,x+1(t) . This is 
also shown in Eq. [2].

, , 1

, , 1

( ) ( 0.5)
( ) ( 0.5)

h x h x

g x g x

t t
t t

ψ ψ

ψ ψ
+

+

≈ −

≈ −
[2]

Also, Ψh,x(t)  and Ψg,x(t) produce an estimated Hilbert 
transform pair. The resulting wavelets are flat with short 
distances.

The assessment and combination configuration are both 
shown in Figure 2. This figure shows that the different filter 
banks are generated (25) as follows: gi(n) and hi(n), i= 0, 1, 
2. A total of 32 directional wavelet sub-bands are obtained 
using DDDTDWT (without scale sub-bands). In addition, 
the orientation of the wavelets is influenced by the wavelets 
being further exposed to the double-density transformation 
and dual-tree complex configuration. The attributes can 
be localized in various orientations by the DDDTDWT 
approach because of the higher quantity of sub-bands and 
the other previously mentioned characteristics. Having the 
high-frequency elements, the low-frequency ones can be 
obtained using the DDDTDWT.

Moreover, this technique can obtain constant brightness 
attributes and use other attributes to eliminate excess 
data. Hence, the double-density dual-tree discrete wavelet 
transformation yields better performance compared to 

others, and it is more advisable for EEGs.

Entropy attributes

Four different entropy attributes are obtained from the 
DDDTDWT factors, including Kapur, Shannon, Renyi, 
and Yager entropies. The Renyi and Shannon entropies 
determine the size of the signal. In addition, the Shannon 
entropy is the highest advisable one for assessing the 
dynamic sequence of the systems. In this entropy, the 
minimum and maximum numbers are calculated using the 
probability density graph width (29). The Renyi technique 
is recommended for assessing the spectrum complication 
of a given time-series signal (30). In addition, to obtain 
the entropy magnitude and entropy calculation, the Kapur 
technique uses the universal historical data and prior 
probability distribution, respectively (31). Finally, the Yager 
technique assesses the unknown system data (32).

These entropies are computed using the DDDTDWT 
factor.

Kapur technique:
1

0
2 1

0

1 log
l

ii
k l

ii

Z
Ent

Z

α

ββ α

−

=
−

=

 
 =
 −  

∑
∑ [3]

Here, α is the order and β is the kind.

Figure 2 Model goal and anticipated hypnograms recorded from an example patient in the test set

Forecasted state 

S
ta

te
 o

f s
le

ep
S

ta
te

 o
f s

le
ep

Time of sleep (hour) 

Objective state 

0                   1                   2                   3                   4                   5                   6                   7                   8

0                   1                   2                   3                   4                   5                   6                   7                   8

Awake

REM

N1

N2

N3

Awake

REM

N1

N2

N3

Time of sleep (hour) 



771Quantitative Imaging in Medicine and Surgery, Vol 10, No 3 March 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(3):766-778 | http://dx.doi.org/10.21037/qims.2020.02.01

Shannon technique:

1
20

logl
s i ii

i
i

Ent z z

hz
M N

−

=
= −

=
×

∑
[4]

Here, hi 
denotes the i-th intensity occurrence.

Yager technique:

1

0
2 1

1
l

ii
y

z
Ent

M N

=

=
−

= −
×

∑
[5]

Renyi technique:

( )1
2 0

1 log
1

l a
R ii

Ent z
α

−

=
=

− ∑ [6]

α is the order.

MFA technique

Various entropic attributes were derived from the 
DDDTDWT factor and reduced according to its 
dimensions. The major purpose of the dimensional decrease 
procedure is to have a smaller dimension attribute set and to 
simplify the subsequent categorization task. The principal 
component assessment (PCA) and independent component 
assessment (ICA) approaches are usually implanted on the 
assessment of patients’ imagery, which is an unmonitored 
training technique that has been previously reported (33,34). 
However, recently the graph embedding technique (GET) 
has been used to produce the dimension decrease technique. 
Our study used MFA, in which the curves are produced to 
describe the ability to be separated between the classes and 
be compacted inside the classes (35). 

1 1
,

1 if ( ) ( )
0 O.W.

k k
i j

j M i i M j
W

∈ ∨ ∈
= 


[7]

2 2
,

1 if ( , ) ( ) ( , ) ( )
0 O.W.

k j k iQ
i j

i j Q c i j Q c
W

∈ ∨ ∈
= 


[8]

Here, Mk1 
denotes the group of intra-class k1, the closest 

neighbors of candidates xi, and Qk2 denotes the group of 
the k2 pairs of data. This procedure enables unprecedented 
characterization of the input without the need for knowing 
its distribution. In addition, since MFA takes account 

of marginal areas, it efficiently provides distinguishing 
orientation (36,37). Therefore, 30 attributes remained from 
the many that were obtained.

Optimum feature selection

To achieve desirable efficiency without any repetitive 
features, the feature selection is mixed with pattern 
recognition. Also, the feature categorization techniques 
demonstrate higher efficiency because of the optimum 
feature selection. This combination leads to an approach 
that is faster and more practical from an economic point 
of view. A group of optimum feature selection techniques 
is highlighted in this paper, including Bhattacharyya 
distance (38), Student’s t-test (39), entropy criteria (40,41), 
Wilcoxon ranking experiment (42,43), and Bootstrapped 
receiver operating characteristic (ROC) curve (44). In 
order to find analogies of the average of the 2 groups, 
the Student’s t-test was conducted. The approach can 
provide the P and t values of the obtained attributes of 
the 2 sets. Sometimes a lower value for P (P≤0.05) and 
a higher value for t are selected to enhance the ranking. 
Moreover, to assess the test’s sensitivity and particularity, 
we can utilize the ROC curve. To acquire the ROC curve 
for multi-threshold points, the assessment is completed, 
and sensitivity in terms of 1 particularity is plotted. 
When the 2 types are distinguished, the yielded curve 
is acquired. Thus, the required information about the 
accuracy of the approach is obtained utilizing the zone 
found beneath the curve. The seen amount of the zone 
beneath the curve is between 0.5 and 1. The approach is 
as acceptable if the zone is close to 1. In order to rank the 
characteristics on the basis of the ability to distinguish 
the training information, the Bhattacharya approach is 
used (38). The examination based on the entropy shows 
that it has a lower amount for sorted information and a 
higher amount for unsorted points (40,41). The evaluation 
of divergence is performed by estimating the dimension 
among the probability density functions (PDF). The 
difference between 2 internally related samples on a single 
sample is acquired utilizing the Wilcoxon signed-rank test, 
which is a statistical theory examination. The mean ranks, 
is performed to test the mean population (42). It is also 
assumed that each data pair is randomly selected and does 
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not rely on other data pairs (43,45).

Classifying the characteristic

At this phase, the tags of randomly selected samples were 
examined by utilizing a machine learning method. We 
examined a series of typical categorizers for the diagnosis of 
healthy and ICI groups.

We used linear discriminant analysis (46); quadratic 
discriminant analysis (46); probabilistic NN (47); k-nearest 
neighbor (48); an SVM categorizer with their various 
kernels including radial basis function; polynomial kernels 
of order 1, 2, and 3 (49); decision tree; and Naïve Bayes 
categorizer (50). The performance evaluation was carried 
out using accuracy, sensitivity, specificity, and positive 
predicted value (51).

Cardiac vessel illness probability 

By utilizing 2 marginal Fisher analyses (MFA1 and MFA2) 
characteristics, the novel cardiac vessel illness probability 
can be proposed. Initially, Ghista et al. (52) suggested 
developing this probability index, and then it was tested 
(53-56) for various medical image process uses. With higher 
placed characteristics, we formulated a novel cardiac vessel 
illness probability, which is as follows.

CVIP= 108*(2*MFA2+8*MFA1) [9]

This equation is experimentally  formulated so that by 
using a single amount, it evidently divides 2 categories. 

Moreover, based on their average and normal deviations, 
the MFA characteristics are selected in an optimal way, 
which divides 2 categories of cases.

Results  

Performance outputs

Table 2 exhibits the output confusion matrix in the test 
group. In Table 3, we can see multi-category and overall 
accuracy, recall, and particularity, with N1 being the most 
disorganized phase with 35% of precise organizations. 
The wake category showed the most proper organization 
reaching a size of 91%, followed by phase N2 with 89%, 
REM with 86%, and N3 with 85%. From the table we can 
also see that the total multi-category organization reaches 
87%, and the total Cohen’s kappa is 0.81.

The proposed model can be summarized as follows: 
 Phase N1 is very often confused with N2 (35%), REM 

(15%), and wake (19%) while the obtained results did 
not show any confusion with N3. 

 Phase N2 can sometimes be confused with phase N3 
(4%), but results did not show any major confusion 
with other phases. 

 Phase N3 is very often confused with N2 (14%), and 
results generally showed no major confusion with 
other phases. 

 Phase REM is very often confused with phases N2 
and wake (9%, 4%).

 Phase wake can sometimes be confused with N2 (4%). 
Accordingly , we present Figure 2, which is a hypnogram 

test set. Further descriptions and research can be found in 

Table 2 Matrix of confused data obtained from the examination class with and without normalization. The class data is normalized using the 
known fact (from operators) data set with the sum of percentile in each line equal to 1

Done by 
operator

Automated

Awaken stage N1 stage N2 stage N3 stage REM stage

Number % Number % Number % Number % Number %

Awaken stage 411,374 91.5 6,857 1.5 19,335 4.3 3628 0.8 8,264 1.8 

N1 stage 11,060 18.5 21,105 35.3 18,396 30.8 56 0.1 9,095 15.2 

N2 stage 17,236 2.6 6,426 1 581,883 89.3 27,980 4.3 17,956 2.8 

N3 stage 1,742 0.8 8 0 29,911 14.2 178,235 84.8 331 0.2 

REM stage 8,485 3.7 3,476 1.5 21,553 9.5 179 0.1 194,132 85.2 



773Quantitative Imaging in Medicine and Surgery, Vol 10, No 3 March 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(3):766-778 | http://dx.doi.org/10.21037/qims.2020.02.01

“Discussion” section. 

Visualizations

Figure 3 represents the artificial inputs that can boost the 
output quality of our 5 preceding neurons (preceding the 
softmax non-linearity). Here, it is important to note that the 
artificial signals we produced were exactly similar optically 
to an EEG series signal, but they were magnifiers of trends 
that our network uses for categorizing sleep phases. Also, 
signals were not going to be similar in every sleep phase 
that we worked on. Here, we have tried to showcase the 
archetypes. Useful codes for producing these examples 
can be found in Sors et al. (57). It is clear that the wake 
phase possesses the highest frequency signals. In more 

descriptions, we can see that phase N1 has θ waves reaching 
6Hz frequency. Phase N2 exhibits some arrangements 
identical to sleep spindles (range of frequency is 11–16 
Hz). In stage N3, we can also see some θ waves and sleep 
spindles as well as other higher frequency waves. 

However, solely from this illustration, we cannot 
demonstrate a single arrangement that our algorithm can 
count as the most significant for distinguishing phase N3. 
The final description is about how phase REM shows 
kinds of arrangements with almost all of them being of 
higher frequency compared to other phases, excluding the 
wake phase. In some tests previously conducted on other 
databases via the Fpz-Pz channel, an illustration of REM 
included visible arrangements of eye movements; however, 
relying solely on C4-A1 eye movements will not appear on 

Table 3 Assessed performance analysis of each category showing accuracy, recall, and particularity. They are prevalence-weighted macro averages 
among all categories.

Variables Wake N1 N2 N3 REM Overall

Accuracy 0.895 0.56 0.891 0.864 0.8608 0.8718

Recall 0.904 0.344 0.871 0.845 0.8422 0.8503

Particularity 0.947 0.995 0.912 1.004 0.9528 0.956

Support 454,713 58,185 656,332 216,650 232,593 1,603,303

Figure 3 Illustration of artificial inputs that were used to boost the activation of 5 output neurons correlating to each of the sleep phases. 
Domain measures are randomized. For clarity, only 10-second subintervals instead of 120 second ones are shown, and are derived from the 
main period. Section “Visualizations” discusses how these graphs were constructed.
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EEG results. We speculate that making use of 2 derivations 
can prove useful in this case. 

Discussion  

Core discoveries

Our research demonstrates the feasibility of categorizing 
sleep phases through using a single EEG channel and 
a DDDTDWT with MFA. This approach applied 
unprocessed signal models without any sort of attribute 
derivation stage and performed as well as other highly 
developed approaches. Our training contains all aspects 
of proposed method and does not require any technical 
knowledge for attribute choices or signal preprocessing. 
This, combined with its ability to learn the attributes that 
are most eligible to be utilized in categorization tasks, 
may provide a considerable advantage compared to other 
methods. Also, it is worth noting that we were unable to 
produce better results while using band-pass finite impulse 
response filters (FIR)  due to convolutional rows already 
having the knowledge of choosing the best fitting filters. 
The other advantage to this approach is that it can be easily 
used on other applications or methodologies. Training 
large DDDTDWT with MFA places high demands on 
computers, but after the first training, adjustments can 
be performed easily on a personal computer or a portable 
device. Looking at the types of errors that can occur 
in process, we understand that the errors are mostly 
correlating phases that are connected to sleep cycles. One 
reason for this is perhaps that the largest identical aspect 
between REM and wake phases is eye movements that can 
appear in negligible amounts on C4-A1 derivation.

Cases of imbalance in the categories

Just like other sleep recording databases, this one can 
also have some unbalanced results in class division. In 
the outcomes presented above, all had ordinary expenses 
and modeling. To give further information on imbalances 
occurring in the class division, more studies should be 
conducted. Ensemble learning (58) and DDDTDWT 
with MFA-specific methods (59) have the potential to be 
improved. 

Comparative analysis

Visible in Table 3 are some aspects and performance 

measures from research conducted on single-channel 
EEG sleep recording. Research done on sleep recording 
in studies might prove difficult due to a diversity in the 
datasets, the number of patients, the rules of recording, and 
differences in class division. For instance, the PhysioNet 
Sleep-European Data Format (EDF)x dataset (60) possesses 
a far greater quantity of periods of the wake phase than 
other phases due to the fact these periods are recorded not 
only before but also after sleep. In several other studies 
(5,9,16,19), all these wake periods were kept in their 
performance measures, but other researcher have attempted 
to readjust balancing. Thus, the outcomes are varied. Now, 
to equitably compare these types of research, we need to 
use known confusion matrices, and in a case where the wake 
phase is the most displayed category, we should re-adjust 
the balancing in order to make its size equal to the biggest 
category that comes after a wake in this method. 

It is possible to achieve a categorization performance on 
par with other well-established and up-to-date approaches 
with a precision of 0.87 and Cohen’s kappa of 0.81. Table 1   
shows a comparison of other aspects of these studies 
including the dataset, quantity of patients, quantity of 
graders for each record, and type of division. The division 
(for each second in each example) is based on if the 
training-test-verification sets were achieved via dividing 
over recordings or overall instances. It is noticeable that, 
excluding 2 of the studies (14,15), all use a model division. 
This type of progress is considered undesirable as this will 
mean that we can see models from identical records in the 
test group and the training set, thus making the algorithm 
learn aspects of each record. This event can restrict 
globalization performance when graded on unfamiliar 
and new patients. In this research, we used a division for 
each record. In the end, these recently conducted studies 
(9-14,16,17) used the sleep-EDF, although the longer 
and better dataset, sleep-EDFx, has been accessible for a 
considerable amount of time. This choice was noticeable; 
therefore, we graded a new, simplified clone of our 
DDDTDWT with MFA that was not as deep and was 
used on sleep-EDFx and sleep-EDF via a 10-fold cross 
verification. Unexpectedly, we achieved better outcomes on 
the smaller sleep-EDF database. This might have been due 
to human grader error and the lower quantity of operators 
involved in recording sleep-EDF compared to the more 
extensive sleep-EDFx: techniques assessed by EDF sleep 
standardization were merely simpler for teaching the 
categorization preferences of graders.

This trend is also bad for globalization. On the contrary, 
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our technique is assessed by grading at the examination 
time on 1,698 records, which are scored by a large number 
of operators. This approach can ensure that the system 
does not have bias due to a small number of operator 
categorizing preferences.

Sleep recording and manual glossary

In general, this algorithm’s performance was highly 
constrained as a result of the quality of the accessible glossary. 
There were many graders working in recording data from 
the SHHS database. It can be concluded that there was 
some level of dispute between our operators for the period 
ratings. As an example, recorded Cohen’s Kappa of 0.46-
0.89 while working with 2 human graders, while Svetnik  
et al. (4) recorded Cohen’s kappa of 0.72 and 0.85 (0.82–0.85 
while working with graders showing good performance). In 
order to be approved, an operator was required to reach a 
concurrence of at least 90% with a master polysomnologist. 
Validation of this concurrence has not been not analyzed 
over time. Although these measures possess a fair degree of 
concurrence (0.87% and Cohen’s kappa of 0.81), proposed 
algorithm can perform on par with them, making the quality 
of these glossaries a constraint. The easiest method for 
boosting the performance of an organizer having an inexact 
ground truth is to collect the glossaries from diverse graders 
per record and to derive the ground truth from the plurality 
(and probably with the milder description or value for 
doubt). The proposed method has also been applied in other 
medical areas like skin cancer categorization (61) and diabetic 
retinopathy discovery (62), through the use of DDDTDWT 
with MFA categorizers. We can conclude that acquiring a 
database possessing numerous graders is the next step in 
automating sleep recording algorithm enhancement. It is 
notable that human specialists do not use a single-channel 
approach during sleep recording. As an example, at least 3 
channels are recommended in the American Association 
of School Administrations instructions, and in most cases, 
markers are EOG, EMG, or movement that is most helpful 
for neuropsychologists to distinguish REM. In our research, 
although utilizing a single-channel approach yielded 
noteworthy outcomes for portable systems, it definitely 
limited our performance (63). Utilizing numerous channels 
might prove valuable in future research.

Conclusions

This article highlights the use of the proposed algorithm 

for an EEG sleep recording with one channel using 
unprocessed signal models. Furthermore, DDDTDWT 
was used for decomposing the image, and MFA was used 
for reducing the dimension. In this process, the MFA is 
considered in which the curves are produced to describe 
the ability to be separated between the classes and be 
compacted inside the classes. Our findings also demonstrate 
that, performance-wise, our approach is up to standard and 
that this network can learn realistic arrangement detection 
capable of visualization. The approach of sleep recording 
with one channel provides a less bulky, unobtrusive, 
completely portable system. The easiest method to boost 
the performance of the organizer having an inexact ground 
truth is collecting glossary from diverse grader per-record 
and making the ground truth with a choice of plurality. 
This method approach is working by DDDTDWT based 
on MFA categorizers, for skin cancer categorizing and 
diabetic retinopathy discovery. Finally, the development of 
EEG systems working on multiple but still a little number 
of channels has a promising outlook. There might be other 
approaches for future improvements like further one-
sided processing of proposed wavelet transforms and MFA 
algorithms. 
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