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Background

Computed tomography (CT) imaging is frequently 

impaired by artifacts arising from various kinds of metal 

hardware and multiple approaches to mitigate these artifacts 

are available (1-5). They either work via modification of 

image acquisition, dedicated image reconstruction or their 

combination (4-6). Numerous studies are available that 
evaluate a benefit from one or more of the aforementioned 
approaches. Most of these studies comprise a quantitative 
and a visual evaluation of images. Here, visual analysis 
is considered gold standard regarding evaluation of 
artifact reduction, while methods for objective artifact 
quantification vary widely. 
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Methods based on measurement within regions of 
interest (ROI) are fairly common; authors either measure 
attenuation within the most pronounced artifacts, measure 
the standard deviation within the artifact or within a 
reference tissues affected by artifacts (3,7-14). Other groups 
have conducted 1-dimensional size measurements of the 
metal object or the width of the artifact itself (3,11,15). 
Some groups suggest to use advanced quantitative methods 
instead, such methods either work within the image or the 
frequency domain (5,16,17).

For quantitative assessment of image contrast established 
parameters such as the signal- and/or contrast-to-noise ratio 
are available and commonly defined and used. They allow 
for comparison between studies, vendors and platforms. For 
artifact quantification such commonly accepted methods are 
missing to date; yet, they are highly desirable.

In this study, we adapted proposed methods for artifact 
quantification from literature. Besides manual, multi-reader 
measurements, automated approaches were adapted within 
the Matlab-Environment. Some methods were developed 
further in order to enable transferability to other settings. 
To demonstrate the validity of quantification algorithms 
we evaluated their correspondence with visual artifact 
perception. After all, this study aims to propose guidance 
for metal artifact quantification in CT imaging.

Methods

Reference scans

To obtain reference images for quantitative and visual 
analysis, two metal rods with 5- and 10-mm diameter were 
examined in a 15 cm × 15 cm water phantom using a 64-
row dual layer CT scanner (IQon Spectral Detector CT, 
Philips Healthcare, Best, The Netherlands). Metal rods 
originated from a medical instrument supplier (L. Klein SA, 
Biel, Switzerland) and comprise materials actually used for 
medical applications (e.g., spinal fusions, external fixations). 
Image acquisition and reconstruction varied in order to 
obtain a series of 25 reference images representing a wide 
range of artifacts encountered (Table 1, Figure 1).

Reference ranking

To obtain a reference ranking, the aforementioned 25 images 
were compared in a forced-choice pairwise comparison, i.e., 
every combination of images was reviewed by the readers, 
who were asked to choose the image with fewer artifacts. 

In total, 300 comparisons were performed using Nimages 

=25 source images {Ncomparisons=1⁄2×[(Nimages)
2 − Nimages]}. To 

ensure standardized settings and avoid recording errors, 
a dedicated software in the Matlab-Environment was 
developed and used. The software displays two images in 
a random order side-by-side, the interface then waits for 
the reader to click on the image with fewer artifacts, upon 
decision the next pair is presented, and the responses are 
stored automatically. Images were displayed on a designated 
image viewing station with fixed window settings (Window 
center 0, width 150). 

In total, 4 readers (2 board certified radiologists with 
>8-year experience in CT imaging and 2 radiologists-
in-training with 4 years of experience in CT imaging) 
performed the reading twice with more than 4 weeks apart. 
This resulted in a total of 2400 comparisons (2 × 4 readers 
× 300 comparisons). All readings were combined to obtain a 
reference ranking of all images ranging from fewest to most 
artifacts serving as gold standard in this study.

Intrareader-repeatability and interreader-agreement on a 
per-comparison basis were determined using the intraclass-
correlation coefficient (ICC).

Artifact quantification algorithms: Part 1—manual 
methods

Manual measurements were conducted by the same 4 
readers using a clinical image viewer (Agfa ImpaxEE, Bonn, 
Germany). The readers were trained based on 5 images not 
included in the final analysis and conducted the reading 
twice with 4 weeks apart to avoid recall bias. Between these 
manual measurements and the aforementioned reference 
ranking analysis there was a time lapse of 6 months. As 
suggested in earlier studies, the readers measured widths of 
hypo- and hyper-dense artifacts, attenuation within these, 
standard deviation in a region in proximity to the rod and 
in a reference region without presence of artifacts and the 
rod’s diameter (Table 2) (3,12,18,19).

Artifact quantification algorithms: Part 1—automated 
methods

All algorithms were embedded in the Matlab-Environment 
(Mathworks, Natick, MA, USA). Images were processed 
in a fully automated fashion. First, images were converted 
from Hounsfield unit (HU) values to CT numbers by 
shifting from a range of −1,024 to 3,071 to a range of 0 to 
4,095. The rod’s center was identified by determining its 
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center of gravity, further the rod’s diameter was calculated. 
Several circular/annular regions were defined to which all 
algorithms were applied, radii were determined relative 
to the rods’ radius (rrod; 1.5 × rrod, 3.0 × rrod and 4.5 × rrod). 
This resulted in a total of 3 circles defining a total of 3 
annular areas. This approach was deliberately chosen to 
allow adaption to other objects and needs. Quantitative 
metrics were calculated along the circles as well as within 
the annular areas as described in the following sub-sections. 
Pixel values along the circle and within the annular areas 
were used; no interpolation was applied. Table 2 provides an 
overview on used algorithms.

Standard deviation
The standard deviation along the circles and the annular 
area was calculated.

Fraction of hypodense and hyperdense artifacts
The average HU value within a reference region in absence 
of artifacts was determined and defined as the expected 
value (12). Within the annular regions, all pixels more 
than 2 and 3 standard deviations offset to these values were 
considered to have an artifact burden. Their fractional share 
was calculated relative to the absolute number of pixels 
within the area (%artifact 2σ and 3σ). In addition, artifacts 
were categorized either as hyperdense (%hyper, ≥2σ or ≥3σ) 
or hypodense (%hypo, ≤2σ or ≤3σ), again reported as a 
fractional share on all pixels.

Percent integrity uniformity (PIU)
The PIU method has been adapted from signal homogeneity 
considerations in electric signal processing. In imaging it 
has been used to describe image homogeneity in magnetic 
resonance (MR) imaging and has been proposed to allow 
for artifact quantification in CT imaging (5). In this context, 
it has been defined as ( )

( )
= 1 *100%

+
max min

max min

S S
PIU

S S
 
  
 

-
- . A PIU of 

100% indicates a perfectly homogeneous image without 
presence of artifacts. As proposed, PIU was calculated 
within the annular areas (5). As it initially has been proposed 
for (linear) electric signals, PIU was additionally calculated 
on the different circle circumferences. Two forms of PIU 
measurement were evaluated: one which used the minimum 
and maximum CT numbers as described and another 
which used 10th percentile and 90th percentile CT numbers, 
respectively.

Frequency domain methods
Previous studies have proposed artifact quantification within 
the frequency domain (16,17). This approach is based on 
observations that metal artifacts introduce oscillations, e.g., 
alternating “bright-dark” streaks, which are otherwise not 
present in an artifact-free image. In order to quantify these 
oscillations, a circle is selected which surrounds the artifact 
source. Pixels which lie along the circle are extracted in a 
counter-clockwise direction to produce a 1-dimensional 
signal of CT numbers. The signal is transformed into 
a spectrum of spatial frequencies content using the fast 
Fourier Transform. The magnitude of each Fourier 
coefficient was computed and binned by summing across 
the relevant frequencies. Multiple binning strategies were 
investigated: double bins (1–2, 3–4, and so on), binning 
in quarters (e.g., 1–10 for a spectrum with 40 Fourier 
coefficients), binning in half and one single bin. 

Further details on image and signal processing are shown 
in Figure 2.

Evaluation of algorithms

The best suited method was considered to show a close 
correlation to the subjective ranking that served as gold 
standard in our study. To determine the closeness of 
fit Spearman’s Tau was calculated, and only significant 

Figure 1 Study concept. The main idea of this study was to determine an artifact quantification method that correlates most closely to visual 
perception of artifacts.

Image dataset covering the

entire range of clinically

encountered artifacts

Quantification of artifacts

Manual measurements

Correlation

analysis

Automated algorithms

(Matlab environment)

Visual ranking of artifacts (reference standard)
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Table 2 Methods for artifact quantification. Each method was applied to radii of 1.5-, 3.0- and 4.5-fold the rod’s radius

Procedure Analysis 
domain

Method Subcategory Analysis dimension Analysis explanation

Manual Image Rod radius Radius (manual) 1-dimensional Rod radius

Width Hyperdense 1-dimensional Width of hyperdense artifact/streak

Width Hypodense 1-dimensional Width of hypodense artifact/streak

HU Hyperdense 2-dimensional (ROI-based) HU within hyperdense artifact

HU Hypodense 2-dimensional (ROI-based) HU within hypodense artifact

SD With artifacts 2-dimensional (ROI-based) SD in tissue with visually perceived 
artifacts

SD Without artifacts 2-dimensional (ROI-based) SD in tissues without visual perceived 
artifacts

SDcorr – 2-dimensional (ROI-based) Corrected image noise (∆SD w and w/o 
artifacts)

Automated Image Rod radius Radius (auto) 1-dimensional Rod radius

PIU Maximum pixel values 1-dimensional 
(circumference)

PIU based on min and max voxel value in 
linear circumference

PIU 10th/90th percentile 1-dimensional 
(circumference)

PIU based on 10th/90th percentile voxel 
value in linear circumference

SD – 1-dimensional 
(circumference)

SD linear

% artifact 2σ/3σ 2-dimensional (annular 
region)

Share of all artifact pixels based on 
2σ/3σ-threshold

% hyperdense 
A

2σ/3σ 2-dimensional (annular 
region)

Share of hyperdense pixels based on 
2σ/3σ-threshold

% hypodense 
A

2σ/3σ 2-dimensional (annular 
region)

Share of hypodense pixels based on 
2σ/3σ-threshold

PIU Maximum pixel values 2-dimensional (annular 
region)

PIU based on min and max voxel value in 
annular area

PIU 10th/90th percentile 2-dimensional (annular 
region)

PIU based on 10th/90th percentile voxel 
value in annular area

SD – 2-dimensional (annular 
region)

SD area

Frequency FFT Single 1–2, 3–4, … 1-dimensional 
(circumference)

FFT small frequency bins 1–2, 3–4, …

FFT No binning 1-dimensional 
(circumference)

FFT no binning

FFT Binning in lower and 
upper half

1-dimensional 
(circumference)

FFT upper/lower half frequency bins

FFT Binning in quarters 1-dimensional 
(circumference)

FFT half frequency binned by quarters

Comprehensive list of all evaluated artifact quantification algorithms. Further details, including mention of groups first describing the 
different methods are listed in the manuscript body. HU, Hounsfield unit; SD, standard deviation; PIU, percent integrity uniformity; FFT, fast 
Fourier Transform; ROI, region of interest.
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correlations were considered in the further analysis. All 
statistic procedures were carried out using JMP software 
(SAS Institute, Cary, NC, USA). 

Results

Regarding the reference ranking, intra- and inter-reader 
agreement as depicted by ICC were 0.856–0.928 and 0.875, 
respectively. Reference order of images is displayed in 

Figure 3.
Regarding the manual measurements, inter-reader 

reliability ranged from 0.247 and 0.986 for the different 
items. Intra-reader reliability was higher, ranging from 0.497 
to 0.993. Best reliability for both, intra- and inter-reader, 
was observed for 1-dimensional measurements of the rod’s 
diameter. Poorest reliability was found in measurements of 
the artifact width (0.247–0.862, Table 3). The automated 
algorithms were applied to the images twice showing 

Figure 2 Automated quantification methods. Example phantom with rod insert giving significant metal artifact (A). Blue circle denotes 
the rod center, red circle denotes a radius of 1.5 × rod’s radius (1.5×) from the rod center, green circle denotes a radius of 3 x rod’s radius 
from the rod center. (B) CT number values along the 1.5× circle are plotted starting from 3 o’clock and proceeding in a counter-clockwise 
direction. Peaks and valleys in the curve can be seen corresponding to the hyper- and hypo-intense streaks seen in (A). The minimum 
and maximum values (or the 10th/90th percentile values) are used for quantification based on the PIU using the formula displayed. PIU 
from this curve is 90.48%. (C) The fast Fourier Transform (FFT) of the curve in (B) is taken to obtain the spatial frequency content of the 
signal. The magnitude of the Fourier coefficients is plotted starting from the zero-frequency. This curve is used for the FFT-based metal 
artifact quantification. Since the curve contains predominantly low-frequency information in this data set, most of the Fourier coefficients 
are contained in the lower frequencies. The Fourier coefficients can be binned in different ways. (D) Here, example bins are illustrated 
(D). Values are summed to produce the four bin values shown, corresponding to the first and second Fourier coefficients, third and fourth 
coefficients, fifth through eighth coefficients, and ninth through sixteenth coefficients, respectively. These bins were applied in a previous 
report (16).
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perfect reproducibility. 
No method was capable to order all images in the 

reference order. Best correlation as indicated by Spearman’s 
Tau was 0.977 obtained for a quantification algorithm 
within the frequency domain in a 1-dimensional circular 
line around the rod only considering voxels in the lower 
frequency bin (lowest quarter of all bins). Yet, even this 
(best) algorithm ranked 15/25 wrong; however, considering 
only differences greater than one rank, only 5 images were 

ranked incorrectly (Figure 4). For the frequency domain-
based methods, various binning methods were included in 
the final analysis. Here, bins in the lower end showed best 
performance.

Automated measurement of standard deviation within a 
circular ROI demonstrated a correlation of 0.729, yet this 
resulted in misranking of 24/25 images (of which 22/25 
were misranked for more than one rank).

Automated analysis within the image domain in terms 

Figure 3 Reference ranking. Reference ranking obtained from visual analysis. Images are ordered from most artifact to least artifact 
impaired image (top left to bottom right). Further, the Img# is displayed, see Table 1. 
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Figure 4 Best methods for artifact quantification. Demonstrating of the best performing quantification algorithm from each category. The 
FFT-based analysis after binning lower half images with a medium radius demonstrate closest agreement with visual artifact perception 
(Spearman’s Rho =0.977) (A). Further, best method based on percent integrity uniformity analysis (PIU) (B), manual measurements based on 
regions of interest (ROI) (C) and automated determination of standard deviation (SD) (D), are shown. FFT, fast Fourier Transform.

Table 3 Reliability measures. Intraclass correlation coefficient for the different items is reported

Item Inter-reader agreement Intra-reader agreement (averaged for all readers)

Reference Reading 0.875 0.886

Manual measurements

HU hyperdense 0.844 0.843

HU hypodense 0.751 0.818

Rod diameter 0.986 0.991

SD with artifacts 0.678 0.817

SD without artifacts 0.934 0.929

Width hyperdense 0.247 0.560

Width hypodense 0.360 0.729

All manual measurements are based on regions of interest. HU, Hounsfield unit (measurement of artifact attenuation); SD, measurement of 
standard deviation based on regions of interest.
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of PIU yielded a correlation of −0.881 corresponding to 
23 and 19 misclassified images (overall and more than one 
rank, respectively). Interestingly, the area-based methods 
within the image domain yielded a correlation of 0.576 
only. Here, 22/25 images were ranked incorrect, of these 20 
received a rank more than one apart from their actual one.

Regarding different sizes of circular or annual ROI 
around the rod, the larger one’s demonstrated to correlate 
better with visual artifact perception, irrespective of 
quantification algorithm. Correlation coefficients for all 
methods and radii are available in an electronic supplement 
(ESM 1, table online: http://fp.amegroups.cn/cms/b58190d
41af19ad6958fabc23822874c/qims.2020.04.03-1.pdf).

The best manual measurement (measurement of 
standard deviation in areas with visually perceived artifacts) 
misranked 22/25 images of which 16 were misclassified 
more than 2 ranks. 

Discussion

The aim of this study was to evaluate different methods 
for quantitative assessment of artifacts occurring due to 
metal in CT imaging. Several approaches were identified in 
literature and compared to visual artifact perception. Yet, 
none of these were capable to correctly rank artifacts based 
on quantitative parameters in the order they are visually 
perceived. In addition, manual measurements demonstrated 
limited reproducibility (intra- and inter-reader). The 
identified methods that showed closest agreement with 
visual artifact perception included image analysis within the 
frequency domain.

Artifacts due to metal hardware are a fairly common 
problem in CT imaging. Hence, several methods have been 
proposed to reduce these. During the past years, dedicated 
algorithms have been introduced by all major vendors. 
These algorithms aim to specifically identify artifact-
impaired voxels within the projection or reconstruction-
domain and to reduce these using an iterative loop (5,20,21). 
Another more recent method that is available to reduce 
artifacts in CT imaging are virtual monoenergetic images 
from dual energy CT (14,19,22,23). As suggested by recent 
developments, numerous studies in the field of metal 
artifact reduction in CT imaging are available. As of April 
2019, approximately 1,300 studies are available that contain 
the search term combination “computed tomography” and 
“artifact” (24). Yet, the comparability between different 
studies and groups is challenging as different measures are 

considered for artifact quantification.
Most of these studies emphasize on a visual assessment of 

artifact extent as standard of reference. This appears valid, 
as the aim of most metal artifact reduction techniques is to 
improve diagnostic assessment in the reading room after all. 
In addition, the majority of studies include a quantitative 
portion. For the latter, suggestions vary from simple 
manual measurements to advanced methods for quantitative 
analysis. At first instance, methods can be subdivided 
into automated and manual methods. For the latter, 
several challenges need to be acknowledged. First, one 
common problem in manual image analysis is reader bias. 
Particularly in studies comparing two different means for 
image reconstruction with respect to their artifact extent, 
a blinding of readers is often not sufficiently possible. This 
is due to the fact, that the visual appearance of images is 
very different when it comes to iteratively reconstructed 
images or virtual monoenergetic images. We demonstrated, 
that (even in specifically instructed readers), intra- and 
interreader reliability or agreement is limited. Hence, it is 
very difficult to compare studies between different groups 
based on manual measurements.

The manual method showing best correspondence with 
visual artifact perception is based on the measurement of 
standard deviation. It appears rational, to conduct such 
measurements as either streak (hyper- or hypo-dense) 
would result in an increase of image noise; however, 
nonlinear means of noise reduction as inherent to iterative 
image reconstruction techniques may extensively alter noise 
characteristics. Große Hokamp et al. suggested to use the 
so-called corrected image noise instead (19,25,26). This 
parameter is obtained by subtraction of standard deviation 
in areas without presence of artifacts from standard 
deviation in areas with presence of artifact and is thought to 
only quantify noise due to artifacts (25). Yet, the problem of 
limited reproducibility remains.

The herewith proposed automated methods, on the other 
hand, hold the inherent advantage of exact reproducibility. 
The method that showed best performance carries out the 
computation within the frequency domain and has been 
proposed by Mangold et al. (16); while the initial study 
suggested binning frequencies in an arbitrary fashion, 
we evaluated different systematic binning approaches. In 
line with the aforementioned study, lower frequency bins 
demonstrated best correspondence with visual artifact 
perception.

As stated above, visual perception is considered gold 
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standard for evaluation of image artifacts. To evaluate 
the different methods, we were in need of some sort of 
reference database which we obtained from a two-pair 
forced choice analysis. As opposed to other established 
scales, such as Likert-scales, this method forces the reader 
to decide on the less artifact impaired image (27). Although 
other factors (reconstruction algorithm, kernel) may lead to an 
additional bias; the excellent intra- and inter-reader agreement 
suggest that this approach is legitimate for our purpose.

Other imaging parameters, e.g., the signal- or contrast-
to-noise ratio, are commonly accepted and reported in 
scientific studies. These parameters therefore allow for 
comparison of results between different studies. Such 
comparability as well as the associated reproducibility is 
inherently linked to the idea of good scientific practice. 
Therefore, the code for implementation within the Matlab-
Environment is made available online (ESM 2, available 
online: http://fp.amegroups.cn/cms/f64c5f1bfc1bbb0fe7
c06bbc1185b5a7/qims.2020.04.03-2.txt) and encourage 
its utilization in future studies addressing metal artifact 
reduction in CT studies.

There are some other limitations that need to be 
addressed or considered. First, we only included a fairly 
limited number of images. This became necessary as the 
number of comparisons using 2-pair forced choice method 
grows quadratically. Second, all scans were conducted 
in a homogeneous phantom and their applicability in 
an anatomic setting might be more limited. Further, all 
images were acquired using a single scanner; however, 
image acquisition and reconstruction parameters covered 
a very wide spectrum of possible combinations. We used a 
customized phantom containing only one type of medically 
used metal alloy (Titanium). While a commercially 
available setup would allow for comparability, we feel that 
this dedicated phantom represents reality closely and also 
enabled us to include differently sized rods. Last, none 
of the methods worked perfectly; therefore, quantitative 
analysis should always be supplemented by visual analysis. 

Quantifying artifacts  due to metal  hardware is 
challenging. We propose one method that allows for 
automated quantification of such artifacts using a Fourier 
transformed linear ROI a lower end frequency bins. The 
code for implementation within the Matlab-Environment 
is made available as an electronic supplement. We 
encourage utilizing this method over other earlier suggested 
approaches and particularly over manual measurements as it 
shows a close agreement to visual artifact perception and is 
not limited by inter- or intra-reader agreement. 

Acknowledgments

Funding: Parts of this study have been funded by the Koeln 
Fortune Program/Faculty of Medicine, University of 
Cologne (339/2018 to N Große Hokamp). 

Footnote

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/qims.2020.04.03). NGH reports grants 
and personal fees from Philips Healthcare, outside the 
submitted work. BE reports personal fees from BioInvision, 
Inc., outside the submitted work. DPS reports personal fees 
from Cook Medical, personal fees from mediaire GmbH, 
outside the submitted work. JAH reports grants from 
Philips, outside the submitted work. DM reports personal 
fees from Philips Healthcare, outside the submitted work. 
The other authors have no conflicts of interest to declare. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Wu M, Keil A, Constantin D, Star-Lack J, Zhu L, 
Fahrig R. Metal artifact correction for x-ray computed 
tomography using kV and selective MV imaging. Med 
Phys 2014;41:121910. 

2.	 Boas FE, Fleischmann D. CT artifacts: causes and 
reduction techniques. Imaging Med 2012;4:229-40. 

3.	 Neuhaus V, Große Hokamp N, Abdullayev N, Rau 
R, Mpotsaris A, Maintz D, Borggrefe J. Metal artifact 
reduction by dual-layer computed tomography 
using virtual monoenergetic images. Eur J Radiol 
2017;93:143-8.

4.	 Buckwalter KA, Parr JA, Choplin RH, Capello WN. 
Multichannel CT Imaging of Orthopedic Hardware and 
Implants. Semin Musculoskelet Radiol 2006;10:86-97.

5.	 Große Hokamp N, Hellerbach A, Gierich A, Jordan DW, 
Visser-Vandewalle V, Maintz D, Haneder S. Reduction of 

http://dx.doi.org/10.21037/qims.2020.04.03
http://dx.doi.org/10.21037/qims.2020.04.03
https://creativecommons.org/licenses/by-nc-nd/4.0/


1043Quantitative Imaging in Medicine and Surgery, Vol 10, No 5 May 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(5):1033-1044 | http://dx.doi.org/10.21037/qims.2020.04.03 

Artifacts Caused by Deep Brain Stimulating Electrodes 
in Cranial Computed Tomography Imaging by Means of 
Virtual Monoenergetic Images, Metal Artifact Reduction 
Algorithms, and Their Combination. Invest Radiol 
2018;53:424-31.

6.	 Kuchenbecker S, Faby S, Sawall S, Lell M, Kachelrieß 
M. Dual energy CT: How well can pseudo-
monochromatic imaging reduce metal artifacts? Med 
Phys 2015;42:1023-36. 

7.	 Lee YH, Park KK, Song HT, Kim S, Suh JS. Metal 
artefact reduction in gemstone spectral imaging dual-
energy CT with and without metal artefact reduction 
software. Eur Radiol 2012;22:1331-40. 

8.	 Dong Y, Shi AJ, Wu JL, Wang RX, Sun LF, Liu AL, Liu 
YJ. Metal artifact reduction using virtual monochromatic 
images for patients with pedicle screws implants on CT. 
Eur Spine J 2016;25:1754-63. 

9.	 Wellenberg RH, Boomsma MF, van Osch JA, Vlassenbroek 
A, Milles J, Edens MA, Streekstra GJ, Slump CH, Maas 
M. Quantifying metal artefact reduction using virtual 
monochromatic dual-layer detector spectral CT imaging 
in unilateral and bilateral total hip prostheses. Eur J Radiol 
2017;88:61-70.

10.	 Kidoh M, Nakaura T, Nakamura S, Tokuyasu S, Osakabe 
H, Harada K, Yamashita Y. Reduction of dental metallic 
artefacts in CT: value of a newly developed algorithm 
for metal artefact reduction (O-MAR). Clin Radiol 
2014;69:e11-6.

11.	 Huang JY, Kerns JR, Nute JL, Liu X, Balter PA, Stingo 
FC, Followill DS, Mirkovic D, Howell RM, Kry SF. An 
evaluation of three commercially available metal artifact 
reduction methods for CT imaging. Phys Med Biol 
2015;60:1047-67.

12.	 Boomsma MF, Warringa N, Edens MA, Mueller D, 
Ettema HB, Verheyen CC, Maas M. Quantitative 
analysis of orthopedic metal artefact reduction in 64-slice 
computed tomography scans in large head metal-on-metal 
total hip replacement, a phantom study. Springerplus 
2016;5:405. 

13.	 Guggenberger R, Winklhofer S, Osterhoff G, Wanner 
GA, Fortunati M, Andreisek G, Alkadhi H, Stolzmann 
P. Metallic artefact reduction with monoenergetic dual-
energy CT: systematic ex vivo evaluation of posterior 
spinal fusion implants from various vendors and different 
spine levels. Eur Radiol 2012;22:2357-64.

14.	 Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, 
Johnson TRC. Metal artifact reduction by dual energy 
computed tomography using monoenergetic extrapolation. 

Eur Radiol 2011;21:1424-9. 
15.	 Haneder S, Siedek F, Doerner J, Pahn G, Grosse Hokamp 

N, Maintz D, Wybranski C. Thoracic-abdominal imaging 
with a novel dual-layer spectral detector CT: intra-
individual comparison of image quality and radiation 
dose with 128-row single-energy acquisition. Acta Radiol 
2018;59:1458-65.

16.	 Mangold S, Gatidis S, Luz O, König B, Schabel C, 
Bongers MN, Flohr TG, Claussen CD, Thomas C. 
Single-source dual-energy computed tomography: use 
of monoenergetic extrapolation for a reduction of metal 
artifacts. Invest Radiol 2014;49:788-93.

17.	 Aissa J, Boos J, Schleich C, Sedlmair M, Krzymyk K, 
Kröpil P, Antoch G, Thomas C. Metal Artifact Reduction 
in Computed Tomography After Deep Brain Stimulation 
Electrode Placement Using Iterative Reconstructions. 
Invest Radiol 2017;52:18-22.

18.	 Laukamp KR, Lennartz S, Neuhaus VF, Große Hokamp N, 
Rau R, Le Blanc M, Abdullayev N, Mpotsaris A, Maintz 
D, Borggrefe J. CT metal artifacts in patients with total 
hip replacements: for artifact reduction monoenergetic 
reconstructions and post-processing algorithms are both 
efficient but not similar. Eur Radiol 2018;28:4524-33.

19.	 Große Hokamp N, Neuhaus V, Abdullayev N, Laukamp 
K, Lennartz S, Mpotsaris A, Borggrefe J. Reduction 
of artifacts caused by orthopedic hardware in the spine 
in spectral detector CT examinations using virtual 
monoenergetic image reconstructions and metal-artifact-
reduction algorithms. Skeletal Radiol 2018;47:195-201.

20.	 Willemink MJ, Leiner T, de Jong PA, de Heer LM, 
Nievelstein RA, Schilham AM, Budde RP. Iterative 
reconstruction techniques for computed tomography part 
2: initial results in dose reduction and image quality. Eur 
Radiol 2013;23:1632-42. 

21.	 Willemink MJ, Noël PB. The evolution of image 
reconstruction for CT-from filtered back projection to 
artificial intelligence. Eur Radiol 2019;29:2185-95.

22.	 D'Angelo T, Cicero G, Mazziotti S, Ascenti G, Albrecht 
MH, Martin SS, Othman AE, Vogl TJ, Wichmann JL. 
Dual energy computed tomography virtual monoenergetic 
imaging: technique and clinical applications. Br J Radiol 
2019;92:20180546.

23.	 Yu L, Leng S, McCollough CH. Dual-energy CT-
based monochromatic imaging. AJR Am J Roentgenol 
2012;199:S9-15. 

24.	 US National Library of Medicine and National Institutes of 
Health. Available online: https://pubmed.ncbi.nlm.nih.gov 

25.	 Große Hokamp N, Laukamp KR, Lennartz S, Zopfs 



1044 Große Hokamp et al. Artifact quantification in CT imaging

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(5):1033-1044 | http://dx.doi.org/10.21037/qims.2020.04.03 

D, Abdullayev N, Neuhaus VF, Maintz D, Borggrefe 
J. Artifact reduction from dental implants using virtual 
monoenergetic reconstructions from novel spectral 
detector CT. Eur J Radiol 2018;104:136-42.

26.	 Laukamp KR, Zopfs D, Lennartz S, Pennig L, Maintz D, 
Borggrefe J, Große Hokamp N. Metal artifacts in patients 
with large dental implants and bridges: combination 
of metal artifact reduction algorithms and virtual 
monoenergetic images provides an approach to handle 

even strongest artifacts. Eur Radiol 2019;29:4228-38.
27.	 Ellmann S, Kammerer F, Brand M, Allmendinger T, May 

MS, Uder M, Lell MM, Kramer M. A Novel Pairwise 
Comparison-Based Method to Determine Radiation 
Dose Reduction Potentials of Iterative Reconstruction 
Algorithms, Exemplified Through Circle of Willis 
Computed Tomography Angiography. Invest Radiol 
2016;51:331-9.

Cite this article as: Große Hokamp N, Eck B, Siedek F, Pinto 
dos Santos D, Holz JA, Maintz D, Haneder S. Quantification 
of metal artifacts in computed tomography: methodological 
considerations. Quant Imaging Med Surg 2020;10(5):1033-1044. 
doi: 10.21037/qims.2020.04.03


