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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disease characterized by neurofibrillary tangles (NFT), 
amyloid deposition (senile plaque, SP), and neuronal loss in 
the basal forebrain. AD is accompanied by comprehensive 
cognitive decline, behavioral changes, and dysfunction. 

The incidence rate of AD is 10–20% among individuals 
aged 65 or older (1); AD brings a heavy burden to patients, 
their families, and society (2). There is a pressing need to 
investigate the abnormal changes in the brains of patients 
in the early stages of symptomatic dementia with mild 
cognitive impairment (MCI) due to the irreversibility of 
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AD, to offer opportunities for timely intervention. It is of 
great importance that the patients with MCI who are most 
likely to develop AD are identified to provide them with 
early pharmacological treatment and effective interventions.

Magnetic resonance imaging (MRI) technology provides 
an extremely intuitive and reliable basis for the diagnosis of 
neurodegenerative diseases. Several studies have confirmed 
that specific anatomical regions of MCI/AD patients are 
susceptible to specific neurodegenerative processes. In 
the early stage, patients suffer from functional neuronal 
disorders due to changes in cortical thinning and loss of gray 
matter (3-6). It is well known that the hippocampus region 
plays a vital role in the short- to long-term information 
integration process for memory. The hippocampus is most 
likely to be the first brain region to suffer damage.

Furthermore, clinical studies have shown that the 
hippocampus is one of the most effective and widely used 
biomarkers for revealing conversion from MCI to AD (7-9). 
However, it is usually viewed as a single entity because of 
the coarse resolution of MR images. With the substantial 
developments in high-resolution MRI data acquisition 
technology, new opportunities for explicitly exploring 
individual hippocampal subfields have emerged. It is now 
possible to explore the fimbria, presubiculum, subiculum, 
dentate gyrus (DG), hippocampus-amygdala-transition-area 
(HATA), the four cornu ammonis regions (CA1–CA4), and 
the hippocampus, hippocampal fissure, and hippocampal 
tail (10-12). It has been reported that CA1 measurements 
were more sensitive than global hippocampal volumetry 
for detecting structural changes at the pre-dementia stage 
(13,14). It was also found that hippocampal subfields were 
associated with age-related memory decline and distinct 
aspects of memory formation (12).

The cerebral cortical surfaces reflect the different 
neuropathological mechanisms of patients with MCI and 
AD. The cortical thickness, for example, reveals the degree 
of brain atrophy by characterizing the shortest distance 
between the inner and outer surfaces of the cerebral cortex. 
The surface area represents the degree of cortical folds, 
and the difference in mean curvature is caused by thickness 
variations or surface area changes that provide practical 
information on the folding patterns and volume changes in 
the cerebral cortex. These cortical surface properties may 
exhibit different developmental trajectories for different 
neurological diseases (15). These differences play a vital role 
in the diagnostic classification of MCI and AD, and in the 
early identification of MCI patients who carry the risk of 
later converting to AD (16,17). 

In this study, MR images of patients with MCI and NC 
were collected. The FreeSurfer package (18) was applied 
to segment brain tissue automatically and calculate cortical 
features (surface area, gray matter volume, cortical thickness, 
and mean curvature) of 68 brain regions. Following that, 
we extracted the voxel characteristics of 16 hippocampal 
subfields. Then an analysis of variance (ANOVA) model 
was used to reveal the significant differences between the 
compared groups. Two types of features, including cortical 
surface measurements and volume of hippocampal subfields, 
were combined and used as the input of the support vector 
machine-recursive feature elimination (SVM-RFE) for 
discriminative analysis. The most discriminative features 
corresponding to the brain regions were extracted to 
elucidate the path of brain structural deterioration and 
cognitive dysfunction in patients with MCI to achieve early 
detection and conversion risk assessment of MCI.

Methods

Subjects 

Included in this study were 322 subjects selected from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (http://adni.loni.usc.edu/). This study included 
109 NC, 102 stable MCI (sMCI), and 111 converted MCI 
(cMCI) subjects. The MR imaging data for each subject 
were acquired and each subject was evaluated using two 
cognitive impairment measurements: the mini-mental state 
examination (MMSE) and the clinical dementia rating (CDR). 
Next, the data were analyzed at three distinct time points: 
baseline, 12 months, and 24 months. Among the identified 
MCI patients at baseline, an individual was considered as 
cMCI if they had converted to AD within two years; the rest 
were considered as sMCI subjects. Table 1 shows the subject 
demographic information and dementia status. 

Image acquisition

The datasets included standard T1-weighted MR images. 
The images were obtained using volumetric 3D MPRAGE 
(magnetization prepared rapid gradient echo) 1.5 T 
scanners with a 1.25×1.25-mm in-plane spatial resolution 
and 1.2-mm-thick sagittal slices, with a pixel resolution of 
256×256. The data were collected from a variety of scanners 
using the protocols specified by the ADNI website (TR =2 s,  
TE =2.63 ms, FOV =25.6 cm). All data were preprocessed 
with intensity normalizing and gradient unwarping. 
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Table 1 Demographic information and cognitive scores of subjects

Group Subjects Male/female (P=0.048) Age (P=0.7560) MMSE (P=1.7e-53) CDR (P=4.4e-33)

NC 109 59/50 75.44±5.20 [59.9–89.6] 29.26±0.90 [26–30] 0.02±0.10 [0–0.5]

sMCI 102 72/30 75.13±7.33 [56.2–87.8] 27.86±1.51 [24–30] 1.26±0.61 [0.5–3]

cMCI 111 42/69 74.86±6.93 [55.3–88.4] 26.54±1.64 [23–30] 1.86±1.00 [0.5–5]

MMSE, minimum mental state examination; CDR, clinical dementia rating; sMCI, stable mild cognitive impairment; cMCI, converted mild 
cognitive impairment; NC, normal control.

Age, MMSE, and CDR had significant differences 
among the three comparison groups using the ANOVA 
model. Sex also had significant differences among the three 
groups using the Chi-square test.

Image processing and features calculation

The images were processed and analyzed by FreeSurfer 
software version 5.0.0 (http://surfer.nmr.mgh.harvard.edu/), 
which provides a set of tools that can be used to analyze 
and visualize structural and functional brain images. The 
FreeSurfer pipeline includes a series of processing steps such 
as head motion correction, inhomogeneous field correction, 
removal of non-brain tissue, among many others. The 
pipeline is then able to produce regional cortical thickness 
and volumetric measurements, including the local curvature, 
surface area, and the surface normal. According to the 
Desikan-Killiany atlas (19), the left and right hemispheres 
were divided into 34 brain regions simultaneously, and 
thus 68 cortical measurements corresponding to the brain 
regions were obtained. Four measurements, including 
the cortical thickness, gray matter volume, surface area, 
and average curvature, were considered in this study. 
Furthermore, the individual hippocampal subfields were 
acquired based on the parcellation scheme (11). 

Hippocampal subfields delineation

The FreeSurfer algorithm employed Bayesian inferences 
from prior probabilistic atlases built with ultra-high 
resolution ex vivo MRI data (~0.1 mm isotropic) to 
obtain an automated segmentation of the hippocampal 
substructures that had shown strong correlations with 
manual delineations (11,20,21). Following the segmentation 
scheme presented in (10), eight subfields were extracted 
in each hemisphere including the fimbria, CA1, CA2_3, 
CA4_DG, presubiculum, subiculum, hippocampal fissure, 
the hippocampus. CA2 and CA3 were combined because 

of unclear contrast. Next, the alveus volume was removed 
because of the thin shape and unreliable segmentation 
(11,12); thus, 16 subfields were extracted by the FreeSurfer 
5.3.0.

Statistics analysis

ANOVA is a statistical method used to evaluate differences 
between two or more means. The F-distribution function is 
adopted to analyze the variances from each population and 
groupings of populations. The analysis determined whether 
the variability between and within each population was 
significantly different, and also determined the influence 
that the independent variables had on the dependent 
variable in a regression study. Bonferroni correction was 
applied to correct the increased error rates in hypothesis 
testing that had multiple comparisons. 

The Chi-square and ANOVA tests were performed on 
sex and age to determine whether there were significant 
differences between the groups. The ANOVA model with 
subsequent Bonferroni correction was applied to investigate 
the differences in cortical measurements and volumes of 
hippocampal subfields among the three groups.

Classifier 

SVMs are a set of supervised learning methods based on the 
statistical learning theory and structural risk minimization. 
These methods have been widely used in non-linear 
classification, regression, function estimation, and density 
estimation, among many others. Since the dimension of 
the features was less than the sample size, a linear kernel 
was selected in the SVM classifier following a suggestion 
given by the LIBSVM toolbox (https://www.csie.ntu.edu.
tw/~cjlin/libsvm). After that, owing to the small sample size, 
a 10-fold cross-validation method was selected. The RFE 
strategy (16) was adopted to achieve the best performance 
and explore the dominant features associated with core 

https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/libsvm
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regions. The RFE explored the algorithm to remove 
unimportant or redundant features one-by-one based on 
the assigned classification weight during classification to 
perform feature dimension reduction. Since the weight of 
each feature is represented by its discriminative ability, the 
retained features could be used with the SVM classifier to 
achieve promising performance.

The SVM-RFE classification of the three groups was 
performed using the cortical features and hippocampal 
subfields, and the performance was evaluated using the 
accuracy (Acc), sensitivity (Sen), specificity (Spe), and 
area under the curve (AUC). The receiver operating 
characteristic (ROC) curve was defined to assess the 
performance of a classifier in decision-making. The ROC 
curve illustrates the trade-off of true-positives versus the 
false-positives as the discriminating threshold varied from 
0 to 1. In a ROC curve, the true-positive rate (sensitivity) 
was plotted in the function of the false-positive rate 
(100-specificity) for the different cut-off points of each 
threshold. Each point on the ROC curve represents a 
sensitivity/specificity pair corresponding to a particular 
decision threshold. It is a measurement of how well a 
parameter can distinguish between the two diagnostic 
groups.

The area under a ROC curve (AUC) was then calculated 
by adding successive trapezoid areas below the ROC curve 
as an overall measurement of the performance of the 
classifier.

The criteria for determining the best feature dimension 
was that the SVM-RFE should achieve the best overall 
performance with a balance between accuracy, sensitivity, 
and specificity. The primary measurement considered 
was the accuracy, followed by the sensitivity, and then the 
specificity.

Results

Differences in cortical features

Table 2 illustrates that there were significant differences in 
most of the regions with bilateral symmetry in gray volume 
and cortical thickness between the three compared groups. 
Also, each region increased with significant differences 
from NC to sMCI, and then to NC-MCI, which meant 
that atrophies existed in many brain regions of the patients 
with sMCI. Patients with cMCI experienced more severe 
atrophies than patients with sMCI. However, only a few 
brain regions had significant differences in their surface area 

and average curvature between the compared groups. 
The cortical thickness showed significant differences 

in 33 brain regions, mainly located in the bilateral medial 
temporal lobe, left lateral temporal lobe, partial frontal lobe 
and partial parietal lobe for the NC-sMCI comparison as 
shown in Figure 1. Also, there existed significant differences 
in gray matter volume of the left parahippocampal gyrus, 
bilateral entorhinal, in mean curvature of three brain 
regions including the left inferior temporal, the right 
fusiform, and the right lateral occipital, and in surface area 
of two brain regions including the left paracentral, and 
the left superior parietal. For the cMCI-NC comparison, 
the cortical thickness in almost all of the brain regions 
had significant differences, as well as gray matter volume. 
However, statistical differences existed in only a couple of 
regions concerning the surface area and mean curvature. 

In the sMCI-cMCI comparison group, gray matter 
volume and cortical thickness had significant differences in 
most of the brain regions, mainly located in the temporal 
lobe, parietal lobe, occipital lobe, and frontal lobe, while 
only a few brain regions had statistical differences in the 
mean curvature and surface area. 

Differences in hippocampal subfields

Table 3 illustrates that the volumes were significantly 
different in most subfields between the sMCI and NC 
groups, except for the bilateral CA1, hippocampal 
fissure, and right presubiculum. Similarly, the cMCI 
group had significant differences in the volumes in most 
of the subfields, except for the right CA1, and bilateral 
hippocampal fissure. Compared with the sMCI group, 
nine subfields had significant differences in volumes in the 
cMCI group, including the bilateral hippocampus, CA2_3, 
subiculum, CA4_DG, and left presubiculum. 

Classification results

Each subject had 68 cortical features and 16 hippocampal 
subfield volumes. For the sMCI-NC comparison using 
the cortical thickness, 58 features were determined to 
achieve the best performance. The 62, 45, and 43 dominant 
features were retained using gray matter volume, mean 
curvature, and surface area, respectively. The SVM-RFE 
classifier obtained its best performance when the 20, 44, 
48, and 61 cortical features were selected for the cMCI-NC 
discrimination using cortical thickness, gray matter volume, 
mean curvature, and surface area, respectively. At the same 

https://doi.org/10.1007/978-1-4419-9863-7_242
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Figure 1 Corresponding 3D surface maps of brain regions with significant differences in the three compared groups using the ANOVA 
model (P=0.05). (A) sMCI-NC, (B) cMCI-NC, (C) sMCI-cMCI. ANOVA, analysis of variance; sMCI, stable mild cognitive impairment; 
cMCI, converted mild cognitive impairment; NC, normal control.
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model (p=0.05). (a) sMCI-NC, (b) cMCI-NC, (c) sMCI-cMCI  
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Table 3 Significant differences in volumes of hippocampal subfields (P=0.05) 

Subfield
NC-sMCI NC-cMCI sMCI-cMCI

Left Right Left Right Left Right

Hippocampus ✓ ✓ ✓ ✓ ✓ ✓

Presubiculum ✓ ✓ ✓ ✓

CA1 ✓

CA2_3 ✓ ✓ ✓ ✓ ✓ ✓

Fimbria ✓ ✓ ✓ ✓

Subiculum ✓ ✓ ✓ ✓ ✓ ✓

CA4_DG ✓ ✓ ✓ ✓ ✓ ✓

Hippocampal fissure

A checkmark indicates a significant difference. CA, cornu ammonis; DG, dentate gyrus; sMCI, stable mild cognitive impairment; cMCI, 
converted mild cognitive impairment; NC, normal control.

time, the 63, 63, 43, and 35 features had a prominent ability 
to classify using the four types of cortical features. The 
volumes of the 2, 5, and 13 hippocampal subfields were 
extracted for the sMCI-NC, cMCI-NC, and sMCI-cMCI 
comparisons, respectively. Table 4 lists the classification 
performance in detail. 

Discussion

This study focuses on the discriminative analysis of cortical 
surface measurements and the volume of hippocampal 
subfields among NC, sMCI, and cMCI groups. The SVM-
REF classifier was adopted to perform classification as a 
model that integrated feature reduction with classification. 

Experimental results suggested that the SVM-RFE 
classifier acquired better performance for sMCI-NC 
discrimination when four types of cortical features were 
considered. A combination of the four types of cortical 
features and the volumes of the hippocampal subfields 
exhibited the best power, with an accuracy of 70.8%, 
sensitivity of 68%, specificity of 73.4%, and AUC of 0.75, 
respectively. The classifier obtained the highest accuracy 
(84.6%), sensitivity (85.3%), specificity (81.3%), and AUC 
(0.91) in the cMCI-NC comparison. The best performance 
in the cMCI-sMCI discrimination was reached with an 
accuracy of 76.9%, sensitivity of 75.7%, specificity of 
78.1%, and AUC of 0.8. These results illustrate that the 
joint features could significantly improve the discriminative 
performance of the SVM-REF classifier. 

A recent study (22) reported similar performances 
with an overall accuracy of 75% and AUC of 0.76 in 

discrimination of NC, early MCI, late MCI, and AD. 
Cortical surface morphometry of medial temporal lobe 
structures, such as the hippocampus and entorhinal cortex, 
were superior to the volumetric assessment of predicting 
the conversion from MCI to AD (23). Recent MRI studies 
have also investigated classification in MCI, AD patients, 
and aging normal individuals (24), and estimated their MCI 
conversion risk (25). 

The longitudinal exploration of classifying NC, MCI, 
and AD and conversion prediction has also attracted 
attention in numerous other recent studies. It has been 
shown that the parahippocampal gyrus and fusiform 
gyrus volumes were significantly reduced in the cMCI group 
compared to the sMCI group and obtained an accuracy of 
0.779 in conversion prediction (26). The combination of the 
hippocampus and entorhinal cortex yielded a significantly 
higher AUC in the 5-year follow-up (0.73 at 2 years vs. 0.84 
at 5 years) (27). Based on hippocampal volume, the volume 
of 47 cortical and subcortical regions, ensemble linear 
discriminant models acquired prediction accuracy of 63.8% 
to 77.0% of future conversion from MCI to AD at 6, 12, 
24, 36, and 48 months. 

It was observed that the subtypes of MCI had atrophy 
or experienced cortical thinning widely in the regions of 
the lateral temporal cortex, frontal cortex, parietal cortex, 
and olfactory cortex concerning the relationship between 
the required regional distribution and neuropsychological 
dysfunction. These results were especially true regarding 
the gray matter volume, and the cortical thickness exhibited 
a significantly different structural pattern in many regions 
(Table 2). With the conversion from sMCI to AD, it can 

https://www.sciencedirect.com/topics/medicine-and-dentistry/parahippocampal-gyrus
https://www.sciencedirect.com/topics/medicine-and-dentistry/fusiform-gyrus
https://www.sciencedirect.com/topics/medicine-and-dentistry/fusiform-gyrus
https://www.sciencedirect.com/topics/medicine-and-dentistry/hippocampus
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be seen that the sMCI group experienced further decline 
in the regions of the temporal gyrus, olfactory cortex, and 
left temporal pole. Meanwhile, the cMCI patients had 
severe abnormal changes in most of the regions (Table 2 and  
Figure 1). As reported in our previous longitudinal  
study (28), these regions were highly correlated with 
emotion processing, learning, memory, decision-making, 
sense, recognition, and vision.

Many studies have reported similar findings in AD 
exploration, Venkatraghavan et al. (29) applied the event-
based models (EBM) to exploit high-dimensional voxel-
wise imaging biomarkers based on semi-supervised SVM to 
estimate temporal ordering of neuropathological changes 
in the brain structure using cross-sectional data from 
1,737 subjects from the ADNI dataset. It was found that 
the atrophies with the progression to AD mainly occurred 
in 15 brain regions, including the bilateral medial and 
inferior temporal gyri, posterior temporal lobe, anterior 
temporal lobe, parahippocampal et ambiances, lateral 
occipitotemporal gyrus, hippocampus, amygdala, and right 
insula. In another study (30) including MRI scans from 
699 subjects (NC, MCI, and AD), 259 cortical features 
of 8 types of regional measurements were extracted to 
perform multivariate analysis as well as SVM classification. 
Variables with the greatest importance for the separation 
between NC and AD were located in medial temporal 
lobe structures such as the hippocampus, amygdala, and 
entorhinal cortex. The combination of cortical thickness 
measurements with subcortical volumes showed potential 
for separating AD subjects from cognitively normal subjects 
to prospectively predict future conversion to AD from 
baseline. However, hippocampal subfields have not yet been 
fully explored. 

The hippocampus belongs to the limbic system and 
plays important roles in the consolidation of information 
from short- to long-term memory, and in spatial memory, 
it enables navigation. Human studies demonstrated that 
entorhinal and CA1 were among the first regions to show 
preclinical AD pathology (31,32); focal atrophy in CA1 
was also found by in vivo imaging studies of patients with 
both MCI and mild AD (33). CA1 was validated to be 
associated with verbal and visual episodic memory (34). The 
subiculum lies between the entorhinal cortex and the CA1 
subfield of the hippocampus proper, which mainly receives 
input from CA1 and entorhinal cortical layer III pyramidal 
neurons and is the main output of the hippocampus. The 
pyramidal neurons in the subiculum exhibit transitions 
between two modes of action potential output: bursting 

https://en.wikipedia.org/wiki/Memory_consolidation
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Spatial_memory
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and single spiking (35). The transitions between these two 
modes are thought to be important for routing information 
out of the hippocampus. The subiculum forms part of 
the cortical input to the entorhinal-hippocampal spatial 
and memory system, and it is associated with verbal and 
visual episodic memory. The fimbria, as a fiber bundle, 
covers the temporal parts of the hippocampus, and its 
stimulation leads to cholinergic excitation of CA1 oriens 
lacunosum-moleculare (OLM) cells (36). Compared with 
the NC group, the patients with sMCI, as well as the 
patients with cMCI, suffered abnormal changes in most of 
the subfields, leading to functional impairments in memory, 
spatial navigation, and control of attention. For the cMCI 
and sMCI comparison, there were significant differences in 
the bilateral presubiculum, subiculum, CA2_3, and CA4, 
covered from the surface layer to the deep layer. Therefore, 
the cMCI group experienced further damage to both 
signal pathways and functional fields, leading to serious 
degradation in memory, spatial perception, and attention. 
Izzo et al. (37) suggested that subicular hippocampal 
fields were most predictive of AD diagnosis. In particular, 
subicular and hippocampal fissure volume measurements 
might be effective in determining participants with 
MCI who are most likely to progress to AD. Several 
neuropathological studies have shown that the hippocampal 
subfields are differentially vulnerable to AD (13,38,39), 
and the annualized rate of CA1-3 atrophy was associated 
with an increased risk of developing Alzheimer’s clinical 
syndrome over time (40). Beyond these findings, our results 
illustrated that there were abnormal changes in most of the 
hippocampal subfields in the sMCI and cMCI groups, and 
the volumes of 13 subfields in particular showed significant 
differences between the sMCI and cMCI groups.

Our results show that cortical surface measurements 
can be used to assess global changes in brain structure, 
while hippocampal subfield volumetry can unveil local 
atrophy of the hippocampus. Therefore, their combination 
exhibits competitive performance in discriminating among 
the NC, sMCI, and cMCI groups. These findings could 
be greatly beneficial for explaining abnormal changes in 
brain structure and functional impairment, as well as early 
detection of AD and risk estimation of MCI conversion.

There are several limitations to this study. First, while 
we only used structural MR images, biomarkers such 
as FDG PET, PET-tau images, functional MR images, 
β-amyloid (Aβ), and apolipoprotein E (APOE) genotype 
could provide complementary information for detecting 
early AD and estimating the conversion risk of MCI. 

Second, only 322 subjects (102 sMCI, 111 cMCI, and 109 
NC) were included in this study. With an increased sample 
size, a training set and independent testing set could have 
been established to validate the ability of the classifier and 
improve its generalization. Third, longitudinal analysis 
may have allowed the changes in biomarkers to be traced 
and effective and sensitive measurements in classification 
to be determined, especially in MCI progression. Fourth, 
more machine learning models, including random forest, 
XGBoost, and deep learning, should be considered and 
compared comprehensively in further study. 

Conclusions

Based on MR brain images, this study investigated the 
differences in cortical features, including surface area, gray 
matter volume, cortical thickness, mean curvature, as well 
as hippocampal subfield volumes, between healthy older 
adults and patients with stable and cMCI. The SVM-
RFE classifier was adopted to reduce dimensions and 
determine essential features for discrimination. With the 
progression from NC to sMCI and then to cMCI, the 
experimental results illustrated that the brain structure 
of subjects experienced progressive atrophic changes, 
which occurred in cortical measurements, especially in 
cortex thickness, gray matter volume, and hippocampus 
subfields. Compared with the single cortical features, the 
combination of four types of cortical measurements could 
achieve better results, and the volumes of hippocampal 
subfields could improve classification performance further. 
The regions with distinctive abilities were mainly located 
in the temporal, frontal, parietal, olfactory cortexes, and 
most of the hippocampal subfields, which offers essential 
evidence for clinical symptoms of cognitive and memory 
impairment in MCI patients. The cortical measurements, as 
well as volumes of hippocampal subfields, provided useful 
information for predicting and assessing the risk of MCI 
and its conversion.
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