
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(9):1748-1762 | http://dx.doi.org/10.21037/qims-20-664

Original Article

Diagnostic interchangeability of deep convolutional neural 
networks reconstructed knee MR images: preliminary experience

Naveen Subhas1,2#, Hongyu Li3#, Mingrui Yang1,4, Carl S. Winalski1,2, Joshua Polster1,2, Nancy Obuchowski1,2,5, 
Kenji Mamoto1,4, Ruiying Liu3, Chaoyi Zhang3, Peizhou Huang3, Sunil Kumar Gaire3, Dong Liang6,  
Bowen Shen7, Xiaojuan Li1,2,4, Leslie Ying3

1Program of Advanced Musculoskeletal Imaging (PAMI), 2Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, 

OH, USA; 3Department of Biomedical Engineering, Department of Electrical Engineering, University at Buffalo, the State University of New York, 

Buffalo, NY, USA; 4Department of Biomedical Engineering, 5Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland 

Clinic, Cleveland, OH, USA; 6Paul C. Lauterbur Research Center for Biomedical Imaging, Medical AI Research Center, SIAT, CAS, Shenzhen, 

China; 7Department of Computer Science, Virginia Tech, Blacksburg, VA, USA

#These authors contributed equally to this work.

Correspondence to: Xiaojuan Li, PhD. Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 

44195, USA. Email: lix6@ccf.org.

Background: MRI acceleration using deep learning (DL) convolutional neural networks (CNNs) is a novel 
technique with great promise. Increasing the number of convolutional layers may allow for more accurate 
image reconstruction. Studies on evaluating the diagnostic interchangeability of DL reconstructed knee 
magnetic resonance (MR) images are scarce. The purpose of this study was to develop a deep CNN (DCNN) 
with an optimal number of layers for accelerating knee magnetic resonance imaging (MRI) acquisition by 
6-fold and to test the diagnostic interchangeability and image quality of nonaccelerated images versus images 
reconstructed with a 15-layer DCNN or 3-layer CNN.
Methods: For the feasibility portion of this study, 10 patients were randomly selected from the 
Osteoarthritis Initiative (OAI) cohort. For the interchangeability portion of the study, 40 patients were 
randomly selected from the OAI cohort. Three readers assessed meniscal and anterior cruciate ligament 
(ACL) tears and cartilage defects using DCNN, CNN, and nonaccelerated images. Image quality was 
subjectively graded as nondiagnostic, poor, acceptable, or excellent. Interchangeability was tested by 
comparing the frequency of agreement when readers used both accelerated and nonaccelerated images to 
frequency of agreement when readers only used nonaccelerated images. A noninferiority margin of 0.10 was 
used to ensure type I error ≤5% and power ≥80%. A logistic regression model using generalized estimating 
equations was used to compare proportions; 95% confidence intervals (CIs) were constructed.
Results: DCNN and CNN images were interchangeable with nonaccelerated images for all structures, 
with excess disagreement values ranging from –2.5% [95% CI: (–6.1, 1.1)] to 3.0% [95% CI: (–0.1, 6.1)]. The 
quality of DCNN images was graded higher than that of CNN images but less than that of nonaccelerated 
images [excellent/acceptable quality: DCNN, 95% of cases (114/120); CNN, 60% (72/120); nonaccelerated, 
97.5% (117/120)].
Conclusions: Six-fold accelerated knee images reconstructed with a DL technique are diagnostically 
interchangeable with nonaccelerated images and have acceptable image quality when using a 15-layer CNN.
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Introduction

The long acquisition times required for magnetic 
resonance imaging (MRI) have limited the accessibility of 
this modality compared with other cross-sectional imaging 
modalities such as computed tomography. However, recent 
advances in scanner and coil technology, as well as new 
image reconstruction techniques such as parallel imaging 
(PI), simultaneous multislice (SMS) imaging, compressed 
sensing (CS), and machine learning reconstruction 
algorithms using deep learning (DL), allow for accelerated 
acquisition of MR images. All of these techniques reduce 
acquisition time by undersampling k-space. In PI, the 
most widely available of these techniques for clinical 
use, k-space is undersampled by reducing the number of 
phase-encoding steps, and the resulting aliased raw data 
are resolved using the known coil geometry and spatial 
sensitivities (1). PI, however, inherently results in a 
decrease in signal-to-noise ratio (SNR), which limits the 
use of high acceleration factors (AFs). This loss in SNR 
is avoided with SMS imaging; with this method, more 
than 1 slice is excited, and readout and PI techniques are 
then used to separate the signal from each slice. With 
SMS imaging, however, acceleration is usually limited to 
excitation of 2 slices simultaneously because of artifact 
and coil configurations (2). To achieve higher AFs without 
compromising SNR and resolution, CS has been assessed 
in recent studies, with promising results. To avoid aliasing 
associated with undersampling, k-space is randomly 
undersampled in CS and transformed into a sparse 
domain from which images are nonlinearly and iteratively 
reconstructed (1,3). The long image reconstruction time 
required for CS (sometimes ≥20 min per sequence), 
however, has limited its clinical adoption (4).

DL image reconstruction techniques “learn” the optimal 
method to reconstruct images by reconstructing images 
from a highly undersampled data set, comparing them 
to reference images from a fully sampled data set, and 
minimizing the difference between these images through 
iterative mathematical algorithms such as convolutional 
neural networks (CNNs) (5-13). Although this iterative 
method requires a slow offline training process, once 
training is completed, future undersampled data can 
subsequently be noniteratively reconstructed. Therefore, 
DL-based acceleration methods combine the benefits of 
ultrafast online reconstruction similar to conventional 
MRI reconstructions while achieving a high degree of 
acceleration without comprising SNR or resolution. The 

main drawback of this technique is its requirement for large 
amounts of training data; additionally, the reconstruction 
algorithm remains a “black box” due to the complexity of 
the deep network. As such, the diagnostic capability of such 
reconstructions is largely unexplored, having been assessed 
in only a few small studies. Additionally, the optimal balance 
between the amount of training data and the number of 
convolutional layers is unknown.

Most CNNs that have been used for MRI acceleration 
have used a small number of convolutional layers (6). It 
has been shown that increasing the number of layers can 
more accurately classify all of the complex features present 
in MR images with the same amount of training data (14). 
Using a model with too many layers, however, may lead to 
overfitting and increase reconstruction errors. In this study, 
we developed a new deep CNN (DCNN) reconstruction 
model with an optimal number of layers capable of 
accelerating MR image acquisition by 6-fold. The primary 
objective of the study was to test the interchangeability of 
DCNN images, as well as images from a standard 3-layer 
CNN, with routine nonaccelerated images for evaluation of 
internal derangement of the knee. As a secondary objective, 
the image quality of DCNN and CNN images was 
compared with that of the nonaccelerated images.

Methods

Data used in the preparation of this article were obtained 
from the Osteoarthritis Initiative (OAI) database, which 
is available for public access at http://www.oai.ucsf.edu/. 
The specific datasets used were from version 1.1. Informed 
consent was acquired from patients as part of the OAI, and 
this study did not require additional Institutional Review 
Board approval.

Model design

Convolutional neural network architecture
The goal of DL-based reconstruction is to obtain an image 
from undersampled k-space data with an image quality 
comparable to that of an image obtained from a fully 
sampled data set. Using CNN, the typical practice is to first 
perform the Fourier transform on the zero-filled k-space 
data to obtain an aliased image and to then use training 
data to find the CNN that maps the aliased image (input 
x) to the reconstructed image (output y). This nonlinear 
mapping can be represented as y=F(x;θ), where θ represents 
the parameters of the network. Figure 1 illustrates the 

http://www.oai.ucsf.edu/
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architecture of the CNN.
In each layer, a convolution between the image from the 

previous layer and a set of filters was performed using the 
equation ( * )l l l l -l lH = W H bσ + , where Wl and Bl represent the 
filters and biases, respectively, * denotes the convolution 
operation, and σl is a nonlinear operator. Wl corresponds 
to nl filters of support nl–1 × f × f, where nl–1 is the number 
of channels in the previous layer and f is the spatial size of 
a filter. Here we chose n=64 and f=3 for all layers except 
for the last layer; for the last layer, we chose n=1. We used 
rectified linear unit (ReLU) for σl, applying max (0, *) on 
the filter responses. The output Hl is composed of nl feature 
maps.

During training, the objective was to learn the nonlinear 
relationship, or more specifically, the parameter θ, which 
represents all of the filter coefficients and biases. Learning 
was achieved through minimizing the loss function between 
the network prediction and the corresponding ground truth 
data. For MR image reconstruction, given a set of ground 
truth images yi and their corresponding undersampled 
k-space data xi, we used mean squared error (MSE) between 

them as the loss function as follows: 2
1

( ) ( ; )t
i ii

L F x yθ θ
=

= −∑   ,  
where t is the number of training samples. To increase 
convergence speed and account for vanishing gradient for 
deep neural networks, a skip connection was added and 
the loss function was minimized using a residual learning 
algorithm (14,15). Weight decay was set to prevent 
overfitting and to improve generalization (16).

Training cohort
For training,  we used 2D fat-suppressed sagittal 
intermediate-weighted turbo spin-echo images and 2D 
non-fat-suppressed coronal intermediate-weighted turbo 
spin-echo images from the baseline visits of 212 randomly 
selected patients (424 knee MRI examinations) enrolled 
in the OAI. This training cohort consisted of 59 men and 
153 women (mean age, 64 years; range, 45–79 years). The 
sequence parameters for the sagittal images were as follows: 
repetition time (TR) =3,000 ms, echo time (TE) =30 ms, 
resolution =0.36 mm × 0.46 mm × 3 mm, and original 
image size =384×307. The sequence parameters for the 
coronal images were as follows: TR =3,000 ms, TE =29 ms, 
resolution =0.36 mm × 0.46 mm × 3 mm, and original image 
size =384×307.

Training models
Multiple models were trained to determine the optimal 
model design. All models were trained from 5,000 randomly 
selected images and tested on a separate 500 randomly 
selected images.

First, to determine the best model performance with 
regard to the number of convolutional layers, models were 
constructed with different layers (3, 10, 15, 20, and 25), and 
the error rates of these models were compared to select the 
model with the optimal number of layers (DCNN).

Second, to analyze whether it is necessary to train 
models with images in each imaging plane, coronal images 

Figure 1 CNN architecture. The DL module comprises a skip-connection-based CNN. n64k3s1p1 indicates 64 filters of kernel size 3 with 
stride of 1 and padding of 1. Except for the last layer, each convolutional layer is followed by a BN and a ReLU. CNN, convolutional neural 
network; DL, deep learning; BN, batch normalization; ReLU, rectified linear unit.
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were reconstructed from models trained from only coronal 
images (COR model), and these images were compared to 
coronal images reconstructed from models trained from 
only sagittal images (SAG model).

Lastly, to analyze whether it is necessary to train models 
with pathologic lesions, models were trained using images 
from patients with different degrees of osteoarthritis (OA). 
Specifically, 3 different models were trained using sagittal 
data from 2,700 patients: a “healthy” model using images 
from patients without OA [Kellgren-Lawrence (KL) grade 
=0], a “mixed” model using images from patients without 
OA (KL =0) and with OA (KL =2–4), and a “lesion” model 
using images from patients with OA (KL =2–4).

Training details
For training each model, all images were rotated 90 degrees 
3 times to augment the training size. The entire dataset 
was normalized to a constant range based on the maximum 
intensity of the dataset. For k-space undersampling, a 
variable density sampling with an AF of 6 was used. All data 
were shuffled before training.

The same hyperparameters and training iterations were 
used for the CNNs of different layers to ensure a fair 
comparison between the algorithms. Specifically, a learning 
rate of 0.0001, momentum of 0.0, and weight decay of 
0.0001 were used. It is worth noting that although smaller 
learning rates are preferred for deeper networks with 
more layers, we used a fixed learning rate because it is not 
trivial to determine the rate with respect to the number of 
layers. Padding was used with each layer during training 
to generate an output size that was the same as the input 
size. Each network was trained for 1 million iterations 
(training time typically 8 hours) on Caffe for Windows 
using a Matlab interface with two NIVIDIA GTX 1080Ti 
graphic processing units, each with 3,584 CUDA cores and 
11 GB memory. Once fully trained, the models were able to 
reconstruct images from undersampled data with an average 
reconstruction time of 0.0001 s/image.

Clinical evaluation

Feasibility study
The feasibility of using the DCNN images (sagittal only) 
for clinical evaluation was initially evaluated in 10 new 
patients randomly sampled from the OAI cohort, including 
two cases for each KL grade [from KL=0 (no OA) to KL =4 
(severe OA)] to ensure that cases along the entire spectrum 
of OA were analyzed. DCNN images and original images 

from these 10 cases were assessed in a blinded fashion by a 
musculoskeletal fellowship-trained radiologist with 30 years 
of experience (CW) using MOAKS (MRI OsteoArthritis 
Knee Score), a semiquantitative whole knee grading system. 
Agreement on grades between the two reconstructions was 
compared using kappa coefficients.

Interchangeability study
Sagittal and coronal images reconstructed using the 
DCNN model with an optimal number of layers and 
images reconstructed with a standard 3-layer model (CNN) 
were tested for interchangeability with the nonaccelerated 
(original) images in 40 additional patients. Patients were 
randomly proportionally sampled from the OAI cohort 
such that there were five patients with lesions graded as KL 
=0; 5, with KL =4; and 10 each, with KL =1 (questionable 
OA), KL =2 (mild OA), and KL =3 (moderate OA). Three 
musculoskeletal-trained radiologists with 13, 15, and  
30 years of experience (NS, JP, CW) who were blinded 
to the reconstruction technique independently assessed 
the DCNN, CNN, and original images. For each patient, 
both menisci were evaluated for the presence of a definite 
tear, defined as increased signal reaching the articular 
surface on 2 slices, definite morphologic deformity, or 
displaced flap/fragment (DeSmet 2-touch slice rule) (17). 
Anterior cruciate ligaments (ACLs) were also evaluated for 
the presence of a tear, defined as disruption of more than 
50% of the fibers, and posterior cruciate and collateral 
ligaments were evaluated for the presence of a partial tear 
(high signal and/or partial fiber disruption) or a complete 
tear (18). Articular cartilage was evaluated in each of six 
surfaces (medial and lateral femoral condyles, medial 
and lateral tibial plateaus, trochlea, and patella) using the 
International Cartilage Repair Society (ICRS) classification, 
a commonly used clinical grading system (19). Additionally, 
the visualized bones were evaluated for the presence of 
fractures, contusions, stress changes, and marrow-replacing 
lesions. Lastly, image quality was subjectively graded as 
nondiagnostic, poor, acceptable, or excellent.

Statistical methods

To test the primary objective of whether the accelerated 
images were interchangeable with the original images, 
the frequency of agreement for readers grading structures 
using the accelerated (DCNN and CNN) and original 
images was compared to the frequency of agreement 
between readers using the original images. Specifically, the 
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Figure 2 Quantitative comparison of models with different numbers of convolutional layers. Reconstruction errors (loss) decrease as the 
number of convolutional layers increases until a saturation point is reached (approximately 20 layers in this case). Increasing the number of 
layers beyond this saturation point results in an increase in reconstruction errors (loss).
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proportion of cases for which two random readers agreed 
on the original images was calculated and compared 
with the proportion of cases for which two random 
readers agreed when one was interpreting the original 
image and the other was interpreting the accelerated 
image. The null hypothesis is that the accelerated images 
are not interchangeable with the original images; the 
alternative hypothesis is that the accelerated images are 
interchangeable with the original images. A noninferiority 
margin of 0.10 was used based on sample size calculations 
to ensure type I error ≤5% and power ≥80%. A logistic 
regression model using generalized estimating equations 
was used to compare the proportions, adjusting for the 
clustered data, and 95% confidence intervals (CIs) were 
constructed for the difference in the two proportions. 
Additionally, the percent of cases graded as nondiagnostic, 
poor, acceptable, or excellent for both accelerated and 
original images was calculated.

Results

Comparison of different model designs

Model performance as it relates to the number of 
convolutional layers in the network is shown in Figure 2. 
Reconstruction errors decreased with an increasing number 

of layers initially, and this decrease in reconstruction errors 
mathematically correlated with a visible improvement in 
image quality (Figure 3). This improvement, however, 
saturated at approximately 20 layers, after which the 
performance declined, and the performance of a model with 
20 layers was only negligibly better than a model with 15 
layers. Based on these results, a model with 15 convolutional 
layers (DCNN) was selected for optimal performance.

With regard to the model performance based on 
training with images from different imaging planes, there 
were negligible differences quantitatively or qualitatively 
based on the imaging plane(s) of the training images. The 
reconstruction errors were nearly identical whether models 
were trained using all sagittal images, all coronal images, or 
a mixture of sagittal and coronal images (Table 1). Similarly, 
there were no visible differences in the image quality of 
reconstructed images whether models were trained using all 
sagittal images, all coronal images, or a mixture of sagittal 
and coronal images (Figure 4).

Similarly, with regard to the need to train models with 
pathologic lesions, models trained using only patients 
without OA (healthy model), patients with and without 
OA (mixed model), and only patients with OA (lesion 
model) had very similar reconstruction errors quantitatively  
(Table  2 ) ,  and the  image qual i ty  was  not  v i s ib ly 
distinguishable qualitatively (Figure 5).
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Figure 3 Sagittal images reconstructed with a 3-layer model (A,B) demonstrate visibly lower image quality and larger reconstruction errors 
than images reconstructed with a 15-layer model (C,D).

3 Layer 15 Layer

3 Layer Error ×10

PSNR: 34.7866
NMSE: 0.0261

PSNR: 36.3603
NMSE: 0.0182

15 Layer Error ×10

C

D

A

B

Table 1 Quantitative comparison of models trained with images from different imaging planes

Reconstructed images Sagittal Coronal

Training images in model Sagittal Coronal Mix Sagittal Coronal Mix

DCNN

RMSE 0.0152 0.0163 0.0156 0.0210 0.0233 0.0208

PC 0.9777 0.9744 0.9766 0.9970 0.9963 0.9970

SSIM 0.8687 0.8571 0.8647 0.8605 0.8264 0.8616

CNN

RMSE 0.0183 0.0197 0.0188 0.0216 0.0230 0.0213

PC 0.9679 0.9629 0.9658 0.9968 0.9964 0.9969

SSIM 0.8392 0.8202 0.8304 0.8467 0.8317 0.8506

Mix, mixture of sagittal and coronal; DCNN, deep convolutional neural network; CNN, convolutional neural network; RMSE, root mean 
square error; PC, Pearson correlation; SSIM, structural similarity index.
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Figure 4 Coronal images reconstructed from a model trained from only coronal images (A,B) and from a model trained from only sagittal 
images (C,D) demonstrate similar image quality and reconstruction errors.

Feasibility study

The 10 patients selected for the feasibility study had a 
mean age of 70.3 years (range, 52–79 years; four women). 
There was good to excellent agreement on grading 
between the sagittal DCNN and original images for 
most structures, including bone marrow lesions (kappa 
=0.75), menisci (kappa =0.85), ligament/tendon (kappa 
=1), cyst/bursa (kappa =0.71), loose bodies (kappa =1), and 
osteophytes (kappa =0.74). Cartilage grading agreement 
was also good to excellent for both thickness and size for all 
subcompartments (kappa range, 0.63–1) with the exception 
of cartilage thickness in the trochlea and posterior medial 
tibia thickness and cartilage size in the patella and anterior 
medial femoral condyle; in these structures, the agreement 
was moderate (kappa range, 0.46–0.58).

Interchangeability study

The 40 patients selected for the interchangeability 
study had a mean age of 64.6 years (range, 45–79 years;  
21 women). Table 3 summarizes the frequency of pairwise 
agreement between readers using different reconstructions 
and the excess disagreement with 95% CI when one reader 
was using accelerated images and the other was using the 
original images compared to when both readers were using 
the original images. The agreement between readers when 
one reader was using either the DCNN or CNN images 
and the other was using the original images was very similar 
to the agreement when both readers were using the original 
images, with little to no excess disagreement. Both the 
DCNN and the CNN accelerated images were found to be 
interchangeable with the original images for assessment of 
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Table 2 Quantitative comparison of models trained with images from patients with and without OA

Training images in model Healthy Mixed Lesion

RMSE 0.0064 0.0065 0.0062

PC 0.9876 0.9869 0.9883

SSIM 0.9641 0.9623 0.9660

Healthy, patients without OA (KL grade =0); Lesion, patients with OA (KL grade =2–4); Mixed, patients with and without OA (KL grade  
=0–4). OA, osteoarthritis; RMSE, root mean square error; PC, Pearson correlation; SSIM, structural similarity index; KL, Kellgren-Lawrence.

medial and lateral meniscal tears, ACL tears, and cartilage 
defects (Figures 6,7). Interchangeability could not be tested 
for other structures evaluated because none of the patients 
had posterior cruciate ligament tears, medial collateral 
ligament tears, lateral collateral ligament tears, or fractures 
and only a few had marrow-replacing lesions.

Table 4 summarizes the readers’ grading of image quality 
for the different reconstructions. Pooled across all three 

readers, image quality was graded as excellent or acceptable 
in 97.5% of cases (117/120) using the original images and 
in 95% of cases (114/120) using the DCNN images but 
in only 60% of cases (72/120) using the CNN images. 
Although the original images were graded as excellent in 
image quality in 87.5% of cases (105/120), the image quality 
of DCNN images was graded as excellent in only 20.8% 
of cases (25/120), and the image quality of CNN images 

Healthy model Mixed model Lesion model

Healthy model Error ×10 Mixed model Error ×10 Lesion model Error ×10

PSNR: 43.9223
NMSE: 0.0128

PSNR: 43.6890
NMSE: 0.0135

PSNR: 44.1691
NMSE: 0.0121

C

D

E

F

A

B

Figure 5 Sagittal images reconstructed using models trained from patients without OA (A,B), from patients with or without OA (C,D), and 
from patients with OA (E,F) demonstrate similar image quality and reconstruction errors. OA, osteoarthritis.
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Table 3 Assessment of interchangeability of 15-layer network (DCNN) and 3-layer network (CNN)

Pathology

Reader agreement Difference (95% CI)

InterchangeableOriginal vs. 
original, %

DCNN vs. 
original, %

CNN vs. 
original, %

Excess disagreement 
with DCNN

Excess disagreement 
with CNN

Medial meniscus tears 90.0 92.5 90.0 –2.5% (–6.1, 1.1) 0.0% (–5.7, 5.7) Yes

Lateral meniscus tears 88.3 86.7 88.3 1.6% (–4.4, 7.8) 0.0% (–5.7, 5.7) Yes

ACL tears 95.0 95.8 95.8 –0.8% (–2.4, 0.8) –0.8% (–2.4, 0.8) Yes

Cartilage defectsa 70.4 68.2 67.4 2.2% (–0.7, 5.1) 3.0% (–0.1, 6.1) Yes
a, Pooled for all surfaces. DCNN, deep convolutional neural network; CNN, convolutional neural network; CI, confidence interval; ACL, 
anterior cruciate ligament.

was never graded as excellent (Figure 8). Furthermore, the 
CNN images were graded as poor or not diagnostic in 
40% of cases (48/120). Only two cases were graded as not 
diagnostic, both of which were CNN reconstructions.

Discussion

At our institution, the acquisition time for knee MRI 

using our clinical protocol (five multiplanar 2D turbo 

Ground truth 15 Layer 3 Layer

Ground truth 15 Layer 3 Layer

C

D

E

F

A

B

Figure 6 A medial meniscus tear (arrow) seen on the fat-saturated intermediate-weighted sagittal nonaccelerated (ground truth) image (A) 
and the non-fat-saturated intermediate-weighted coronal nonaccelerated (ground truth) image (B) is also visible on images reconstructed 
using the 15-layer model (C,D) and images reconstructed using the 3-layer model (E,F).
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Figure 7 A full-thickness cartilage defect (arrow) in the medial femoral condyle seen on the fat-saturated intermediate-weighted sagittal 
nonaccelerated (ground truth) image (A) and the non-fat-saturated intermediate-weighted coronal nonaccelerated (ground truth) image (B) 
is also visible on images reconstructed using the 15-layer model (C,D) and images reconstructed using the 3-layer model (E,F).

spin-echo sequences and a high-resolution 3D sequence) 
ranges from 15 to 20 minutes. In this study, we developed 
a 6-fold acceleration technique using a novel 15-layer 
CNN (DCNN) that is capable of reducing acquisition 
time to 2 to 3 minutes while generating images that are 
diagnostically interchangeable with nonaccelerated images 
and have acceptable if not excellent image quality in most 
cases. While the diagnostic performance of DCNN was 
similar to that of a standard 3-layer CNN in terms of 
interchangeability, reconstruction errors were reduced and 
image quality was improved with the addition of layers in 
the DCNN. The image quality of the DCNN images was, 
however, still inferior to that of the original nonaccelerated 
images. Training the models using images with or without 
pathology did not affect performance. Similarly, training the 
models using images acquired in the same imaging plane 
or images acquired in a different imaging plane did not 

affect performance. These observations can be explained by 
the fact that the deep network is performing de-aliasing/
denoising, which is rather independent of the image 
content.

Recently published studies have used methods such 
as PI, SMS imaging, CS, and DL to reduce knee MRI 
acquisition times and produce diagnostic images. For 
instance, a rapid 5-minute knee MRI protocol using PI 
was shown to be diagnostically interchangeable with a 
standard nonaccelerated protocol (20,21). As previously 
discussed, however, PI results in lower SNR (1), which 
limits acceleration beyond a factor of 2 if spatial resolution 
is to be maintained. Furthermore, PI is best suited for 3T 
imaging because of the inherently higher SNR at 3T. SMS 
imaging partially overcomes some of these limitations. With 
SMS, more than 1 slice is excited with each radiofrequency 
pulse and the signal from all of the slices is acquired 
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Table 4 Image quality of reconstructed images

Reader Image quality Original, n (%) DCNN, n (%) CNN, n (%)

1 Not diagnostic 0 (0.0) 0 (0.0) 1 (2.5)

Poor 1 (2.5) 1 (2.5) 11 (27.5)

Acceptable 9 (22.5) 24 (60.0) 28 (70.0)

Excellent 30 (75.0) 15 (37.5) 0 (0.0)

2 Not diagnostic 0 (0.0) 0 (0.0) 0 (0.0)

Poor 1 (2.5) 1 (2.5) 4 (10.0)

Acceptable 2 (5.0) 29 (72.5) 36 (90.0)

Excellent 37 (92.5) 10 (25.0) 0 (0.0)

3 Not diagnostic 0 (0.0) 0 (0.0) 1 (2.5)

Poor 1 (2.5) 4 (10.0) 31 (77.5)

Acceptable 1 (2.5) 36 (90.0) 8 (20.0)

Excellent 38 (95.0) 0 (0.0) 0 (0.0)

Pooled Not diagnostic 0 (0.0) 0 (0.0) 2 (1.7)

Poor 3 (2.5) 6 (5.0) 46 (38.3)

Acceptable 12 (10.0) 89 (74.2) 72 (60.0)

Excellent 105 (87.5) 25 (20.8) 0 (0.0)

DCNN, 15-layer deep convolutional neural network; CNN, 3-layer convolutional neural network.

simultaneously, thereby decreasing the acquisition time (2). 
The inherent aliasing of the slices that occurs at readout 
is then resolved by using the spatial sensitivities of the 
multichannel surface coils (as is done with PI). With SMS 

imaging, however, the acceleration does not result in the 
loss in SNR that occurs with PI. Additionally, SMS imaging 
and PI can be combined to achieve even greater AFs. In a 
recent study, a combined SMS + PI knee protocol with an 

Ground truth 15 Layer 3 Layer

B CA

Figure 8 The image quality of the nonaccelerated (ground truth) non-fat-saturated intermediate-weighted coronal image (A) is superior 
to the quality of the image reconstructed using the 15-layer model (B) which, in turn, is superior to the quality of the image reconstructed 
using the 3-layer model (C).
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AF of 4 was diagnostically similar to a clinically used PI 
protocol with an AF of 2, and the protocols demonstrated 
similar SNRs (22). However, because of slice cross-talk 
artifact and increased energy deposited into the tissues 
with multislice excitation, the AF is practically limited 
to 4 with SMS imaging. CS, on the other hand, offers 
the ability to accelerate images beyond a factor of 4 (3). 
Several recent studies have shown that CS can be used to 
reduce the acquisition times of 3D fast spin-echo knee MRI 
sequences with AFs ranging from 1.5 to 6 (23-26). CS has 
also been used to reduce the acquisition time of advanced 
metal artifact reduction sequences with an AF of 8 while 
maintaining artifact reduction and SNR (27). One caveat 
to these results is that CS is especially effective in these 
settings because of the ability to downsample in 2 phase-
encoding directions with a 3D data set and the inherent 
sparsity of data with metal artifact reduction sequences; CS 
is not as effective with standard 2D fast spin-echo images, in 
which there is less data sparsity and only 1 phase-encoding 
direction. Additionally, although acquisition time can be 
reduced with CS, image reconstruction time is longer 
because of the iterative process, partially negating the time 
savings (25).

DL acceleration techniques as described in this study 
offer many of the same advantages as CS but without 
some of the limitations. Specifically, DL methods can 
achieve high degrees of acceleration without compromising 
SNR, but unlike CS, DL can be effectively applied to 2D 
acquisitions, as shown in this study. Furthermore, image 
reconstruction with DL acceleration is rapid because once 
the model is trained, DL image reconstruction is not an 
iterative process. The average reconstruction time per 
image in this study was 0.0001 s.

While using DL for MRI acceleration has been 
increasingly explored in different settings, only a few studies 
have evaluated DL acceleration for knee MRI (12,13,28-30).  
Hammernik et al. (28) was the first to explore the use of 
DL for accelerated MRI reconstruction, using a variational 
neural network (VNN) to achieve a 4-fold acceleration with 
image quality comparable to that of nonaccelerated images 
in a small cohort of 10 patients. Liu et al. (30) described 
a novel technique, termed Sampling-Augmented Neural 
neTwork with Incoherent Structure (SANTIS), which 
incorporated variations in undersampling while training 
a generative adversarial network (GAN); this technique 
resulted in less error in reconstructing images from 
undersampled knee MRI data. Recently, Knoll et al. (29)  
published the results of a competition that compared 

quantitative measurements of error and qualitative 
grading of image quality for 33 different DL algorithms 
in reconstructing undersampled knee MRI data acquired 
with multichannel and single-channel coil systems with 
AFs of 4 and 8. Of note, irrespective of coil type, AF, or 
reconstruction algorithm, the authors noted cases with 
subtle pathology evident on the fully sampled images that 
were not accurately depicted on the accelerated images.

Our study supports and expands on the results from 
these previously published studies. While these previous 
studies have focused on evaluation of DL accelerated 
images by quantitative measurements of reconstruction 
errors and subjective grading of image quality of 
accelerated images, the focus of this study was to compare 
the diagnostic performance of DL accelerated images. As 
noted above, DL accelerated images may miss important 
findings such as meniscal tears or cartilage defects, which 
are more clinically relevant than either quantitative 
measurements of error or qualitative measurements of 
image quality. As such, the primary measure in this study 
was the interchangeability of DL accelerated images 
and fully sampled images in evaluating common internal 
derangements in the knee, specifically meniscal tears, 
cartilage defects, and ACL tears. To our knowledge, 
this is the first study to show that accelerated images 
reconstructed with a DL algorithm are diagnostically 
interchangeability with fully sampled images. Additionally, 
this is the first study to show that using a deeper CNN (one 
with more layers) can improve image quality and produce 
images that are nearly always acceptable or excellent in 
diagnostic quality. Lastly, our results demonstrate that 
model performance does not require the presence of 
pathology in the images or the need to train on individual 
imaging planes or sequences.

The study design and patient population resulted in 
some inherent limitations. Models were trained from 
a homogeneous data set taken from the OAI, using 
images with similar contrast and resolution. Additional 
studies will be needed to test the generalizability of the 
reconstruction model with more heterogeneous data 
obtained using different contrast and resolution parameters. 
The interchangeability of images showing less common 
pathology such as injuries to ligaments other than the ACL, 
fractures, and bone lesions could not be assessed in this 
relatively small sample size of 40 patients. As discussed, 
however, the presence of pathology in the training sample 
did not improve reconstruction errors, suggesting that 
learning is likely based on other imaging features. Larger 
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studies with more diverse pathology will be needed to 
validate these findings. Despite the improvement in 
image quality seen with a deep 15-layer CNN model 
compared with that of a standard 3-layer CNN model, 
the image quality was still inferior to the quality seen on 
nonaccelerated images. Further optimization of the model 
beyond selecting the appropriate number of layers is likely 
needed to improve performance. Lastly, undersampling was 
performed in a retrospective fashion from reconstructed 
images,  which is  inferior to prospective K space 
undersampling. Additional studies using prospective 
undersampling are needed to validate these results.

In conclusion, we have demonstrated that it is feasible to 
accelerate knee MRI acquisition by 6-fold through the use 
of a novel deep 15-layer CNN. Images obtained with this 
technique have acceptable image quality, and these images 
are diagnostically interchangeable with nonaccelerated 
images. Although image quality is improved with a deeper 
CNN model, further optimization is still needed to achieve 
excellent image quality. The ability to use DL to achieve 
highly accelerated MRI acquisitions has many important 
potential clinical implications, including increasing the 
accessibility of MRI by reducing wait times; reducing the 
cost of MRI by increasing efficiency; and reducing the 
motion artifact, patient discomfort, and claustrophobia 
associated with MRI as a result of long scan times.

Acknowledgments

The OAI is a public-private partnership comprising 
five contracts (N01-AR-2-2258; N01-AR-2-2259; 
N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) 
funded by the National Institutes of Health, a branch 
of the Department of Health and Human Services, and 
conducted by the OAI Study Investigators. Private funding 
partners include Merck Research Laboratories; Novartis 
Pharmaceuticals Corporation; GlaxoSmithKline; and Pfizer, 
Inc. Private sector funding for the OAI is managed by the 
Foundation for the National Institutes of Health. This 
manuscript was prepared using an OAI public use data set 
and does not necessarily reflect the opinions or views of the 
OAI investigators, the NIH, or the private funding partners.
Funding: This work was supported in part by the National 
Institutes of Health R21EB020861. This study was also 
partially supported by a Society of Skeletal Radiology (SSR) 
Research Seed Grant (“Highly Accelerated Knee MRI using 
a Novel Deep Convolutional Neural Network Algorithm: A 
Multi-Reader Comparison Study”).

Footnote

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/qims-20-664). DL serves as an unpaid 
editorial board member of Quantitative Imaging in Medicine 
and Surgery. NS reports grants from Society of Skeletal 
Radiology, during the conduct of the study; CW reports 
grants from Society of Skeletal Radiology, during the 
conduct of the study; NO reports other from Quantitative 
Imaging Biomarker Alliance (QIBA), outside the submitted 
work. The other authors have no conflicts of interest to 
declare.

Ethical Statement: Data used in the preparation of this article 
were obtained from the Osteoarthritis Initiative (OAI) 
database, which is available for public access at http://www.
oai.ucsf.edu/. The specific datasets used were from version 
1.1. Informed consent was acquired from patients as part of 
the OAI, and this study did not require additional Institutional 
Review Board approval.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Glockner JF, Hu HH, Stanley DW, Angelos L, King 
K. Parallel MR imaging: a user's guide. Radiographics 
2005;25:1279-97.

2. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. 
Simultaneous multislice (SMS) imaging techniques. Magn 
Reson Med 2016;75:63-81.

3. Lustig M, Donoho D, Pauly JM. Sparse MRI: The 
application of compressed sensing for rapid MR imaging. 
Magn Reson Med 2007;58:1182-95.

4. Hollingsworth KG. Reducing acquisition time in clinical 
MRI by data undersampling and compressed sensing 
reconstruction. Phys Med Biol 2015;60:R297-322.

5. Sandino CM, Dixit N, Cheng JY, Vasanawala SS. 
Deep convolutional neural networks for accelerated 

http://dx.doi.org/10.21037/qims-20-664
http://dx.doi.org/10.21037/qims-20-664
http://www.oai.ucsf.edu/
http://www.oai.ucsf.edu/
https://creativecommons.org/licenses/by-nc-nd/4.0/


1761Quantitative Imaging in Medicine and Surgery, Vol 10, No 9 September 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(9):1748-1762 | http://dx.doi.org/10.21037/qims-20-664

dynamic magnetic resonance imaging. Long Beach: 
31st Conference on Neural Information Processing 
Systems, 2017.

6. Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D, 
Liang D. Accelerating magnetic resonance imaging via 
deep learning. Proc IEEE Int Symp Biomed Imaging 
2016;2016:514-7.

7. Lee D, Yoo J, Ye JC. Deep residual learning for 
compressed sensing MRI. Melbourne: 2017 IEEE 14th 
International Symposium on Biomedical Imaging, 2017.

8. Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert 
D. A deep cascade of convolutional neural networks for 
dynamic MR image reconstruction. IEEE Trans Med 
Imaging 2018;37:491-503.

9. Wang S, Huang N, Zhao T, Yang Y, Ying L, Liang 
D. 1D Partial Fourier Parallel MR imaging with deep 
convolutional neural network. Honolulu: ISMRM 25th 
Annual Meeting & Exhibition, 2017.

10. Wang S, Xiao T, Tan S, Liu Y, Ying L, Liang D. 
Undersampling trajectory design for fast MRI with super-
resolution convolutional neural network. Honolulu: 
ISMRM 25th Annual Meeting & Exhibition, 2017.

11. Jin KH, McCann MT, Froustey E, Unser M. Deep 
convolutional neural network for inverse problems in 
imaging. IEEE Trans Image Process 2017;26:4509-22.

12. Johnson PM, Recht MP, Knoll F. Improving the speed 
of MRI with artificial intelligence. Semin Musculoskelet 
Radiol 2020;24:12-20.

13. Lin DJ, Johnson PM, Knoll F, Lui YW. Artificial 
intelligence for MR image reconstruction: an overview for 
clinicians. J Magn Reson Imaging 2020. [Epub ahead of 
print]. doi: 10.1002/jmri.27078.

14. Kim J, Lee JK, Lee KM. Accurate image super-resolution 
using very deep convolutional networks. Las Vegas: 2016 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2016.

15. He K, Zhang X, Ren S, Sun J. Deep residual learning for 
image recognition. 2016 Las Vegas: IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 2016.

16. Krogh A, Hertz JA. A simple weight decay can improve 
generalization. In: Moody JE, Hanson SJ, Lippmann RP, 
editors. Advances in neural information processing systems 
4. San Mateo: Morgan Kauffmann Publishers, 1992:950-7.

17. De Smet AA, Tuite MJ. Use of the "two-slice-touch" 
rule for the MRI diagnosis of meniscal tears. AJR Am J 
Roentgenol 2006;187:911-4.

18. Hong SH, Choi JY, Lee GK, Choi JA, Chung HW, 
Kang HS. Grading of anterior cruciate ligament 

injury. Diagnostic efficacy of oblique coronal magnetic 
resonance imaging of the knee. J Comput Assist Tomogr 
2003;27:814-9.

19. Brittberg M, Peterson L. Introduction of an articular 
cartilage classification. ICRS Newsletter 1998;1:58.

20. Subhas N, Benedick A, Obuchowski NA, Polster 
JM, Beltran LS, Schils J, Ciavarra GA, Gyftopoulos 
S. Comparison of a fast 5-minute shoulder MRI 
protocol with a standard shoulder MRI protocol: 
a multiinstitutional multireader study. AJR Am J 
Roentgenol 2017;208:W146-54.

21. Alaia EF, Benedick A, Obuchowski NA, Polster JM, 
Beltran LS, Schils J, Garwood E, Burke CJ, Chang IJ, 
Gyftopoulos S, Subhas N. Comparison of a fast 5-min 
knee MRI protocol with a standard knee MRI protocol: 
a multi-institutional multi-reader study. Skeletal Radiol 
2018;47:107-16.

22. Fritz J, Fritz B, Zhang J, Thawait GK, Joshi DH, Pan 
L, Wang D. Simultaneous multislice accelerated turbo 
spin echo magnetic resonance imaging: comparison and 
combination with in-plane parallel imaging acceleration 
for high-resolution magnetic resonance imaging of the 
knee. Invest Radiol 2017;52:529-37.

23. Altahawi FF, Blount KJ, Morley NP, Raithel E, Omar IM. 
Comparing an accelerated 3D fast spin-echo sequence 
(CS-SPACE) for knee 3-T magnetic resonance imaging 
with traditional 3D fast spin-echo (SPACE) and routine 
2D sequences. Skeletal Radiol 2017;46:7-15.

24. Fritz J, Fritz B, Thawait GK, Raithel E, Gilson WD, 
Nittka M, Mont MA. Advanced metal artifact reduction 
MRI of metal-on-metal hip resurfacing arthroplasty 
implants: compressed sensing acceleration enables 
the time-neutral use of SEMAC. Skeletal Radiol 
2016;45:1345-56.

25. Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. 
Six-fold acceleration of high-spatial resolution 3D 
SPACE MRI of the knee through incoherent k-space 
undersampling and iterative reconstruction-first 
experience. Invest Radiol 2016;51:400-9.

26. Kijowski R, Rosas H, Samsonov A, King K, Peters R, 
Liu F. Knee imaging: rapid three-dimensional fast spin-
echo using compressed sensing. J Magn Reson Imaging 
2017;45:1712-22.

27. Fritz J, Ahlawat S, Demehri S, Thawait GK, Raithel E, 
Gilson WD, Nittka M. Compressed sensing SEMAC: 
8-fold accelerated high resolution metal artifact reduction 
MRI of cobalt-chromium knee arthroplasty implants. 
Invest Radiol 2016;51:666-76.



1762 Subhas et al. Diagnostic interchangeability of DCNN reconstructed knee MR images

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(9):1748-1762 | http://dx.doi.org/10.21037/qims-20-664

28. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson 
DK, Pock T, Knoll F. Learning a variational network for 
reconstruction of accelerated MRI data. Magn Reson Med 
2018;79:3055-71.

29. Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar 
J, Rabbat M, Defazio A, Muckley MJ, Sodickson DK, 
Zitnick CL. Advancing machine learning for MR image 

reconstruction with an open competition: overview of the 
2019 fastMRI challenge. Magn Reson Med 2020. [Epub 
ahead of print]. doi:10.1002/mrm.28338.

30. Liu F, Samsonov A, Chen L, Kijowski R, Feng L. 
SANTIS: Sampling-augmented neural network with 
incoherent structure for MR image reconstruction. Magn 
Reson Med 2019;82:1890-904.

Cite this article as: Subhas N, Li H, Yang M, Winalski CS, 
Polster J, Obuchowski N, Mamoto K, Liu R, Zhang C, Huang P,  
Gaire SK, Liang D, Shen B, Li X, Ying L. Diagnostic 
interchangeability of deep convolutional neural networks 
reconstructed knee MR images: preliminary experience. Quant 
Imaging Med Surg 2020;10(9):1748-1762. doi: 10.21037/qims-
20-664


