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Background: Increased prevalence of acute pulmonary embolism in COVID-19 has been reported in 
few recent studies. Some works have highlighted pathological changes on lung microvasculature with local 
pulmonary intravascular coagulopathy that may explain pulmonary artery thrombosis found on pulmonary 
computed tomography (CT) angiography. The objective of our study was to describe lung perfusion 
disorders assessed by pulmonary dual-energy CT (DECT) angiography in severe COVID-19 patients.
Methods: This single center retrospective study included 85 consecutive patients with a reverse 
transcriptase-polymerase chain reaction diagnosis of SARS-CoV-2 who underwent a pulmonary DECT 
angiography between March 16th 2020 and April 22th 2020. Pulmonary DECT angiography was performed 
when the patient had severe clinical symptoms or suffered from active neoplasia or immunosuppression. Two 
chest radiologists performed pulmonary angiography analysis in search of pulmonary artery thrombosis and 
a blinded semi quantitative analysis of iodine color maps focusing on the presence of parenchymal ischemia. 
The lung parenchyma was divided into volumes based on HU values. DECT analysis included lung 
segmentation, total lungs volume and distribution of lung perfusion assessment.
Results: Twenty-nine patients (34%) were diagnosed with pulmonary artery thrombosis, mainly segmental 
(83%). Semi-quantitative analysis revealed parenchymal ischemia in 68% patients of the overall population, 
with no significant difference regarding absence or presence of pulmonary artery thrombosis (23 vs. 
35, P=0.144). Inter-reader agreement of parenchymal ischemia between reader 1 and 2 was substantial 
[0.74; interquartile range (IQR): 0.59–0.89]. Volume of ischemia was significantly higher in patients with 
pulmonary artery thrombosis [29 (IQR, 8–100) vs. 8 (IQR, 0–45) cm3, P=0.041]. Lung parenchyma was 
divided between normal parenchyma (59%, of which 34% was hypoperfused), ground glass opacities (10%, 
of which 20% was hypoperfused) and consolidation (31%, of which 10% was hypoperfused).
Conclusions: Pulmonary perfusion evaluated by iodine concentration maps shows extreme heterogeneity 
in COVID-19 patients and lower iodine levels in normal parenchyma. Pulmonary ischemic areas were more 
frequent and larger in patients with pulmonary artery thrombosis. Pulmonary DECT angiography revealed a 
significant number of pulmonary ischemic areas even in the absence of visible pulmonary arterial thrombosis. 
This may reflect microthrombosis associated with COVID-19 pneumonia. 
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Introduction

Since the outbreak declared by the World Health 
Organization (WHO) in January 2020 caused by a new 
coronavirus, the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2), responsible for the 
coronavirus disease named COVID-19, understanding its 
pathophysiological mechanism is challenging in order to 
explain its high mortality rate (1-3) .

The severity of COVID-19 is partly explained by the 
involvement of the pulmonary parenchyma, responsible 
for a pneumonia sometimes leading to an acute respiratory 
distress that can cause death. However, other mechanisms 
associated with the alveolar viral damage appear to play a 
key role in the progression and severity of the disease. One 
of the main assumptions is the association of COVID-19 
with a severe systemic inflammatory reaction and 
vasculopathy which is responsible for endothelial lesions, 
coagulopathy and significantly increased thromboembolic 
events (4-9). This recently described COVID-19 chest-
predominant vasculopathy (10), mainly affecting small 
vessels, was suggested to be named “novel pulmonary 
specific vasculopathy” by Fogarty et al. (4) or “microvascular 
COVID-19 lung vessels obstructive thromboinflammatory 
syndrome” by Ciceri et al. (8) as distinct to disseminated 
intravascular coagulopathy frequently found in systemic 
infections. Several studies reported major coagulation 
disorders, mostly found in mild and severe COVID-19 
patients. Elevated plasma levels of fibrinogen degradation 
products, as an inflammatory marker, and D-dimers 
constitute independent risk biomarker of disease severity 
with poor prognosis (3,11-14).

Chest imaging plays a central role in the diagnosis and 
evaluation of the severity of lung parenchyma involvement 
in patients with severe grade infection (15-17). Common 
chest computed tomography (CT) pattern of COVID-19 
pneumonia as well as its outcome are now well known 
(18-23). While unenhanced chest CT has earned a key 
role in the assessment of COVID-19 pneumonia severity 
(3,24-30), very few studies have searched for these 
vascular abnormalities and pulmonary embolic events. 
First statements on pulmonary vascular changes have 
been reported on unenhanced chest CT scan, seemingly 
thickening and vascular enlargement (30) mostly in 
subsegmental vessels (31-33). Increased prevalence of acute 
pulmonary embolism in COVID-19 has been reported 
in few recent studies, estimated between 20.6% and 40% 
(12,34,35). Moreover, pulmonary embolism appears to be 

a severity marker (12,34,36,37). Interestingly, in all studies 
these pulmonary embolisms are mostly subsegmental (34,37). 
In parallel, hematological and post-mortem studies have 
highlighted pathological changes on lung microvasculature 
with pulmonary microvascular thrombosis associated with 
the common diffuse alveolar damage observed in acute 
respiratory distress (4,8,38-41). These data suggest that this 
local pulmonary intravascular coagulopathy may explain 
the pulmonary artery thrombosis found on pulmonary 
CT angiography. Yet, those vascular changes on small 
subsegmental vessels and microvascular thrombosis may be 
underestimated by pulmonary CT angiography.

We hypothesize that pulmonary dual-energy CT 
(DECT) angiography could provide valuable information 
on these vascular abnormalities in COVID-19 patients by 
evaluating lung perfusion disorders in addition to chest CT 
pattern. The objective of our study was thus to describe 
lung perfusion disorders assessed by pulmonary DECT 
angiography in severe COVID-19 patients.

Methods

Study type and inclusion criteria

The inclusion criteria were consecutive adult patients 
(≥18 years old) with a reverse transcriptase-polymerase 
chain reaction (RT-PCR) diagnosis (NucleoSpin® RNA 
Virus kit, Macherey-Nagel Inc., Bethlehem, PA, USA) 
of SARS-CoV-2 who underwent a pulmonary DECT 
angiography scan between March 16th 2020 and April 22th 
2020. Pulmonary DECT angiography was performed when 
clinical signs of severe grade infection were present (oxygen 
saturation below 92%, polypnea over 25 cycles per minute, 
fever over 40 ℃, increasing oxygen needs), need for invasive 
mechanical ventilation, or when the patient suffered from 
comorbidities of active neoplasia, immunosuppression, 
history of organ or bone-marrow transplantation. 

Exclusion criteria were: (I) patients with unenhanced 
chest CT scans; (II) patients with monoenergetic pulmonary 
CT angiography; (III) patients with artifacts on pulmonary 
DECT angiography hindering image quality.

Study population

A flowchart of the study population is shown in Figure 1. 
Eighty-five patients were included and underwent further 
analysis. Demographics and clinico-biological data were 
gathered from medical charts. The following data were 
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reported: (I) information concerning COVID-19 (onset of 
symptoms, delay between first symptoms and pulmonary 
DECT angiography realization, RT-PCR results), (II) 
care status of the patient at pulmonary DECT realization 
(ambulatory care, conventional care unit, critical care unit), 
(III) need for invasive mechanical ventilation at the time of 
the DECT or in the following 12 hours after the pulmonary 
DECT angiography. 

Pulmonary DECT angiography protocol

CT scans were acquired in helical dual-energy mode 
with a single-source rapid kilovolt switching CT scanner 
(Revolution, GE Healthcare, Milwaukee, WI, USA) after 
intravenous injection of 70 mL iodinated contrast agent 
(Iomeprol 400 mg I/mL, Bracco Imaging, Milan, IT, USA) 
at a flow rate of 4 mL/s, triggered on the main pulmonary 
artery. CT scan settings were set with tube voltage between 
80 and 140 kV every 0.5 milliseconds, 128×0.625 mm 
(total collimation width 80 mm), rotation time 0.8 s, dose 
modulation (reference level of 280 mA), pitch 0.992 and 
CTDIvol 13.6 mGy.

Imaging analysis

Imaging results were first reviewed by two chest radiologists 
(J Behr and A Busse-Coté with respectively 11 and 2 years 
of experience in chest imaging) on a PACS workstation 
(Carestream Health, Rochester, NY, USA). Readers were 

blinded to the patient’s status, clinical and biological 
features. They were asked to assess the presence or absence 
of acute pulmonary artery thrombosis, defined as a filling 
defect within pulmonary vessels. When present, readers 
were asked to report the extent of emboli: unilateral or 
bilateral, number of lung lobes involved, and its topography: 
proximal, lobar and segmental or subsegmental. In case of 
discordance between readers, a simultaneous reading to 
reach consensus was achieved.

Pulmonary DECT angiography semi quantitative analysis 
was done on a dedicated spectral imaging post-processing 
software (Thoracic VCAR with GSI pulmonary perfusion, 
Advantage Workstation platform, Version 3.2 Ext 3.3, GE 
Healthcare, Milwaukee, WI, USA). Initial post-treatment 
was lung segmentation, excluding small pulmonary vessels 
and airways. A semi-quantitative analysis focusing on the 
presence of parenchymal ischemia was performed using 
iodine lung color maps. Readers were blinded to the 
presence or not of acute pulmonary artery thrombosis. They 
were asked to assess the presence of parenchymal ischemia, 
defined as subpleural wedge shaped or systematized 
hypoperfusion on iodine lung color maps (Figure 2). In case 
of discordance between readers, a simultaneous reading to 
reach consensus was achieved. When observed, the volume 
of parenchymal ischemia was segmented and measured (in 
cm3 and relative to total lungs volume in percent). 

Quantitative analysis of segmented lung parenchyma led 
to total lungs volume (cm3), average and standard deviation 
of iodine lungs concentration (100 μg/cm3) measurements. 

Figure 1 Flow chart of the study population. COVID-19, coronavirus disease-19. RT-PCR, reverse transcriptase-polymerase chain reaction; 
DECT, dual energy computed tomography.

2,693 consecutive patients with RT-PCR confirmed COVID-19 diagnosis from March 16th 
to April 22nd 2020

348 COVID-19 patients hospitalized

260 consecutive patients with chest CT for 
COVID-19 infection

118 patients with pulmonary DECT 
angiography meeting inclusion criteria

85 patients included

142 patients not included
• 98: mono-energetic CT angiography
• 44: unenhanced CT

33 patients excluded
• 25: heavy hardening artifacts
• 8: severe emphysema
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Total iodine lungs quantity (100 μg) was defined as the 
product of total lungs volume and average of iodine lungs 
concentration. The lung parenchyma was divided into 
three volumes (absolutes and relatives to total lung volume) 
thanks to maps based on HU values as follows: normal 
= (−1,024 HU; −730 HU), ground glass = (−729 HU;  
−647 HU) (42), and consolidation = (−646 HU; +1,024 HU).  
In the absence of definition in the literature, another 
threshold was defined for dense consolidation ≥0 HU. The 
volume of relative perfusion deficit was measured, defined 
by an iodine concentration <200 μg/cm3 (43,44). This 
volume may be impacted by contrast agent iodine volume, 
flow rate and timing of imaging. In order to describe the 
distribution of perfusion deficit area within the lungs, the 
relatively less perfused quartile lungs volume was segmented 
by adjusting the iodine concentration threshold so that 
the relative perfusion deficit volume was 25% of total 
lungs volume. This allowed to calculate the intersections 
between this hypoperfused quartile volume and the three 
sub-parts (normal, ground glass, consolidation) of the lung 
parenchyma, and in the end to assess the repartition (%) of 
hypoperfused quartile volume between normal lung, ground 
glass and consolidation. 

Statistical analysis

Quantitative data was expressed as mean ± standard 

deviation (normally distributed data) or median and 
25% and 75% interquartile ranges (IQR) (non-normal 
distribution parameter). Categorical variables were 
expressed as number (percentage). Continuous variables 
were compared between the two groups by using the 
Wilcoxon test (non-normal distribution verified by Shapiro-
Wilk tests) a student test when distribution was normal. 
Qualitative variables were compared with Pearson χ2 or 
Fisher exact tests, as appropriate. Inter-reader agreement 
was analyzed using weighted kappa statistics for the 
presence of parenchymal ischemia at semi-quantitative 
analysis. A P value <0.05 was considered statistically 
significant. All analyses were performed with R version 3.4.4 
(R Core Team 2017).

Results

Study population

The mean age of the patients was 65±13 years old with a sex 
ratio of 1.83 (55 men/30 women). Among the 85 patients, 8 
(9%) received ambulatory care, 47 (55%) were hospitalized 
in a conventional care unit and 30 (35%) were admitted 
to critical care unit. A total of 29 (34%) patients required 
invasive mechanical ventilation. The characteristics of the 
study population are detailed in Table 1. 

Twenty-nine patients (34%) were diagnosed with acute 
pulmonary artery thrombosis. Among these, 16 (55%) were 

Figure 2 Pulmonary DECT angiography of a 57-year-old patient in critical care unit 6 days after the onset of COVID-19 symptoms. CT 
was performed because of progressive clinical state worsening. No acute pulmonary embolism was noted on CT pulmonary angiography in 
corresponding segmental arteries. Axial monoenergetic CT image (A, lung window): COVID-19 CT pattern associating a right inferior lobe 
consolidation and ground glass opacities in both inferior lobes. Axial iodine color map (B): segmental hypoperfused area in the middle lobe 
(dotted line). Right inferior lobe consolidation shows high and heterogeneous iodine levels. Iodine color overlay on sagittal CT image (C, 
mediastinal window): segmental and subsegmentals hypoperfused wedge-shaped areas consistent with pulmonary ischemia in right superior 
and middle lobes (inferior segment). DECT, dual energy computed tomography.

CBA
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Table 1 Characteristics of the study population. Pulmonary dual energy CT angiography features according to the presence of pulmonary  
embolism

Characteristics Total (n=85)

COVID-19 patients  
without pulmonary  

embolism  
(n=56, 66%)

COVID-19 patients 
with pulmonary  

embolism  
(n=29, 34%)

P value

Age 65±13 65±14 66±13 0.698

Sex, n [%]

Male 55 [65] 36 [64] 19 [66]

Female 30 [35] 20 [36] 10 [34] 0.910

Type of care, n [%]

Ambulatory 8 [9] 6 [11] 2 [7]

Conventional care 47 [55] 35 [63] 12 [41] 0.001

Critical care 30 [35] 15 [27] 15 [52]

Invasive mechanical ventilation, n [%] 29 [34] 15 [27] 14 [48] 0.057

Total lungs volume (cm3) 3,108 [2,458–4,049] 3,169 [2,534–4,156] 2,795 [2,189–3,935] 0.264

Lung texture analysis

Normal parenchyma (volume, cm3) 1,902 [807–2,649] 1,998 [1,173–3,011] 1,581 [645–2,419] 0.092

Normal parenchyma (relative volume, %) 59 [40–72] 62 [47–77] 55 [32–65] 0.027

Ground glass opacity (volume, cm3) 301 [224–397] 301 [227–388] 308 [224–423] 0.785

Ground glass opacity (relative volume, %) 10 [7–14] 10 [7–13] 12 [7–17] 0.219

Consolidation (volume, cm3) 816 [585–1,106] 709 [534–1,090] 954 [767–1,160] 0.037

Consolidation (relative volume, %) 31 [18–43] 26 [17–39] 36 [24–57] 0.029

Dense consolidation (volume, cm3) 191 [37–281] 94 [35–222] 210 [125–328] 0.041

Dense consolidation (relative volume, %) 6 [1–10] 4 [1–6] 8 [3–14] 0.025

Semi-quantitative features

Presence of parenchymal ischemia 58 [68] 35 [62] 23 [79] 0.144

Volume of ischemia (cm3) 13 [0–80] 8 [0–45] 29 [8–100] 0.041

Relative ischemia volume (relative volume, %) 0.5 [0–3] 0 [0.3–1.3] 1 [0–3] 0.025

Quantitative dual-energy CT features

Total iodine lungs quantity (100 μg) 27,135  
[21,968–32,769]

25,997  
[21,657–31,449]

29,507  
[22,961–35,048]

0.264

Standard deviation of iodine lungs concentration (100 μg/cm3) 14.5 [13.15–16.6] 12.8 [14.0–15.7] 15.4 [14.2–17.9] 0.280

Relative perfusion deficit (volume, cm3) 652 [391–1,069] 678 [410–1,169] 636 [372–945] 0.402

Relative perfusion deficit (relative volume, %) 22 [14–31] 22 [14–33] 23 [15–31] 0.707

Normal lung within hypoperfused quartile lungs (%) 20 [17–22] 20 [11–30] 21 [13–32] 0.216

Ground glass opacity within hypoperfused quartile lungs (%) 2 [1–2] 2 [1–2] 2 [1–2] 0.467

Consolidation within hypoperfused quartile lungs (%) 3 [2–5] 3 [2–5] 5 [2–6] 0.249
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bilateral; 24 (83%) were segmental or subsegmental, 1 was 
lobar (3%) and 4 (14%) were mixed. None was proximal. 
The mean age was not statistically different in the patients 
with or without pulmonary artery thrombosis (65±14 and 
66±13 respectively, P=0.698). 

Semi-quantitative DECT analysis

As portrayed in Table 1, parenchymal ischemia was described 
in 58 patients (68%), in both groups, with no significant 
difference between patients with and without pulmonary 
artery thrombosis (Figures 2,3) (35 vs. 23, P=0.144). Inter-
reader agreement of parenchymal ischemia between readers 
1 and 2 was substantial (0.74; IQR: 0.59–0.89). Volume of 
ischemia was however significantly higher in patients with 
acute pulmonary artery thrombosis [29 (IQR, 8–100) vs. 8 
(IQR, 0–45) cm3, P=0.041]. Other semi quantitative DECT 
analysis’ results are detailed in Table 1.

Quantitative lung analysis

Quantitative lung analysis’ characteristics are detailed in 
Table 1. Patients with acute pulmonary artery thrombosis 
had significantly less normal parenchyma (55%; IQR, 
32–65%) than patients with no acute pulmonary artery 

thrombosis (62%; IQR, 47–77%), P=0.027). Patients with 
acute pulmonary artery thrombosis also had significantly 
more consolidations [36% (IQR, 24–57%) vs. 26% (IQR, 
17–39%), P=0.029] and dense consolidations [8% (IQR, 
3–14%) vs. 4% (IQR, 1–6%), P=0.025, respectively].

Quantitative DECT analysis

Total iodine lungs quantity, standard deviation of iodine 
lungs concentration, relative perfusion deficit and the 
repartition (%) of hypoperfused quartile volume between 
normal lung, ground glass and consolidation are presented 
in Table 1. The hypoperfused areas were predominantly 
located within normal lung (Figure 4), and ground glass 
opacities and consolidations appeared mostly hyperperfused 
(Figure 5). 

Discussion

To our knowledge, lung perfusion disorders have not 
yet been analysed by pulmonary DECT angiography in 
COVID-19 patient. Hypoperfused areas consistent with 
ischemia were searched for and quantified, with readers 
blinded for the diagnosis of acute pulmonary artery 
thrombosis. Although pulmonary ischemic areas were more 

Figure 3 Pulmonary DECT angiography of an 84-year-old patient performed 14 days after COVID-19 symptoms onset because of 
clinical state worsening necessitating transfer to critical care unit. Axial monoenergetic CT image (A, lung window): COVID-19 CT 
pattern associating central ground glass opacities and peripheral declive areas of consolidation. Iodine color overlay on axial CT image 
(B, mediastinal window): heterogeneity of iodine map with high iodine concentrations in consolidations, and left medio-basal segment 
hypoperfusion (dotted line), secondary to the thrombosis of corresponding segmental pulmonary artery (white arrow). DECT, dual energy 
computed tomography.

A B
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Figure 4 Pulmonary DECT angiography of an 89-year-old female without acute pulmonary embolism. The CT scan was obtained 2 days 
after the onset of COVID-19 symptoms and on the day the patient was transferred to the conventional care unit. Right lung (A) is an axial 
monoenergetic CT image (lung window) with overlay of the relatively hypoperfused quartile: perfusion deficit areas are mostly within 
normal parenchyma, and covers few areas of ground glass opacities and consolidations. Left lung (B) is a schematic representation, in the 
whole population, of the distribution of relatively hypoperfused quartile of the lungs (blue) within normal parenchyma (dark grey, 59%, 
of which 34% is hypoperfused), ground glass opacities (light grey, 10%, of which 20% is hypoperfused) and consolidation (white, 31%, of 
which 10% is hypoperfused). 

A B

frequent and larger in the pulmonary artery thrombosis 
subgroup, interestingly we found a significant number 
of them in the absence of pulmonary artery thrombosis 
subgroup, mainly distal and of smaller volume. Recently, 
publications (4,8,35,40,41) have reported microvascular 
lesions especially endothelial lesions and pulmonary 
vessels microthrombosis associated with COVID-19 and 
seem to be related to fatal outcome and death (41). We 
hypothesize that the small pulmonary ischemic areas that 
we detected on pulmonary DECT angiography with no 
visible pulmonary artery thrombosis could be the imaging 
consequence of these microvascular lesions and “in-situ” 
microthrombosis in opposition to real pulmonary artery 
thrombosis coming from the periphery. As suggested by 
Thachil et al. (10) it would be appropriated to refer to 
“pulmonary in-situ thrombosis” in COVID-19 rather than 

the denomination “pulmonary embolism”. This distinction 
is not only semantical, as thrombosis treatment would rely 
not only on anticoagulant therapy but on antiplatelet agents 
in addition with anticoagulant (10). Beyond the illustration 
of a physiopathological mechanism of COVID-19, further 
studies will be necessary to look for an association of 
perfusion features with patients’ outcome under treatment.

Lung perfusion analysis in these patients is challenging. 
Indeed, iodine maps in COVID-19 patients show extreme 
heterogeneity: areas of highly perfused consolidations, areas 
of ground glass opacities with normal or high perfusion 
and hypoperfused normally ventilated lung parenchyma. 
We hypothesize that high iodine levels in consolidations 
could be linked with the inflammatory nature of these 
consolidations. A higher density threshold helps to reduce 
the amount of non-consolidated lung mistakenly included 
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in a continuous lung segmentation based on density, 
especially when considering dense, incompletely ventilated, 
lung parenchyma. 

We acknowledge some limitations of this study. First its 
retrospective monocentric design could lead to a selection 
bias. We limited this bias by including consecutive patients. 
Secondly, we excluded patients (21%) when DECT quality 
was too low due to technics inherent artifacts (overweight, 
beam hardening artifacts). This relatively high rate of 
exclusion is explained by the accumulation of these artifacts 
in COVID-19 critical care patients. A reading bias related 
to any semi-quantitative analysis also exists, which has 
been minimized by double-blind reading with secondary 
consensus. Finally, iodine concentration is strongly 
correlated to lung parenchyma blood perfusion and can be 
impacted by contrast media variables as well as patient’s 
heart flow and blood volume. 

Conclusions

Pulmonary perfusion evaluated by iodine concentration 
maps shows extreme heterogeneity in COVID-19 patients 
and lower iodine levels in normal parenchyma. Pulmonary 
ischemic areas were more frequent and larger in patients 

with pulmonary artery thrombosis. Pulmonary DECT 
angiography revealed a significant number of pulmonary 
ischemic areas even in the absence of visible pulmonary 
arterial thrombosis. This may reflect microthrombosis 
associated with COVID-19 pneumonia. 
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