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Introduction

Radiomics is an emerging advanced texture analysis 
technique for identification of the linkage between imaging 
phenotypes and the underlying disease genotypes and/or 
clinical manifestations (1). By employing machine learning 
and statistical analysis, high-dimensional radiomics features 

that describe the characteristics of lesion intensity (e.g., 
high or low signal), heterogeneity (e.g., homogeneous or 
heterogeneous), as well as shapes (e.g., round or spiculated), 
are extracted in medical images and correlated to the 
underlying gene expression profiles, histopathological 
features, and clinical symptoms (2). In addition, radiomics 
analysis can also improve diagnosis and predict prognosis 
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or therapeutic response (3). Since its groundwork in 2012 
(4,5), radiomics has shown its great potentials to improve 
diagnostic, prognostic, and predictive accuracy in a wide 
range of clinical research and studies. 

However,  concerns have been raised about the 
reproducibility of radiomic features (hereafter, features) for 
comparing and generalizing study results and conducting 
multicenter clinical trials (3). Feature reproducibility 
may be influenced by many factors involved in the entire 
radiomics pipeline, from image acquisition, reconstruction, 
segmentation, to feature calculation and analysis (3). 
Handling feature sensitivity to imaging and calculating 
parameters is critical in radiomics, as the great potential of 
this field lies in its utilization of publicly available medical 
images across institutions, devices, and collection methods. 
Thus, it is essential to thoroughly understand the effects of 
these parameters on radiomics features before decisions are 
made on how to handle them. Existing phantom and patient 
studies have demonstrated the effects imaging parameters 
(e.g., manufacturer, scanner, acquisition and reconstruction 
parameters) can have on radiomic features (3,6-9). However, 
little is known regarding the influence of feature calculating 
parameters (e.g., gray-level range and bin size) on radiomic 
features (10,11). 

Therefore, the purpose of this study is to investigate the 
influence of feature calculating parameters (gray-level range 
and bin size) on the reproducibility of CT radiomic features 
in a thoracic phantom. 

Methods

Phantom imaging

Thirty-six CT scans from an anthropomorphic thoracic 
phantom (Kyotokagaku Incorporated, Tokyo, Japan) 
publicly available at the Cancer Imaging Archive (TCIA) 
were employed in the study (12). The phantom contains 
12 attached synthetic nodules (Kyotokagaku Incorporated, 
Tokyo, Japan or Computerized Imaging Reference Systems 
(CIRS), Norfolk, VA) varying in size (10 and 20 mm), shape 
[elliptical, lobulated and spiculate) and density (−630 and 
+100 Hounsfield Unit (HU)]. The phantom and the layout 
of the synthetic lung nodules are shown in Figure 1 (12). 
Each nodule was labeled by using three digits: the first digit 
indicating the diameter (1 for 10 mm and 4 for 20 mm), 
the second digit indicating shape (0 for elliptical, 2 for 
lobulate and 4 for spiculate) and the third digit indicating 
density (1 for −630 HU and 5 for 100 HU). This phantom 

was scanned on a 16-row Philips Mx8000 IDT (Philips 
Healthcare, Andover, MA) with different acquisition and 
reconstruction parameters (hereafter, imaging parameters) 
of effective dose (25, 100 or 200 mAs), pitch (0.9 or 1.2), 
slice thickness (0.75, 1.5 or 3 mm) and reconstruction 
kernel (medium or detail). 

Nodule segmentation

The 36 scans were imported to a volumetric image analysis 
platform 3DQI (a free software platform for volumetric 
image analysis developed by the 3D quantitative imaging 
laboratory at Massachusetts General Hospital and Harvard 
Medical School) (https://3dqi.mgh.harvard.edu). To 
minimize the influence of partial volume effects and inter-
scan misregistration, we selected six nodules ≥20 mm in this 
study. To evaluate the inter-observer reproducibility, the 
nodules were manually delineated by a senior radiologist 
with 19 years of experience in clinical radiology and a 
trained intern independently. To evaluate the intro-observer 
reproducibility, the senior radiologist delineated the 
nodules twice with a 2-week interval. The resulting volumes 
of interest (VOIs) of nodules that were delineated  in one 
of the scans were transported to other scans by a rigid 
registration. 

Radiomic feature calculation 

A set of 88 radiomic features including shape features 
(n=11), statistics features [histogram (HIST) features (n=20), 
moment (n=3) and gradient features (n=2)], run-length (RL) 
features (n=16), gray-level co-occurrence matrix (GLCM) 
features (n=22) and gray-level zone-size matrix (GLZSM) 
features (n=14), were calculated for each nodule in each 
scan (Table S1 lists the radiomic features in the study) by 
using varied calculating parameters (gray-level range and 
bin size). Gray-level range indicates the lower bound and 
the upper bound of gray-level values (e.g., density in CT 
or signal intensity in MRI) used in texture calculation. 
The gray-level range is divided into a series of equal-size 
intervals, which is referred to bin size (2). We employed 
three gray-level ranges of 1,000 HU (−800 to 200 HU), 
1,400 HU (−700 to 700 HU) and 2,000 HU (−1,000 to 
1,000 HU) and eleven gray-level bin sizes ranging from 1 
to 50 HU (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 HU). For 
a specific gray-level range, a pixel was excluded if its density 
was beyond the range we confined. A total of 1,188 (36×33) 
feature files were generated, each containing six nodules 
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with 88 radiomic features for each nodule. 

Feature reproducibility assessment 

To investigate the influence of each parameter on feature 
reproducibility, we selected a set of reference values of 
imaging parameters (effective dose of 100 mAs, pitch of 0.9, 
slice thickness of 3 mm and reconstruction kernel of detail) 
in terms of the standard thoracic CT imaging protocol, and 
a set of reference values of calculating parameters (gray-level 
range of 1,000 HU and the bin size of 20 HU) in terms of 
the optimal lung nodules feature analysis. The influence of 

calculating parameters was assessed by fixing the imaging 
parameters to the reference values, and on the other hand 
the influence of imaging parameters was assessed by fixing 
the calculating parameters to the reference values. In our 
study, all imaging and calculating parameters had only 2–3 
discrete values except bin size, which had 11 values. To 
reduce the variation caused by the extrema value of bin size 
(such as 1 or 50), we selected the bin sizes of 10, 20 and 
40 HU for the influence of feature reproducibility in the 
comparisons between imaging and calculating parameters. 

For each parameter, its influence was assessed by 
changing its value while keeping other parameters 

Figure 1 The phantom and nodules used in the study. Photographs of the exterior shell of the anthropomorphic thoracic phantom (A), 
the internal vasculature (B) and the synthetic nodules used in this phantom with sizes of 10 mm and 20 mm from left to right, lobulated, 
elliptical and spiculate shapes from up to down (B). The schematic diagram of the layout of the 12 nodules in the phantom (12). 
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unchanged. For instance, the influence of gray-level range 
on feature reproducibility was evaluated when the bin size 
was assigned to 20 HU, whereas bin size was assessed in 
terms of the fixed gray-level range of 1,000 HU. For a 
comprehensive assessment of calculating parameters, we 
repeated this assessment in all 36 scans in addition to the 
scans with reference imaging parameters. 

Feature reproducibility was assessed by the intraclass 
correlation coefficient (ICC) with the cutoff value of 0.8 
and the coefficient of variation (CV) with the cutoff value 
of 20%. For each parameter, one feature was considered 
reproducible if more than four out of six nodules showed 
CV less than 20%. The overall influence of calculating 
parameters and imaging parameters on the feature 
reproducibility were compared by using the proportion of 
reproducible features in both parameters. 

In addition, we classified the trendlines between the 
feature values and the bin sizes into six types: consistent, 
logarithmic ascending, polynomial ascending, logarithmic 
descending, polynomial descending and fluctuating. The 
type of trendline of each feature was determined by the 
largest correlation coefficient (R2) of the corresponding 
fitting curve, which ranges from 0 to 1, with 1 representing 
a perfect fit between the data and the curve, and 0 
representing no statistical correlation between the data and 
the curve. 

Statistical analysis 

The statistical calculation was performed by using the 
build-in statistical analysis toolkit at 3DQI platform, which 
was developed using R (version 3.4.3; R Foundation for 
Statistical Computing, Vienna, Austria) with the DescTools 
packages and SPSS (version 24, IBM, Armonk, New York). 
The trendlines between the feature values (normalized 0 to 
1) and the bin sizes were generated using Microsoft Excel 
(Office 365, Microsoft Software, Redmond, Washington). 

Considering the skewed distribution of ICC and CV 
in most features, we reported the median ICC or CV of 
each feature, which was calculated by evaluating median 
values first through all scans and then through all features, 
represented as Median[scan][feature]. 

The agreement of reproducible features in different ranges 
and bin sizes were analyzed by Kendall’s W test and Kappa test 
(Kappa test was only for range 2,000 and 1,400 HU because 
their centers of CT values were the same). A Kendall’s W or 
Kappa coefficient of 0.81–1.00, 0.61–0.80, 0.41–0.60, 0.21–
0.40 and 0.0–0.20 indicated perfect, substantial, moderate, 

fair and no agreement, respectively.
The statistical differences in the proportions of 

reproducible features, in two feature calculating parameters 
and four imaging parameters, were evaluated using 
Cochran’s Q test and Dunn’s test. For all statistical analyses, 
the P value or the adjusted P value (Bonferroni correction 
for Dunn’s test) less than 0.05 was considered statistically 
significant.

Results

For the three gray-level ranges of 1,000, 1,400 and  
2,000 HU, the overall median ICCrange and CVrange in  
36 scans and 88 features was 0.95 (range, 0.00 to 1.00) and 
14% (range, −86% to 105%), respectively. According to the 
reproducibility criteria of ICCrange >0.8 and CVrange <20%, 
50% (44/88) of features were considered reproducible. The 
proportions of reproducible features throughout 36 scans 
were 55/88 (62.5%), 52/88 (59.1%) and 51/88 (58%) for 
three gray-level ranges, respectively, with no statistically 
significant difference (P=0.420). The agreement was 
perfect (Kendall’s W coefficient 0.844, P<0.001) among the 
three ranges, but was substantial (Kappa coefficient 0.649, 
P<0.001) between ranges of 2,000 HU and 1,400 HU. 

In the analysis of the influence of bin size, we excluded 
16 features that are independent of bin size by definition, 
including 11 shape features, GRAD_mean, GRAD_std, 
MOMENT_j1, MOMENT_j2 and MOMENT_j3. These 
16 features were treated as reproducible features when bin 
size was compared with other parameters.

For the 11 bin sizes, the overall median ICCbin and CVbin 
in 36 scans and 72 features were 0.75 (range, 0.00 to 1.00) 
and 39% (range, −328% to 331%), respectively. According 
to the criteria of feature reproducibility of ICCbin >0.8 and 
CVbin <20%, 33.3% (24/72) of features were considered 
reproducible (Table S1 lists the median ICC and CV values 
of each feature and Table S2 lists the reproducible and non-
reproducible features in each group). Figure 2 shows the 
normalized feature values plotted against bin sizes for 72 
features in four groups (HIST, RL, GLCM and GLZSM 
features). 

The types of trendlines between the feature values and 
the bin sizes in the scan of reference imaging parameters 
were: consistent (n=3), logarithmic ascending (n=7), 
polynomial ascending (n=19), logarithmic descending 
(n=17), polynomial descending (n=9) and fluctuating 
(n=17). Figure 3 shows examples for six types of trendlines. 
Of 72 features, the trendlines of 59 (81.9%) features were 
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considered similar in 36 scans.
Table 1 lists the proportions of reproducible features of 

36 scans in each bin size according to the criteria of ICCscan 
>0.8, or CVscan <20%, or (ICCscan >0.8 and CVscan <20%) in 
the reference gray-level range of 1,000 HU. There were 
statistically significant differences among different bin sizes 
(P=0.013). Although the overall proportions of reproducible 
features in bin size of 15, 20, 25, 50 HU were relatively 
higher than those in other bin sizes, the statistically 
significant differences were only observed between bin size 
1 and 15 HU (adjusted P=0.045), 1 and 20 HU (adjusted 
P=0.045), 1 and 25 HU (adjusted P=0.045), 1 and 50 HU 
(adjusted P=0.009). The agreement of reproducible features 
in 11 bin sizes was perfect (Kendall’s W coefficient 0.879, 
P<0.001). 

Table 2 lists the proportions of reproducible features 
among 36 scans in each bin size for the subgroups of HIST, 

RL, GLCM and GLZSM. There were no statistically 
significant differences among different bin sizes for each 
subgroup (P>0.05) except in RL group (P=0.004), in which 
the differences were observed between 1 and 25 HU, 1 and 
30 HU, 1 and 35 HU, 1 and 40 HU, 1 and 45 HU, 1 and  
50 HU (adjusted P<0.05). 

In the reference calculating parameters with range of 
1,000 HU and bin size of 20 HU, 55 features (62.5%) 
were assessed reproducible, whereas 33 features were 
nonreproducible in 36 scans (Table S3).

Table 3 listed the proportions of reproducible features in 
all the parameters (two calculating, four imaging and two 
segmentation parameters) involved in this study according 
to the criteria of ICC >0.8, or CV <20%, or (ICC >0.8 and 
CV <20%). There were statistically significant differences 
among six parameters (P<0.001). The proportions of 
reproducible features in calculating parameters (range, and 

Figure 2 Normalized feature values (0 to 1) plotted against bin size for four groups of features. Gray level range: 1,000 HU (−800 to 200 
HU), bin size: 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 HU. (A) Histogram (HIST) features (n=17); (B) run-length matrix (RL) features (n=16); 
(C) gray-level co-occurrence matrix (GLCM) features (n=22); (D) gray-level zone-size matrix (GLZSM) features (n=14). Each feature group 
contains multiple types of trendlines. 
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six nodules (20 mm in diameter, spiculate, 100 HU in density) calculated by EXCEL. For each trendline, the equation is the formula that 
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Table 1 The numbers and percentages of reproducible features of 36 scans in each bin size according to the criteria of ICCscan >0.8, or CVscan 
<20%, or (ICCscan >0.8 and CVscan <20%) in the gray-level range of 1,000 HU (16 features independent of bin size were excluded)

Bin size (HU) ICC >0.8, n (%) CV <20%, n (%) ICC >0.8 and CV <20%, n (%)

1 50 (69.4) 48 (66.7) 40 (55.6)

5 54 (75.0) 47 (65.3) 44 (61.1)

10 59 (81.9) 49 (68.1) 46 (63.9)

15 59 (81.9) 51 (70.8) 48 (66.7)

20 60 (83.3) 51 (70.8) 48 (66.7)

25 60 (83.3) 51 (70.8) 48 (66.7)

30 60 (83.3) 50 (69.4) 47 (65.3)

35 59 (81.9) 50 (69.4) 47 (65.3)

40 62 (86.1) 50 (69.4) 47 (65.3)

45 61 (84.7) 49 (68.1) 45 (62.5)

50 61 (84.7) 52 (72.2) 49 (68.1)

P value <0.001 0.562 0.013

Table 2 The numbers and percentages of reproducible features in 11 bin sizes according to the criteria of ICC >0.8 and CV <20% for the groups 
of HIST, RL, GLCM and GLZSM (16 features independent of bin size were excluded)

Bin size (HU) HIST (n=20), n (%) RL (n=16), n (%) GLCM (n=22), n (%) GLZSM (n=14), n (%)

1 16 (80.0) 5 (31.3) 13 (59.1) 6 (42.9)

5 16 (80.0) 8 (50.0) 15 (68.2) 5 (35.7)

10 16 (80.0) 8 (50.0) 16 (72.7) 6 (42.9)

15 16 (80.0) 8 (50.0) 17 (77.3) 7 (50.0)

20 16 (80.0) 8 (50.0) 17 (77.3) 7 (50.0)

25 16 (80.0) 9 (56.3) 17 (77.3) 6 (42.9)

30 16 (80.0) 9 (56.3) 17 (77.3) 5 (35.7)

35 16 (80.0) 9 (56.3) 16 (72.7) 6 (42.9)

40 16 (80.0) 9 (56.3) 17 (77.3) 5 (35.7)

45 16 (80.0) 9 (56.3) 15 (68.2) 5 (35.7)

50 17 (85.0) 10 (62.5) 17 (77.3) 5 (35.7)

P value 0.440 0.004 0.084 0.850
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bin size) were statistically significantly lower than those in 
imaging parameters (effective dose, pitch, slice thickness 
and filter) according to the criteria of (ICC >0.8 and CV 
<20%) (adjusted P<0.05).

Discussion

The radiomic features employed in different platforms 
may be varied, among which statistical based methods have 
been most commonly applied. First-order (intensity of pixel 
histogram), second-order (run-length matrix and gray-
level co-occurrence matrix) and higher orders (advanced 
metrics) features are analyzed in these methods. Gray-level 
range and gray-level bin size are indispensable and the most 
fundamental parameters applied in almost all radiomics 
platforms. Thus, we chose these two parameters for our 
study (2,13-15). 

We observed that the proportions of reproducible 
features in calculating parameters were statistically 
significantly lower than those in imaging parameters 
according to the criteria of (ICC >0.8 and CV <20%). This 
indicates that the calculating parameters may have a greater 
influence on the reproducibility of CT radiomic features 
than imaging parameters. This observation is significant 
since the influence of calculating parameters have been 

undervalued and simply ignored in the majority previous 
studies. Most studies discussed the influence of imaging 
parameters, whereas only a few studies have clarified the 
parameters used in calculating the features (2,16). 

The grey-level range may influence the feature 
reproducibility in two ways. If the centers of the ranges are 
different, for instance the 1,000 HU (center −300 HU) and 
2,000 HU (center 0 HU) in our study, gray-level range may 
influence the distribution of the density in each bin. If the 
centers of two gray-level ranges are the same, such as 1,400 
and 2,000 HU, whose centers are 0 HU, gray-level range 
may determine how many pixels are included, because the 
pixels are excluded if its density was beyond the range we 
confined. In our study, the agreement of range 2,000 and 
1,400 HU was substantial (Kappa coefficient 0.649), which 
indicated that the influence of range cannot be ignored even 
if they have the same center. Range influences all the 88 
features including the 16 features which are not affected by 
bin sizes.

When defining a range in an application, the underlying 
principle is to reduce the pixels that should not be included 
when we extract features. In this study, some component 
which may be included at the edge of an VOI, such as air 
and bones, were exclude in the range of −200 to 800 HU 
whereas included in the range of −1,000 to 1,000 HU. 

Table 3 The numbers and percentages of reproducible features in all the parameters (two calculating and four imaging parameters) according to 
the criteria of ICC >0.8, or CV <20%, or (ICC >0.8 and CV <20%)

Parameter Variation range ICC >0.8, n (%) CV <20%, n (%) ICC >0.8 and CV <20%, n (%)

Acquisition

Effective dose (mAs) 25, 100*, 200 78 (88.6) 70 (79.5) 64 (72.7)

Pitch 0.9*, 1.2 75 (85.2) 76 (86.4) 67 (76.1)

Reconstruction

Slice thickness (mm) 0.75, 1.5, 3* 72 (81.8) 67 (76.1) 65 (73.9)

Filter Medium, detail* 86 (97.7) 88 (100) 86 (97.7)

Segmentation

Intro-observer NA 79 (89.8) 80 (90.9) 73 (83.0)

Inter-observer NA 81 (92.0) 62 (70.5) 59 (67.0)

Calculation

Gray-level range (HU) 1,000*, 1,400, 2,000 76 (86.4) 45 (51.1) 44 (50.0)

Bin size (HU) 10, 20*, 40 51 (58.0) 45 (51.1) 41 (46.6)

P value <0.001 <0.001 <0.001

*, reference parameters for comparisons. When one parameter was analyzed, other parameters were fixed. 



1783Quantitative Imaging in Medicine and Surgery, Vol 10, No 9 September 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(9):1775-1785 | http://dx.doi.org/10.21037/qims-19-921

An appropriate range depends on the applications, e.g., 
the range used in a chest CT without contrast should be 
different with that in a contrast enhanced abdominal CT. 

The trendlines revealed that the selection of bin size has 
a significant influence on the absolute values of the features, 
as all features except three changed when the bin sizes were 
changed. These results imply that the selections of bin size 
may influence the radiomics score or signature, which was 
built by combining some selected features into a regression 
model and used as the new biomarker for decision-making 
(2,14,16).

Bins are usually specif ied as consecutive,  non-
overlapping intervals of the intensity values. They must be 
adjacent, tend to be equal-width (but are not required to 
be). Wider bins reduce noise due to sampling randomness; 
whereas narrower bins give greater precision to the 
density distribution. Experimentation is usually needed 
to determine an appropriate bin size. An optimal bin size 
depends on the actual data distribution and the aims of 
analysis. For instance, if our purpose is to differentiate the 
malignant lesions from the benign (a higher resolution is 
preferred) in a chest CT with a lung kernel (which has a 
relatively higher noise level we intend to reduce), the bin 
size should be deliberately chosen to balance these two 
purposes.

The bin size influenced the feature values in different 
extents in four groups of features in our study. In general, 
second-order statistics features are more sensitive to the 
bin size than first-order statistics features. We observe this 
trend, being that histogram features (which are first-order) 
were less influenced by the bin size, whereas GLCM, RL 
and GLZSM features were more sensitive to the change of 
bin size. 

Our research had two improvements in its methodology. 
Shafiq-ul-Hassan et al. (17) reported 17 out of 51 features 
were dependent on the number of gray-level using an 
in-house program and the statistical index coefficient of 
variation (CV) ≤20%. Larue et al. (18) found almost all 
features (114 features) changed in value using an in-house 
program and the statistical index concordance correlation 
coefficient (CCC) >0.85. Both used the Credence Cartridge 
phantom scanned on different CT-scanners with different 
tube currents and slice thicknesses. The proportions of 
reproducible features differed for three main factors, i.e., the 
phantoms, the radiomic software and the statistical indices. 
Some studies observed that the CT number is influenced 
by the anatomic position (19). The phantom we used was a 

thoracic phantom which simulated the human anatomy and 
contained nodules with different sizes, shapes and densities. 
This phantom was closer to some typical conditions in 
clinical setting compared with the Credence Cartridge 
phantom. Second, we combined several statistical indices 
which were complementary to each other to evaluate the 
reproducibility because each index has its pros and cons (20). 
For example, ICC values for a very heterogeneous sample 
may yield values that are very close to 1.0 based solely on 
the between-subject variance (20); therefore, we used CV 
to complement the evaluation of within-subject variation. 
By combining these statistical metrics, we evaluated the 
reproducibility of these features as comprehensively as 
possible. 

Larue et al. (18) found the feature values were more 
similar with a bin size of 25 HU but the total numbers of 
reproducible features for each bin size were not significantly 
influenced when comparing a slice thickness of 1.5 mm with 
3 mm, an exposure of 60 mA with 80 mA and two different 
scanners. Other investigators applied different bin sizes in 
their studies. Aerts et al. (2) applied a bin size of 25 HU for 
lung and head-and-neck cancers while Sun et al. (16) used a 
bin size of 10 HU for 15 types of solid tumors, but none of 
them discussed why they chose those two bin sizes instead 
of others. Our results were similar to Larue’s because there 
were no statistically significant differences among different 
bin sizes in the proportions of reproducible features, except 
in bin size 1 HU (in which proportion was the lowest). In 
clinical studies, the bin sizes of 15, 20 and 25 HU may be 
reasonable since the proportions of reproducible features 
were relatively higher in these bin sizes than in other 
bin sizes, and 10 to 20 HU are commonly used as the 
threshold of enhancement or measurement error because 
the CT numbers are affected by many factors such as X-ray 
beam hardening, X-ray scatter, partial volume effects, 
etc. (19,21,22). Although the proportion of reproducible 
features was the highest in the bin size of 50 HU, the image 
resolution is inadequate to distinguish different composition 
in tissues and lesions. The larger bin sizes may cause 
volume-confounding effects, such as imaging blurring, 
deterioration of structures and histogram shape. Thus, 
we do not recommend choosing the bin size of 50 HU to 
calculate the features.

Our study had two major contributions. First, we 
elucidated the important influence of calculating parameters 
on radiomics features. Second, we suggested to optimize, fix 
and report the gray-level range and bin size used in studies 
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to guarantee the reproducibility of radiomic features. 
Our study has some limitations. First, the variations of 

imaging parameters were limited, which may not cover 
all the variations in clinical settings. Second, we haven’t 
validated our results in patient data, which will be our future 
work. Third, some solutions, based on resampling images 
before feature extraction or statistical methods, have been 
proposed to reduce or compensate the variations caused 
by imaging parameters (9,23,24). We avoided using these 
procedures because we intended to compare the original 
effects of imaging parameters with calculating parameters 
on the feature reproducibility. Lastly, we didn’t analyze the 
test-retest and inter-scanner reproducibility because the 
effects of calculating parameters on them will be the same 
as on intra-scanner reproducibility.

Conclusions

Feature calculating parameters (range and bin size) may 
have a greater influence than imaging parameters (effective 
dose, pitch, slice thickness and filter) on the reproducibility 
of CT radiomic features, which should be given special 
attention in clinical applications.
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Supplementary

Table S1 The abbreviation, median [ICCbin(scan)], median [CVbin(scan)] and the trendline for each feature

Feature Abbreviation Median (ICCbin[scan]) Median (CVbin[scan]) Trendline type 

SHAPE_surfaceArea SHAPE_surfaceArea 1.00 0.00 NA

SHAPE_volume SHAPE_volume 1.00 0.00 NA

SHAPE_compact1 SHAPE_compact1 1.00 0.00 NA

SHAPE_compact2 SHAPE_compact2 1.00 0.00 NA

SHAPE_elongation SHAPE_elongation 1.00 0.00 NA

SHAPE_flatness SHAPE_flatness 1.00 0.00 NA

SHAPE_roundness SHAPE_roundness 1.00 0.00 NA

SHAPE_spherical disproportion SHAPE_spherDispro 1.00 0.00 NA

SHAPE_sphericity SHAPE_sphericity 1.00 0.00 NA

SHAPE_surface to volume ratio SHAPE_surfVolRatio 1.00 0.00 NA

SHAPE_maximum 3D diameter SHAPE_maxDiameter 1.00 0.00 NA

histogram_mean positive value HIST_mpp 1.00 0.00 Fluctuating

histogram_energy HIST_energy 1.00 0.00 Fluctuating

histogram_root mean square HIST_rms 1.00 0.00 Fluctuating

histogram_uniformity HIST_uniformity 0.68 0.60 Polynomial ascending

histogram_entropy HIST_entropy 1.00 0.41 Logarithmic descending

histogram_kurtosis HIST_kurt 0.99 0.05 Polynomial descending 

histogram_skewness HIST_skew 0.98 −0.02 Polynomial ascending

histogram_mean HIST_mean 1.00 0.00 Fluctuating

histogram_median HIST_median 1.00 0.00 Polynomial descending 

histogram_minimum HIST_min 1.00 0.00 Consistent

histogram_maximum HIST_max 1.00 0.00 Consistent

histogram_range HIST_range 1.00 0.00 Consistent

histogram_variance HIST_var 1.00 0.01 Fluctuating

histogram_standard deviation HIST_std 1.00 0.00 Fluctuating

histogram_mean absolute deviation HIST_mad 1.00 0.00 Fluctuating

histogram_quantile0.25 HIST_quant0.25 1.00 0.00 Fluctuating

histogram_quantile0.75 HIST_quant0.75 1.00 0.00 Fluctuating

histogram_quantile0.025 HIST_quant0.025 1.00 0.00 Fluctuating

histogram_quantile0.975 HIST_quant0.975 1.00 0.01 Polynomial ascending

histogram_quantile_range HIST_quant_range 1.00 0.01 Polynomial ascending

gradient_mean GRAD_mean 1.00 0.00 NA

gradient_standard deviation GRAD_std 1.00 0.00 NA

MOMENT_j1 MOMENT_j1 1.00 0.00 NA

MOMENT_j2 MOMENT_j2 1.00 0.00 NA

MOMENT_j3 MOMENT_j3 1.00 0.00 NA

gray level co-occurrence matrix _autocorrelation GLCM_autocorr 0.01 3.11 Fluctuating

gray level co-occurrence matrix _clusterter prominence GLCM_clusProm 0.00 3.31 Fluctuating

gray level co-occurrence matrix _cluster shade GLCM_clusShade 0.00 −3.28 Logarithmic ascending

gray level co-occurrence matrix _cluster tendency GLCM_clusTend 0.01 3.11 Fluctuating

gray level co-occurrence matrix _contrast GLCM_contrast 0.01 3.11 Fluctuating

gray level co-occurrence matrix _correlation GLCM_correlation 0.50 0.98 Polynomial ascending

gray level co-occurrence matrix _difference entropy GLCM_diffEntro 1.00 −0.46 Logarithmic ascending

gray level co-occurrence matrix _dissimilarity GLCM_dissimilar 0.14 2.00 Logarithmic descending

gray level co-occurrence matrix _energy GLCM_energy 0.43 0.88 Polynomial ascending

gray level co-occurrence matrix _entropy GLCM_entropy 0.95 0.40 Logarithmic descending

gray level co-occurrence matrix _homogeneity1 GLCM_homo1 0.88 0.37 Logarithmic ascending

gray level co-occurrence matrix _homogeneity2 GLCM_homo2 0.85 0.44 Logarithmic ascending

gray level co-occurrence matrix _informal measure of correlation 1 GLCM_infoCorr1 0.79 −0.29 Logarithmic ascending

gray level co-occurrence matrix _informal measure of correlation 2 GLCM_infoCorr2 0.94 0.15 Polynomial descending 

gray level co-occurrence matrix _inverse difference moment normalized GLCM_idmn 1.00 0.00 Polynomial descending 

gray level co-occurrence matrix _inverse difference normalized GLCM_invDiffnorm 1.00 0.00 Fluctuating

gray level co-occurrence matrix _inverse variance GLCM_inverseVar 0.40 0.35 Logarithmic ascending

gray level co-occurrence matrix _maximum probability GLCM_maxProb 0.34 0.79 Polynomial ascending

gray level co-occurrence matrix _sum average GLCM_sumAvg 0.14 2.02 Logarithmic descending

gray level co-occurrence matrix _sum entropy GLCM_sumEntro 0.99 0.36 Logarithmic descending

gray level co-occurrence matrix _sum variance GLCM_sumVar 0.01 3.12 Logarithmic descending

gray level co-occurrence matrix _variance GLCM_variance 0.01 3.11 Logarithmic descending

run length_short run emphasis RL_sre 0.72 0.10 Polynomial descending 

run length_long run emphasis RL_lre 0.72 0.21 Polynomial ascending

run length_gray level non-uniformity RL_gln 0.77 0.51 Polynomial ascending

run length_gray level non-uniformity normalized RL_glnn 0.00 0.17 Logarithmic ascending

run length_run length non-uniformity RL_rln 0.97 0.31 Polynomial descending 

run length_run length non-uniformity normalized RL_rlnn 0.22 1.77 Logarithmic descending

run length_run percentage RL_rp 0.80 0.09 Polynomial descending 

run length_gray level variance RL_glv 0.01 3.10 Logarithmic descending

run length_run variance RL_rv 0.86 0.45 Polynomial ascending

run length_run entropy RL_re 0.99 0.29 Logarithmic descending

run length_low gray level run emphasis RL_lglre 0.63 0.72 Polynomial ascending

run length_high gray level run emphasis RL_hglre 0.01 3.11 Logarithmic descending

run length_short run low gray level emphasis RL_srlgle 0.65 0.70 Polynomial ascending

run length_short run high gray level emphasis RL_srhgle 0.01 3.12 Logarithmic descending

run length_long run low gray level emphasis RL_lrlgle 0.56 0.78 Polynomial ascending

run length_long run high gray level emphasis RL_lrhgle 0.02 3.04 Logarithmic descending

gray level size zone matrix _small area emphasis GLZSM_sae 0.86 0.12 Polynomial descending 

gray level size zone matrix _large area emphasis GLZSM_lae 0.46 0.90 Polynomial ascending

gray level size zone matrix _gray level non-uniformity GLZSM_gln 0.64 0.62 Polynomial ascending

gray level size zone matrix _size-zone non-uniformity GLZSM_szn 0.94 0.22 Polynomial descending 

gray level size zone matrix _zone percentage GLZSM_zp 0.52 0.59 Fluctuating

gray level size zone matrix _gray level variance GLZSM_glv 0.01 3.16 Logarithmic descending

gray level size zone matrix _zone variance GLZSM_zv 0.39 0.85 Polynomial ascending

gray level size zone matrix _zone entropy GLZSM_ze 0.99 0.19 Logarithmic descending

gray level size zone matrix _low gray level zone emphasis GLZSM_lglze 0.56 0.79 Polynomial ascending

gray level size zone matrix _high gray level zone emphasis GLZSM_hglze 0.01 3.15 Logarithmic descending

gray level size zone matrix _small area low gray level emphasis GLZSM_salgle 0.64 0.70 Polynomial ascending

gray level size zone matrix _small area high gray level emphasis GLZSM_sahgle 0.30 1.33 Polynomial ascending

gray level size zone matrix _large area low gray level emphasis GLZSM_lalgle 0.01 3.18 Logarithmic descending

gray level size zone matrix _large area high gray level emphasis GLZSM_lahgle 0.73 0.47 Fluctuating



Table S2 Reproducible and nonreproducible radiomics features when changing bin size

Category Shape HIST RL GLCM GLZSM

Not related to the bin 
size by definition (n=16)

SHAPE_surfaceArea GRAD_mean – – –

SHAPE_volume GRAD_std

SHAPE_compact1 MOMENT_j1

SHAPE_compact2 MOMENT_j2

SHAPE_elongation MOMENT_j3

SHAPE_flatness

SHAPE_roundness

SHAPE_spherDispro

SHAPE_sphericity

SHAPE_surfVolRatio

SHAPE_maxDiameter

Reproducible (ICCbin 
>0.8 and CVbin <20%) 
(n=24)

– HIST_mpp – GLCM_diffEntro GLZSM_sae

HIST_energy GLCM_infoCorr2 GLZSM_ze

HIST_rms GLCM_idmn

HIST_kurt GLCM_invDiffnorm

HIST_skew

HIST_mean

HIST_median

HIST_min

HIST_max

HIST_range

HIST_var

HIST_std

HIST_mad

HIST_quant0.25

HIST_quant0.75

HIST_quant0.025

HIST_quant0.975

HIST_quant_range

Non-reproducible 
(ICCbin ≤0.8 or CVbin 
≥20%) (n=48)

– HIST_uniformity RL_sre GLCM_autocorr GLZSM_lae

HIST_entropy RL_lre GLCM_clusProm GLZSM_gln

RL_gln GLCM_clusShade GLZSM_szn

RL_glnn GLCM_clusTend GLZSM_zp

RL_rln GLCM_contrast GLZSM_glv

RL_rlnn GLCM_correlation GLZSM_zv

RL_rp GLCM_dissimilar GLZSM_lglze

RL_glv GLCM_energy GLZSM_hglze

RL_rv GLCM_entropy GLZSM_salgle

RL_re GLCM_homo1 GLZSM_sahgle

RL_lglre GLCM_homo2 GLZSM_lalgle

RL_hglre GLCM_infoCorr1 GLZSM_lahgle

RL_srlgle GLCM_inverseVar

RL_srhgle GLCM_maxProb

RL_lrlgle GLCM_sumAvg

RL_lrhgle GLCM_sumEntro

GLCM_sumVar

GLCM_variance



Table S3 Reproducible radiomics features in range of 1,000 HU, bin size of 20 HU from 36 scans

Category Shape HIST RL GLCM GLZSM

Reproducible (ICCscan >0.8 and 
CVscan <20%) (n=55)

SHAPE_surfaceArea HIST_mpp RL_sre GLCM_autocorr GLZSM_sae

SHAPE_spherDispro HIST_energy RL_lre GLCM_clusShade GLZSM_gln

SHAPE_sphericity HIST_rms RL_rp GLCM_clusTend GLZSM_szn

SHAPE_surfVolRatio HIST_entropy RL_glv GLCM_diffEntro GLZSM_glv

SHAPE_maxDiameter HIST_mean RL_re GLCM_dissimilar GLZSM_ze

HIST_median RL_hglre GLCM_entropy GLZSM_hglze

HIST_max RL_srhgle GLCM_homo1 GLZSM_lalgle

HIST_range RL_lrhgle GLCM_homo2

HIST_var GLCM_infoCorr1

HIST_std GLCM_infoCorr2

HIST_mad GLCM_idmn

HIST_quant0.25 GLCM_invDiffnorm

HIST_quant0.75 GLCM_inverseVar

HIST_quant0.025 GLCM_sumAvg

HIST_quant0.975 GLCM_sumEntro

HIST_quant_range GLCM_sumVar

GRAD_mean GLCM_variance

GRAD_std

Nonreproducible (ICCscan ≤0.8 or 
CVscan ≥20%) (n=33)

SHAPE_volume HIST_uniformity RL_gln GLCM_clusProm GLZSM_lae

SHAPE_compact1 HIST_kurt RL_glnn GLCM_contrast GLZSM_zp

SHAPE_compact2 HIST_skew RL_rln GLCM_correlation GLZSM_zv

SHAPE_elongation HIST_min RL_rlnn GLCM_energy GLZSM_lglze

SHAPE_flatness MOMENT_j1 RL_rv GLCM_maxProb GLZSM_salgle

SHAPE_roundness MOMENT_j2 RL_lglre GLZSM_sahgle

MOMENT_j3 RL_srlgle GLZSM_lahgle

RL_lrlgle
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