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Background: Multi-energy computed tomography (MECT) based on a photon-counting detector is an 
emerging imaging modality that collects projections at several energy bins with a single scan. However, the 
limited number of photons collected into the divided, narrow energy bins results in high quantum noise 
levels in reconstructed images. This study aims to improve MECT image quality by minimizing noise levels 
while retaining image details. 
Methods: A novel MECT reconstruction method was proposed by exploiting the nonlocal tensor similarity 
among interchannel images and spatial sparsity in single-channel images. Similar patches were initially 
extracted from the interchannel images in spectral and spatial domains, then stacked into a new three-order 
tensor. Intrinsic tensor sparsity regularization that combined the Tuker and canonical polyadic (CP) low-
rank decomposition techniques were applied to exploit the nonlocal similarity of the formulated tensor. 
Spatial sparsity in single-channel images was modeled by total variation (TV) regularization that utilizes the 
compressibility of gradient image. A new MECT reconstruction model was established by simultaneously 
incorporating the intrinsic tensor sparsity and TV regularizations. The iterative alternating minimization 
method was utilized to solve the reconstruction model based on a flexible framework. 
Results: The proposed method was applied to the digital phantom and real mouse data to assess its 
feasibility and reliability. The reconstruction and decomposition results in the mouse data were encouraging 
and demonstrated the ability of the proposed method in noise suppression while preserving image details, 
not observed with other methods. Imaging data from the digital phantom illustrated this method as achieving 
the best intuitive reconstruction and decomposition results among all compared methods. They reduced the 
root mean square error (RMSE) by 89.75%, 50.75%, and 36.54% on the reconstructed images compared 
with analytic, TV-based, and tensor-based methods, respectively. This phenomenon was also observed with 
decomposition results, where the RMSE was also reduced by 97.96%, 67.74%, 72.05%, respectively.
Conclusions: In this study, we proposed a reconstruction method for photon counting detector-based 
MECT, using the intrinsic tensor sparsity and TV regularizations. Improvements in noise suppression 
and detail preservation in the digital phantom and real mouse data were validated by the qualitative and 
quantitative evaluations on the reconstruction and decomposition results, verifying the potential of the 
proposed method in MECT reconstruction. 
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Introduction

Multi-energy computed tomography (MECT) has received 
increasing focus in the field of tomographic imaging for 
medical diagnosis due to its discriminating capabilities 
across different materials (1,2). MECT utilizes measurement 
projections at different energy spectra to jointly reconstruct 
the multi-channel of CT images. Two types of data 
acquisition technologies can be applied to realize MECT 
imaging. Dual-energy CT (DECT) is a simple realization 
of MECT that requires two sets of measurement data at 
two distinct X-ray spectra (3,4). Several techniques have 
been developed to perform DECT, including dual-source 
dual-energy CT (5), fast kVp switching CT (6), and dual-
layer sandwich detector CT (7). Although DECT has been 
applied to X-ray imaging, the energy separation capability 
of DECT is limited due to the utilization of energy-
integrating detectors. Another technology that performs 
MECT is based on a photon-counting detector (8), capable 
of photon energy discrimination (9,10). Multi-energy 
measurement projections can be obtained by individually 
quantifying the photons in a narrow energy window (11). 
However, given the limited number of X-ray photons in 
each energy bin, multi-energy projections obtained from 
a photon-counting detector usually leads to the increase 
of background noise (12,13). This induces a more ill-
posed inversion process, rendering subsequent image 
reconstruction and material decomposition extremely 
difficult. Therefore, the development of advanced 
algorithms has become a research focus for optimizing 
imaging quality, generated by photon-counting detectors. 

Conventional  denois ing methods were applied 
either in the projection domain or image domain 
(14,15). However, such methods usually cannot deliver 
satisfactory performance due to difficulties associated 
with determining the statistical properties of noise 
observed in MECT. The advent of the compressed 
sensing theory (16,17) has led to the development of 
many sparse regularization-based iterative reconstruction 
a l g o r i t h m s ,  s u c h  a s  t o t a l  v a r i a t i o n  ( T V )  ( 1 8 ) , 
wavelet transform (19), and dictionary learning (20),  
which incorporate data consistency into the process of 
noise suppression. TV regularization utilizes the basis of 
sparsity or compressibility of gradient image and has been 
the most widely used regularization method for imaging 
inverse problems (21-23). In MECT, sparse regularization 
can be imposed in each energy bin to reduce image noise. 
Xu et al. applied TV penalties to each channel of the CT 

to reconstruct the interior region of interest (ROI) from 
spectral images (24). Zhao et al. demonstrated that the tight-
frame based iterative reconstruction method for MECT 
generated higher image quality than its counterparts (25). 
Zeng et al. incorporated the concept of structure tensor 
TV regularization into a penalized weighted least-squares 
scheme and obtained superior results to conventional 
methods (26). These procedures separately reconstructed 
each channel of CT image, leading to a powerful capability 
in noise reduction for MECT images. However, they do not 
address the correlations of interchannel for multi-energy 
images, resulting in the degradation of image textures and 
edges. 

Comparat ive ly  advanced  methods  exp lo i t  the 
inherent tensorial nature problems associated with 
MECT. Low-rank regularization is utilized to explore 
the interchannel correlations. Chu et al. combined the 
low rank and sparsity of MECT images to improve 
multi-channel CT images (27). Gao et al. proposed the 
Prior Rank, Intensity, and Sparsity Model (PRISM) by 
modeling a MECT image as a superposition of a low-rank 
and sparsity matrix (28). Li et al. improved the PRISM 
by tensor knowledge (29,30). Based on tensor singular 
value decomposition (31), Semerci et al. designed the 
generalized tensor nuclear norm as regularizers of image 
reconstruction (32). Rigie and La Rivière proposed a 
constrained total nuclear variation minimization algorithm 
for MECT; the algorithm renders the gradient vectors 
of CT images at each energy to point to a prevailing 
direction (33). Utilizing high-quality full-spectra image 
as pilot signals, Yu et al. proposed a spectral prior image-
constrained compressed sensing method (34), and Zhang  
et al. proposed a TV spectral mean method for MECT (35).  
Tensor dictionary learning methods were also applied 
to MECT reconstruction. Zhao et al. proposed a dual-
dictionary learning method for breast MECT systems (36),  
while Wu et al. proposed a tensor dictionary learning 
method with a constraint of image gradient L0-norm for 
spectral CT reconstruction (37). Recently, similarities 
among various small patches in the multi-channel of 
medical images were exploited by researchers (38). Kim 
et al. utilized the self-similarity of patches in multi-
channel images and applied low-rank regularization to the 
three-dimensional patches for sparse-view spectral CT 
reconstruction (39). Xu et al. combined the dictionary-based 
sparse representation method and the patch-based low-rank 
constraint to improve the reconstruction (40). Niu et al. 
proposed an iterative reconstruction method that utilized 
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the nonlocal low-rank and sparse matrix decomposition (41).  
More recently, Xie et al. proposed a novel nonlocal tensor 
sparsity measurement technique called intrinsic tensor 
sparsity regularization to denoise a multispectral image, 
verifying its powerful performance in exploring the 
intrinsic sparsity of image tensors (42,43). This method 
was further developed by Zeng et al., who designed a novel 
dynamic cerebral perfusion CT method (44). Also, Wu 
et al. proposed a nonlocal low-rank cube-based tensor 
factorization method to reconstruct MECT images (45,46). 
Xia et al. stacked similar patches among multi-channel 
images into a tensor unit and decomposed such patches into 
a low-rank and a sparse component to improve the MECT 
reconstruction quality (47).

The abovementioned reconstruction methods exhibit the 
success and value in exploiting the similarity of interchannel 
images and outperform conventional methods. This 
paper aims to further improve reconstruction quality by 
synthesizing the nonlocal similarity and spatial sparsity in 
both interchannel and single-channel images to suppress 
image noise while maintaining image quality. This concept 
has led to the application of a MECT reconstruction 
model, based on tensor nonlocal similarity and spatial 
sparsity regularization in the present study. The nonlocal 
tensor similarity of interchannel images is exploited by 
the intrinsic tensor sparsity regularization that combines 
the Tucker (48) and canonical polyadic (CP) (49) low-rank 
tensor decomposition techniques. The spatial sparsity is 
depicted by TV regularization that imposes the sparsity on 
the gradient map of a single-channel image. The alternating 
direction method is applied to solve the new reconstruction 
model by deriving a concise iteration form. 

Methods

MECT reconstruction model

In a fan-beam CT system, the forward projection model 
was considered to be the following discretized linear system:

A = ,  x + e y [1]

where W HN N×∈


x  denoted a discrete image in a vector 
form, and WN  and HN  represented the width and height 
of the reconstructed image, respectively. Measurement 

projections were denoted by a vector viewsU N×∈


y  where 
U  and viewsN  represented the number of detectors and 

projection views. viewsU N×∈


e  denoted the inconsistency 
in projection data. ( ) ( )A views W HU N N N× × ×∈  represented the 
system matrix, which was a forward-projection operator 
calculated through the intersection length between the 
X-rays and pixels.

In MECT, the emitted X-ray photons were divided into 
different energy bins, and the photon counting detector 
collected multi-energy measurement data for the same 
scanned object. The discretized linear system of MECT was 
formulated as follows:

A = ,s s s
  x + e  y [2]

where ( )1,2,3,...,s s S=  represented the index of energy 
bins, and s

x  and s
y  represented the s th channels of 

vectorized energy-independent CT images and projections, 
respectively. Eq. [2] was solved by optimizing the following 
minimization problem:

2

2
1

min A  ,
s

S

s s
s=

−∑

 

x
x y [3]

where 2  represented the L2-norm. In theory, the 
s imultaneous algebraic  reconstruct ion technique 
(SART) (50) accurately solved Eq. [3] with sufficient 
accurate measurement data. However, photon crosstalk, 
energy overlap, and scanning noises led to different 
equations, resulting in the non-uniqueness of solution 
for the abovementioned optimization problem. For the 
improvement of reconstruction quality, the regularization 
term was introduced by exploiting the prior knowledge of 
the image itself, formulated as follows:

( ) 2

2
1

min , s.t. A  ,
S

s s
s

ε
=

− ≤∑  x y
X

R X [4]

where W H SN N N× ×∈X  was a three-order tensor stacked 
by the MECT images { } 1

S
s s=

x , where SN  represented 
the number of energy channels. ( )R X  represented the 
regularization term X . ε  represented the tolerance 
parameter for noises and inconsistencies in the observed 
data and was used in controlling a feasible region. Hence, 
the design of the regularization term was an essential issue 
in MECT reconstruction.

Multi-energy nonlocal tensor formulation and similarity 
measurement

Methods that explored the correlations of interchannel 
images imposed a low-rank on the three-order tensor of 
MECT images to improve reconstruction quality. In our 
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work, through the exploitation of similar image patches in 
spatial and spectral domains, a novel multi-energy nonlocal 
tensor was formulated for MECT images. Figure 1 shows 
the diagram of generating this new tensor.

For a single channel of a CT image, it was divided into a 

group of 2D image patches { }, 1 ,1
w h

W w H h

n n
i j i N n j N n

P
− −

×

≤ ≤ ≤ ≤
⊂  , where 

hn  and hn  was the width and height of the image patch, 
respectively. For the reference patch ,i jp  (denoted by a red 
square in Figure 1A), similar pN  patches (denoted by a blue 
square in Figure 1A in a nonlocal area was matched within 
a single channel CT image by measuring the Euclidean 
distances between the reference and searching patches. 
Meanwhile, counterpart patches in other channels were 
extracted in the same position (Figure 1B). By stacking all 
vectorized similar patches across channels, a nonlocal three-

order tensor was formulated as 1 2 3I I I
M

× ×∈X  for all similar 
patches (Figure 1C), where 1 2 2; ;w h S PI n n I N I N= = = . SN  
represented the number of divided energy bins and pN  
denoted the number of similar patches in one single channel 

CT image. M  represented the position of the reference 
patch with the size of ( ) ( )1 1M W w H hN N n N n= − + × − + . The 
nonlocal tensor preserved nonlocal self-similarity along 

with its spectral and spatial modes. Let T  represent the 
formulation of the nonlocal tensor. We obtained

( ) , 1, 2,3,..., .M MM N= =X T X [5]

For the nonlocal tensor 1 2 3I I I
M

× ×∈X , intrinsic tensor 
sparsity regularization (42) was used in exploiting the 

sparsity of similar patches and was expressed as

( ) ( )( )0 1
,

M

I i
M i

t rank
=

= + ∏R X S X [6]

where S  was the core tensor of MX  calculated by the 
Tucker decomposition. 0  indicates the L0 norm. ( )

M

iX  
represented the unfolding matrix along with mode i, I 
denoted the tensor order, and equal to 3 in this work. t 
was a tradeoff parameter to balance two terms. The first 
term constrained the number of Kronecker bases, which 

was calculated by decomposing MX  through CP low-
rank techniques. Such term complied with the intrinsic 
mechanism of CP decomposition, delivering sparsity 
information underlying a tensor. The second term included 
the size of the core tensor in Tucker decomposition, 
which regularized the low-rank subspace of each tensor 
mode. Combining the two terms enabled the simultaneous 
measurement of the inner sparsity of the core tensor and 
the low-rank property of unfolding tensor at all modes. The 
utilization of this regularization term improved the ability 
of the reconstruction method in the preservation of image 
details and fine structures.

Proposed model and solution algorithm

To fully exploit the nonlocal similarity of interchannel 
images and the spatial sparsity in a single-channel image, 

the regularization term ( )R X  in Eq. [4] was designed 
as a combination of intrinsic tensor sparsity and TV 

Figure 1 Diagram of the formulation of the multi-energy nonlocal tensor. (A) The MECT image tensor; (B) the process of matching similar 
patches in the spatial and spectral domain; (C) the generated nonlocal tensor composed of vectorized similar patches of MECT images.
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regularization. The MECT reconstruction model was 
formulated as follows: 

( )( ) 2

2
1 1

min , s.t. A  ,
S S

s s sTV
s s

α ε
= =

 + − ≤ 
 

∑ ∑  x x y
X

R T X [7]

where 1s i sTV
i

D= ∑ x x  and iD  denoted the discrete 
directional gradient operators in direction i . Horizontal 
and vertical directions were applied in the current work. α 
was the parameter to balance two regularization terms. For 
the solution of the abovementioned problem, an auxiliary 

tensor W H SN N N× ×∈Z  was introduced and rewritten as 
follows:

( )( )
, 1

2

2
1

min ,

s.t. A  , .

S

s TV
s

S

s s
s

α

ε

=

=

 
+ 

 

− ≤

∑

∑



 

x

x y

X Z
R T Z

X = Z
                               [8]

The equality constraint was substituted into the 
objective using the augmented Lagrange function. 
For the inequality constraints, we defined a convex set 
( ) { }2

2
: A  , ,W HN N

s s s sε ε ×Ω = − ≤ ∈
   

x x y x  and the indicator 
function ϒ  on the convex set Ω  as

( )
0, ,

:
, .

s
s

s
Ω

∈Ω
ϒ = ∞ ∉Ω







x
x

x [9]

Given the introduction of the indicator function, the 
optimization problem (Eq. [8]) was written as follows:

( )( ) ( )
2

, 1 1
min ,

2

S S

s sTV
s sF

βα
β Ω

= =

 Λ
 + + − + + ϒ
 
 

∑ ∑ x x
X Z

R T Z X Z [10]

where W H SN N N× ×Λ∈  is the Lagrange multipliers in the 
tensor norm, and β is the penalty coefficient. F  is the 
Frobenius norm.

The iterative alternating minimization method was 
applied for the abovementioned problem. Given an 

intermediate point ( ),k kX Z , Eq. [10] was divided into two 
subproblems. The X -subproblem was written as follows:

( )
2

1

1 1
arg min ,

2

kS S
k k k k k

s sTV
s sF

β
β

+
Ω

= =

Λ
= + − + + ϒ∑ ∑ x x

X
X X Z [11]

where ( )k
sΩϒ
x  is 0 or +∞  based on the definition in 

Eq. [9]. To address the indicator function ( )k
sΩϒ
x , this 

problem was solved in two steps. Based on the method 
in (51), we first solved the problem of Eq. [11] without 

the indicator function ( )k
sΩϒ
x . Given that X  it was the 

tensor representation of the MECT images { } 1

S
s s=

x , it was 
considered a minimization problem with s

x  the unknown 
variable. When the s th channel of CT image 1/2k

s
+x  was 

updated, the other channel images were fixed as constants. 
Hence, the problem of Eq. [11] excluding the indicator 
function of a convex set was written as:

21
2

2

arg min , 1,2,..., ,
2

kk k k k s
s s s sTV

s Sβ
β

+
= + − + =

   x x x z
X

λ

21
2

2

arg min , 1,2,..., ,
2

kk k k k s
s s s sTV

s Sβ
β

+
= + − + =

   x x x z
X

λ
[12]

where k
s
z  and k

sλ  is the s th channel of vectorized image 
for tensor kZ  and kΛ , respectively. Eq. [12] was attributed 
to TV denoising, where the input image was /k k

s β−
z λ . 

By minimizing Eq. [12] using the TV minimization method 

in (52), we obtain the intermediate variable 1/2k
s
+x .

Subsequently, we determined if 1/2k
s
+x  was in the convex 

set ( )εΩ  , indicated by the ( )1/2k
s
+

Ωϒ
x . If ( )1/2k

s ε+ ∈Ω
x , then 

1 1/2k k
s s
+ +=

 x x . If ( )1/2k
s ε+ ∉Ω
x , we project 1/2k

s
+x  onto the 

convex set ( )εΩ  as ( ) ( )1 1/2Projk k
s sε
+ +

Ω=
 x x  to make the hard 

constraint ( )1k
s ε+ ∈Ω
x  to hold consistently. In summarizing, 

the two cases, ( )1k
s ε+ ∈Ω
x  was able to hold by applying the 

projection onto the convex set (POCS) as follows:

( ) ( )1 1/ 2Proj .k k
s sε
+ +

Ω=
 x x [13]

For the POCS operation, SART was utilized to solve the 
abovementioned problem. Finally, we obtained the updated 

tensor 1k+X  by stacking all channels of 1k
s
+x .

The Z-subproblem was written as the following problem 

with fixed 1k+X  and kΛ :

( )( )
2

,1 1
10

arg min ,
2M

k
I k ik k k k

M i
F

t rank δ
β

+ +
=

 Λ = + + − +
 
 

∏Z
Z S Z X Z [14]

where k
MS  and ( ),

M

k iZ  was the core tensor and unfolding 
matrix along with the mode i of 

M

kZ , respectively. /δ β α= .  
In the procedure of program implementation, the L0 
norm and rank terms took discrete values, resulting in a 
combinatorial optimization problem that wa hard to solve. 
The intrinsic tensor sparsity regularization was then relaxed 
as a log-sum form to simplify computation (53,54), and  
Eq. [14] was written as follows:

( ) ( )( )
2

,1 * 1
1

arg min ,
2M

k
I k ik k k k

M i
F

L t L δ
β

+ +
=

 Λ = + + − +
 
 

∏Z
Z S Z X Z [15]
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where ( ) ( )
1 2 3

1 2 3
1 2 3

, ,

, ,
, ,

log
I I I

k k
M i i i

i i i
L s ς= +∑S  and ( )( ) ( )( )( ), ,* log

M M

k i k i
jj

L σ ς= +∑Z Z .  ς   
was a small positive value and ( )( ),

M

k i
jσ Z  was the jth 

s ingu la r  o f  ( ),
M

k iZ .  The  min imiza t ion  prob lem o f 
Eq. [15] was solved as described in Xie et al. (43).  
Alternating direction method of multipliers (ADMM) (55)  
was applied to solve this large scale optimization problem, 
where three auxiliary tensors and Lagrange multipliers 
were introduced in the solution to separate three unknown 
variables. In this way, Eq. [15] was divided into three 
subproblems, and each of them deduced the closed-
form equations for updating each involved variables. We 
streamlined the derivation of the solution of Eq. [15] 
to avoid repeated content with previous works and the 
complete derivation procedure can be found in (43)].

Finally, the multipliers Λ  were updated as follows:

( )1 1 1 .k k k kβ+ + +Λ = Λ + −X Z [16]

O v e r a l l ,  t h e  p r o p o s e d  a l g o r i t h m  f o r  M E C T 
reconstruction is summarized as follows:

Proposed algorithm for MECT reconstruction

1. Initializing 0X , 0Z , 0Λ , 0k = , k K≤ ;

2. While not converged and k K≤  do

3. Updating 
1/2k

s
+x  by TV minimization based on Eq. [12];

4. Updating 
1k

s
+x  by SART algorithm based on Eq. [13];

5. Formulating 1k+X  by stacking all channels of 1k
s
+x ;

6. Updating 1k+Z  by solving Eq. [15] via ADMM;

7. Updating Lagrange multipliers 1k+Λ  via Eq. [16];

8. 1k k= + ;
9. end while

10. Return the recovered tensor 1k+←X X .

Implementation of the proposed method

For the solution to the X -subproblem (line 3), the 
iteration number of TV denoising was set from 5 to 10 
based on our experiences. The step of the TV method, 
which determines the strength of TV denoising, was 
set from 0.01 to 0.05 according to the noise level. More 
iterations and large TV steps led to a smooth result with 
the loss of detail information. A large β led to an enhanced 
effect of TV denoising, and a simple way to determine was 
to vary β from 1 to 28 before reconstruction results were 
compared. Theoretically, the operation of ( )Proj εΩ  (line 4) 
is required to be conducted iteratively for infinite times. In 
our work, we only performed the operation ( )Proj εΩ  once 
in each iteration to reduce computation time.

For the solution of the Z-subproblem (line 6), pixel 
variances σ  should be estimated in advance, which 
determines the strength of intrinsic sparsity regularization 
and becomes the most significant parameter in the proposed 
algorithm. Values ranging from 0.01 to 0.15 were suitable 
for most MECT reconstructions. We discussed the 
influence of parameter σ on the reconstruction results in the 
following contents. δ was the penalty coefficient dependent 
on σ, calculated by 1cδ σ −= , where t was generally set as 
a constant 10−3. The other parameters showed a relatively 
small influence on the results, and their settings refer to 
parameters of (42). The compromise parameter t aiming to 
balance two sparsity terms was set as 0.5. The iteration of 
ADMM in the solution of Eq. [15] (line 6) was fixed as 25.

Evaluation

The performance of the proposed method was tested 
using digital phantom and real data. We compared the 
proposed method with the filtered-back projection (FBP) 
method (56), which is a classic analytic reconstruction 
algorithm. The results of the TV-based method (52) were 
provided to demonstrate the performance of TV in noise 
suppression on each channel of the CT image. A tensor 
sparsity regularization-based method was also implemented 
in this experiment, which imposed low-rank tensor 
approximation (LRTA) (57) on the MECT images and was 
combined with the TV regularization of single-channel 
image. Given the results of the LRTA-based method, we 
tested the performance of the proposed method in MECT 
reconstruction and compared it with the same type of tensor 
regularization-based reconstruction method. To further 
evaluate the algorithm performance, the results of material 
decomposition were also generated using a direct material 
decomposition method (58) based on reconstructed MECT 
images with different methods. 

We first constructed a digital phantom comprised of 
512 × 512 image pixels based on the walnut data in (59). 
As shown in Figure 2A, the digital phantom was composed 
of three materials, i.e., bone, tissue, and iodine. The 
concentration of the iodine contrast agent was 15 mg/mL. 
The mass attenuation coefficients of basis materials were 
obtained from the National Institute of Standards and 
Technology database (https://physics.nist.gov/PhysRefData/
XrayMassCoef/tab4.html). Figure 2B shows the normalized 
X-ray spectrum with an energy sampling interval of 1 keV, 
generated using SpekCalc software. To perform MECT 
reconstruction, the X-ray spectrum was divided into six 

https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html
https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html
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energy bins: [20, 25)  keV, [25, 30) keV, [30, 35) keV,  
[35, 40) keV, [40, 45) keV, [45, 50) keV. The source-to-
object and source-to-detector distances were 1,000 and 
1,500 mm, respectively. The scanning angle covers 360° 
with an interval of 0.5°. Projections in each view were 
collected using a linear detector that consists of 1,024 
bins with a size of 0.388 mm. Poisson noise was added on 
projections to simulate image noises as follows:

( )( )p_noise 0 0Poisson exp ,N N= −
p [17]

where N0 denoted the number of incident X-ray photons, 
and N0 referred to the measured number of photons in 
the projection data. N0 is set as 1×104 in the current work. 
Reconstruction results of the SART method, based on 
noise-free projections, were taken as the reference of 
MECT for the following evaluation. An ROI, containing 
some complicated fine structures, was magnified for 
detailed comparison. The RMSE, peak-signal-to-noise 
ratio (PSNR), and structural similarity (SSIM) of the 
reconstruction results of different methods were calculated 
for quantitative evaluation. The line profiles of the 
reconstruction results were provided for a comparison of 
accuracy across the different methods. Three basis material 
images were generated, based on the reconstruction 
results of different methods before ROI magnification was 
performed for detailed comparison. 

The proposed method was further evaluated on 
real mouse data. Figure 2C showed the real mouse CT 

image, reconstructed from full energy spectra using an 
iodine contrast agent. The experiments on real data were 
performed on a MECT system developed by the Institute 
of High Energy Physics, Chinese Academy of Sciences. 
The tube parameters were set as 60 kVp and 72 mAs. The 
energy thresholds were set at 12, 26, 34, and 42 keV. Four 
energy bins were utilized to perform MECT reconstruction. 
The distances between the source to the object and to 
the detector were 200.8 and 362.8 mm, respectively. The 
detector consisted of 512×15 bins at 0.4 mm × 0.4 mm. A 
total of 1,080 projections were collected from 360°. The 
central slice of each projection was extracted for two-
dimensional MECT reconstruction. The channel size of 
each reconstructed image was 512×512 pixels. To clearly 
evaluate the mouse body, the reconstruction images of 
all methods were orientated horizontally and presented 
as 228×340 pixels. Four channels of reconstructed CT 
images are shown in this work. An ROI in the mouse trunk 
was magnified to assess and compare the efficacy of noise 
suppression and detail preservation across the different 
methods. Another ROI in a homogeneous area was selected 
for the quantitative comparison of the mean value of 
attenuation coefficients and standard deviation (STD), 
calculated as follows:

( )
1

1STD ,
Roi

Roi
Roi

N

n
nRoi

x x
N =

= −∑ [18]

where Roinx  represented the value of Roin th pixel. x  was 
the mean value of all RoiN  image pixels belonging to the 

Figure 2 Simulated and real experimental data. (A) Digital phantom with different materials in colors, where bone, tissue, and iodine 
material is denoted by red, green, and yellow, respectively; (B) normalized X-ray spectrum with six divided energy bins; (C) real mouse data 
reconstructed from full energy spectra with display window [0, 0.08]. 
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selected ROI. Material decomposition was finally performed 
based on the reconstructed MECT images, where bone, 
tissue, and iodine materials served as basic materials. An 
ROI injected with iodine was selected for the detailed 
comparison of decomposition results. 

Results

Simulation experiments

Figure 3 shows the reconstruction results of digital phantom 
walnut from different methods. Columns from left to 
right depict reference images and the results of FBP, TV-
based, LRTA-based, and proposed methods, accordingly. 
Reconstructed CT images in the first to sixth energy bins 
are represented by rows 1 to 6, respectively. The ROI 
(denoted by a yellow square in Figure 3A1) was magnified 
for detailed comparisons across different methods in 
Figure 4. As shown in Figures 3 and 4, imaging via FBP 
yielded the lowest image quality due to interferences from 
reconstruction noise, leading to difficulties in distinguishing 
the inner structures. The TV-based method largely 
reduced reconstruction noise and generated clean CT 
images. However, this method displayed a limited capacity 
in preserving image details and fine structures. This is 
attributed to the assumption of the piecewise constant 
of TV minimization model. The LRTA-based method 
obtained better image quality at all energy bins compared 
to FBP and LRTA-based methods. However, the LRTA-
based method still exhibited image noise distributed across 
the reconstructed image. In addition, as denoted by the 
black arrow in Figure 4, obvious degradation was observed 
in the reconstruction of fine structures. The LRTA-based 
method was not able to clearly reconstruct a specific region 
of the walnut containing one or two pixels. By contrast, the 
proposed method generated the same region of the walnut, 
preserving image clarity with a low level of noise, not 
achievable by the other compared methods. 

Table 1  l ists the RMSEs, PSNRs, and SSIMs of 
reconstructed images generated by different methods. To 
measure the overall performance of different methods, 
the metrics for the results of the full energy bin were 
determined. The proposed method exhibited the lowest 
RMSE at each energy bin, as indicated in Table 1. By 
contrast, the FBP method displayed the largest RMSE, 
followed by the TV-based and LRTA-based methods. The 
RMSE of full energy bin is low to 0.0033 for the proposed 
method, which reduced RMSEs by 89.75%, 50.75%, and 

36.54% compared with those for the FBP, TV-based, and 
LRTA-based methods, respectively. For the evaluation of 
PSNR and SSIM, the proposed method also achieved the 
highest values among all compared methods. The PSNR of 
the full energy bin was up to 49.5761 dB for the proposed 
method, which increased PSNRs by 19.7264, 6.0997, and 
3.9466 dB compared with those for the FBP, TV-based, 
and LRTA-based methods, respectively. The SSIM of the 
full energy bin was up to 0.9914 for the proposed method, 
whereas the SSIMs of other methods were below 0.9900. 
The partial line profiles from the 155th pixel to 290th 
pixel along the gray dashed line in Figure 3A1 are plotted 
in Figure 5. The line profiles provided by the proposed 
method were closest to the ground truth. In addition, the 
proposed method exhibited more accurate lines than the 
other methods, particularly in the region with complicated 
structures (denoted by the black arrows).

Figure 6 shows the decomposition results, based on 
the reconstructed images. Since reconstruction noise 
was magnified during material decomposition, the 
images revealed by the FBP method yielded substantial 
noise interference, rendering structures within the ROI 
indistinguishable. TV-based and LRTA-based methods 
obtained improved decomposition results compared to 
the FBP method. However, some noise was still present 
in the adjacent area, demonstrating a limited ability in the 
preservation of clarity within the inner structure (Figure 6, 
rows C and D). By contrast, the proposed method achieved 
decomposition results of the highest quality, closest to the 
image shown by the reference image, with near-invisible 
noise levels whilst preserving image details of the ROI. 
Thus, the decomposition results demonstrate that although 
the material decomposition is very sensitive to noise, the 
proposed method obtained superior decomposition results 
among all compared modalities, further validating the 
efficacy of the proposed method in MECT reconstruction.

Table 2 lists the RMSEs of basis materials across different 
methods. Decomposition results, based on the reference 
MECT images served as the ground truth. The RMSEs 
of the FBP method was highest among all tested methods, 
whilst TV- and LRTA-based methods displayed reduced 
RMSEs to a limited extent for all basic materials. The 
proposed method achieved the smallest RMSEs, with an 
average of 0.0332 in the decomposition data, resulting in 
a reduction by 97.96%, 67.74%, and 72.05% compared to 
the FBP, TV-based, and LRTA-based methods, respectively. 
This method also achieved superior convergence properties 
(Figure 7). Overall, we conclude that the proposed method 
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Figure 3 Reconstructed images of the digital walnut phantom from different methods. Reference images (column A) and the reconstruction 
results are depicted from FBP (column B), TV-based (column C), LRTA-based (column D), and proposed methods (column E). First to the 
sixth channel of reconstructed images depicted in rows 1 to 6, respectively. The display window of the first (row 1) and second (row 2) channel 
of images is [0, 0.12] and [0, 0.10], respectively. The display windows of the third (row 3) to sixth (row 6) channel of images are [0, 0.08].
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Figure 4 Reconstructed images of magnified ROIs (denoted by the yellow rectangle in Figure 3). Images of reference (column A) and 
reconstruction results of the FBP (column B), TV-based (column C), LRTA-based (column D), and proposed methods (column E). ROIs 
of the first to the sixth channel of reconstructed images are shown in rows 1 to 6, respectively. The display window of the first (row 1) and 
second (row 2) channel of images is [0, 0.12] and [0, 0.10], respectively. The display windows of the third (row 3) to sixth (row 6) channel of 
images are [0, 0.08].
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is capable of reconstructing MECT images of higher 
quality compared with other methods in this simulated data 
experiment.

Real data experiments

Figure 8 shows the MECT reconstruction images of 
mouse data, derived across the different methods. The 
reconstruction results of the FBP, TV-based, LRTA-
based, and proposed methods are depicted in columns 
A-D, respectively. The first to the fourth channel 
of reconstruction images are shown in rows 1 to 4, 
respectively. Magnification of an ROI, denoted by a 
yellow rectangle in Figure 8A1 is shown in Figure 9. The 
FBP method displayed considerable noise, attributed to 
an artifact of scanning (Figures 8,9). The noise severely 
impaired the clarity of most details in the ROI, rendering 
them indistinguishable (as denoted by the purple arrow in 
Figure 9A1 and A2). The TV-based method largely reduced 
noise in the reconstruction images but failed to preserve 
the image details of the ROI. The LRTA-based method 
improved the reconstruction quality and preserved most of 
the detailed information, which exhibited improved results 
compared to the former two methods. However, some noise 
was observed in the reconstruction data, which affected the 
material decomposition. The proposed method achieved 
superior reconstruction results among all compared 

methods indicating the elimination of noise whilst achieving 
the preservation of detailed information. As denoted by the 
green and yellow arrows in Figure 9, the proposed method 
successfully reconstructed the dot object at each energy bin, 
unlike the FBP and TV-based methods where they were not 
visible in some energy bins. Furthermore, the noise was also 
evident in the LRTA-based method. We, therefore, conclude 
from Figures 8 and 9 that the proposed method provides 
better capability in MECT reconstruction for real data. 

Another ROI denoted by the red circle in Figure 8A1 
was selected for quantitative evaluation. As the ground truth 
of mouse data was unknown, the mean value was used to 
evaluate the accuracy of the reconstruction results, whilst 
the STD measured the performance of noise suppression for 
the different methods. These results are shown in Table 3.  
The proposed method reconstructed each channel of CT 
images with mean values similar to other methods, verifying 
its accuracy in MECT reconstruction. The FBP method 
displayed the largest STD compared to the other methods. 
The LRTA-based method exhibited a limited reduction in 
STD. The TV-based and proposed methods achieved the 
smallest STDs. Despite exhibiting the lowest noise level in 
certain energy bins, the TV-based method failed to retain 
detailed information. By evaluating the quantitative results of 
the mouse data, we also conclude that the proposed method 
has the capacity to reconstruct high-quality MECT images.

The decomposition results of MECT images in the 

Table 1 RMSEs, PSNRs, and SSIMs of reconstruction images with different methods

Metric Algorithm Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Full bin

RMSE FBP 0.0596 0.0345 0.0239 0.0185 0.0162 0.0170 0.0322

TV 0.0018 0.0071 0.0051 0.0043 0.0040 0.0046 0.0067

LRTA 0.0093 0.0056 0.0040 0.0031 0.0030 0.0034 0.0052

Proposed 0.0057 0.0034 0.0023 0.0022 0.0023 0.0026 0.0033

PSNR FBP 24.4970 29.2350 32.4146 34.6449 35.8073 35.3950 29.8497

TV 38.5953 42.9608 45.9072 47.3986 47.9562 46.8124 43.4764

LRTA 40.6333 44.9703 48.0401 50.2428 50.4022 49.3593 45.6295

Proposed 44.9319 49.2805 52.6869 53.0850 52.7292 51.8107 49.5761

SSIM FBP 0.2417 0.4415 0.5960 0.6935 0.7339 0.7222 0.5382

TV 0.9626 0.9767 0.9860 0.9887 0.9903 0.9894 0.9829

LRTA 0.9664 0.9814 0.9899 0.9937 0.9947 0.9942 0.9878

Proposed 0.9785 0.9896 0.9950 0.9953 0.9953 0.9945 0.9914

These italic values denote the results of the proposed method.



1951Quantitative Imaging in Medicine and Surgery, Vol 10, No 10 October 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(10):1940-1960 | http://dx.doi.org/10.21037/qims-20-594

mouse are shown in Figure 10. Noise observed in the 
reconstructed image from the FBP method was significantly 
magnified. The TV-based method reduced noise to a large 
extent, but its decomposition results displayed evident 
artifacts in the inner region of the mouse body. Whilst the 
LRTA-based method achieved acceptable reconstruction 
results in Figures 8 and 9, the decomposition results showed 

substantial degradation (Figure 10), with images in the inner 
region of the mouse body of lower quality than that of the 
TV-based method. Compared with the former methods, 
the proposed method exhibited decomposition results 
of the highest quality. The noise was largely suppressed 
(Figure 10), with the image detail of the tissue fully retained. 
Therefore, the decomposition results of the mouse data 

Figure 5 Line profiles of each channel of reconstruction from different methods. Results of the first to the sixth channel of reconstruction 
images are shown in A,B,C,D,E,F, respectively. Results of images from the reference (black), FBP (gray), blue (TV-based), green (LRTA-
based), and proposed methods (red lines) are also shown. 
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Figure 6 Decomposition results based on the reconstruction images from different methods. Columns 1 to 3 represent the basis material 
image of tissue, bone, and iodine, respectively. Decomposition results based on the reference and the reconstructed images with the FBP, 
TV-based, LRTA-based, and proposed methods are depicted in rows (A) to (E), respectively. The red rectangle represents the magnified 
ROI on tissue material images. The display windows of all figures are [0.1, 1.0], respectively.
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Table 2 RMSEs of decomposition results based on the reconstructed images from different methods

Algorithm Tissue Bone Iodine Average

FBP 2.7610 0.3016 0.4759 1.6269

TV 0.1743 0.0218 0.0300 0.1029

LRTA 0.2023 0.0245 0.0280 0.1188

Proposed 0.0556 0.0079 0.0125 0.0332

These italic values denote the results of the proposed method.

Figure 7 Convergence lines of RMSEs from different iteration methods. Green, blue, and red line represents the results of the TV-based, 
LRTA-based, and proposed methods, respectively.

also demonstrated the successful reconstruction of MECT 
images and basis images by the proposed method with high 
quality.

Discussion 

The synthesis of the two regularisation approach resulted 
in the superiority of the proposed method. Intrinsic 
tensor sparsity regularization aimed to exploit the 
nonlocal similarity of interchannel images and provides a 
promising approach to depict the correlations of MECT 
images at different energies. It plays an important role 
in the preservation of detail information for MECT 
reconstruction. For example, some detail information is 
displayed with poor quality at lower energy due to the 
noise interferences, but exhibit relatively high quality 
at high energy. In this case, the intrinsic tensor sparsity 
regularization enhanced the detailed reconstruction of the 
low energy CT image by utilizing the information of high 
energy CT image through the formulated nonlocal tensor. 
TV regularization further improved noise suppression in a 

single-channel image for the proposed method, which was 
proven effective in single energy CT reconstruction. The 
synthesis of intrinsic tensor sparsity and TV regularization 
enabled the proposed algorithm to simultaneously exploit 
the nonlocal similarity of interchannel image and spatial 
sparsity in single-channel images. The lack of either 
regularisation may lead to the decline of reconstruction 
performance. 

Like most regularization-based algorithms, potential 
parameter adjustments were necessary for the proposed 
method to generate reconstruction results of the highest 
quality. A guidance of parameter selection was provided 
in this study to address each subproblem. Among them, 
parameter σ that denoted the pixel variances was a critical 
and should be estimated in advance. In this work, the 
reconstructed image of the first channel of walnut data 
was utilized to compare the influences of parameters σ 
on the reconstruction results. The parameter σ was set 
at 0.01, 0.03, 0.05, 0.08, 0.10, and 0.15. Figure 11 shows 
the convergence lines of RMSEs of the proposed method 
at different σ values. The parameter σ with value 0.01, 
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Figure 8 Reconstruction results of mouse data from different methods. The reconstruction results of the FBP, TV-based, LRTA-based, and 
proposed methods are depicted in columns A to D, respectively. First to the forth channel of reconstructed images depicted in rows 1 to 4, 
respectively. The display windows of the first (row 1) and second (row 2) channel of images are [0, 0.08]. The display window of the third  
(row 3) and fourth (row 4) channel of images are [0, 0.07] and [0, 0.06], respectively.

Table 3 Mean values and STDs of ROI 2 denoted by the red circle in Figure 8A1

Metric Energy channel FBP TV LRTA Proposed

Mean value ± STD Bin 1 0.0326±0.0029 0.0328±4.76e-4 0.0329±8.39e-4 0.0327±4.29e-4

Bin 2 0.0340±0.0030 0.0342±2.87e-4 0.0337±9.32e-4 0.0336±5.10e-4

Bin 3 0.0290±0.0029 0.0292±3.46e-4 0.0291±8.76e-4 0.0292±4.31e-4

Bin 4 0.0247±0.0020 0.0247±1.36e-4 0.0242±6.42e-4 0.0247±2.44e-4

0.03, and 0.05 achieved better convergence and obtained 
lower RMSE than other parameter values. Figure 12 
shows the reconstruction results of the first channel of 
the walnut CT image at different σ values. The green 
square in Figure 12A represents the magnified ROI for 
detailed comparison. Large parameter σ values indicated 
improved noise suppression but yielded large RMSEs in 
the reconstruction results. The parameter σ of values 0.01 

and 0.03 exhibited the lowest RMSE among all compared 
results. However, as shown in the magnified ROI, some 
dotted noise was evident in the air region and led to a 
decline of reconstruction quality. By contrast, the σ value 
of 0.05 achieved the best reconstruction results among all 
parameter values, consistent with the walnut data in this 
work. For different reconstruction tasks, varying parameter 
σ values and comparing the reconstruction results were 
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necessary to obtain the best reconstruction performance for 
the proposed method. Nevertheless, in this work, since each 
subproblem was taken as an independent module and solved 
separately, the suitable parameters were relatively easy to be 
determined. 

The proposed method outperforms its counterparts in 
image reconstruction and material decomposition. However, 

we should note that the accuracy of the proposed method 
still holds the potential for improvement. For example, 
the shape of some details in Figure 4 is not accurate 
compared with the reference images, which subsequently 
influenced the decomposition results in Figure 6. The 
weighted TV minimization approach that incorporated 
the edge information could be applied to the proposed 

Figure 9 Reconstruction results of magnified ROIs in the mouse (denoted by the yellow rectangle in Figure 8A1) from FBP (column A), 
TV-based (column B), LRTA-based (column C), and proposed methods (column D). Rows 1 to 4 represent the ROIs of the first to the 
fourth channel of reconstructed images, respectively. The display windows of the first (row 1) and second (row 2) channel of images are [0, 
0.08]. Arrows in different colors denote the image information for detailed comparison. The display window of the third (row 3) and fourth 
(row 4) channel of images are [0, 0.07] and [0, 0.06], respectively.
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Figure 10 Decomposition results based on reconstructed mouse images with different methods. Basis material images of bone, tissue, and 
iodine are depicted in columns 1 to 3, respectively. Decomposition results based on the reconstructed images with the FBP, TV-based, 
LRTA-based, and proposed methods are depicted in rows (A) to (D), respectively. The display window of bone, tissue, and iodine material is [0, 
0.8], [0.2, 1.2], and [0, 1.0], respectively.

Figure 11 Convergence lines of RMSEs of the proposed method. The lines in different colors denote the results at different σ values. 
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method to solve this problem in the future. Nevertheless, 
this work proposed a flexible framework for the solution of 
the MECT reconstruction model with two regularization 
terms. Based on this framework, the regularization term can 
be easily modified with minor changes for different tasks. 
In the derivation of the proposed method, the solution 
of Eq. [12] serves as a denoising problem, where the TV 
minimization method is applied to this problem. This 
operation can be substituted by a plug-and-play network 
(60,61), which utilizes deep priors to reduce noises. It is 
worth noting that re-training, based on a new MECT 
dataset, is required before it can be applied to the proposed 
framework. In the implementation of the proposed method, 
the introduction of intrinsic tensor sparsity regularization 
increases algorithm complexity. The solution of intrinsic 
tensor sparsity regularization took approximately  
200 seconds in our work, and need to be accelerated to meet 
the requirement of fast imaging in medical diagnosis. The 
graphic processing unit can be applied in the future to speed 
up the algorithm implementation by utilizing its powerful 
ability in parallel computing. 

Conclusions

We proposed a MECT reconstruction method, based on 
tensor nonlocal similarity and spatial sparsity regularization. 
Nonlocal similar patches of interchannel images in the 
spectral and spatial domain were extracted and stacked into a 
three-order tensor. Intrinsic tensor sparsity regularization was 
applied to impose the sparsity and low-rank property into the 
core tensor and the unfolding matrix of the formulated three-
order tensor, respectively. TV regularization term exploited 
the sparsity on the gradient map of the single-channel 
image. A MECT reconstruction model was established by 
incorporating the two abovementioned regularization terms 
and solved by the iterative alternating minimization method. 
The experimental results on digital walnut phantom and real 
mouse data indicated that the proposed method outperforms 
its counterparts with regard to noise suppression and detail 
preservation in MECT reconstruction. 
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