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Background: To develop a high-efficiency pulmonary nodule computer-aided detection (CAD) method 
for localization and diameter estimation. 
Methods: The developed CAD method centralizes a novel convolutional neural network (CNN) algorithm, 
You Only Look Once (YOLO) v3, as a deep learning approach. This method is featured by two distinct 
properties: (I) an automatic multi-scale feature extractor for nodule feature screening, and (II) a feature-
based bounding box generator for nodule localization and diameter estimation. Two independent studies 
were performed to train and evaluate this CAD method. One study comprised of a computer simulation 
that utilized computer-based ground truth. In this study, 300 CT scans were simulated by Cardiac-torso 
(XCAT) digital phantom. Spherical nodules of various sizes (i.e., 3–10 mm in diameter) were randomly 
implanted within the lung region of the simulated images—the second study utilized human-based ground 
truth in patients. The CAD method was developed by CT scans sourced from the LIDC-IDRI database. 
CT scans with slice thickness above 2.5 mm were excluded, leaving 888 CT images for analysis. A 10-fold 
cross-validation procedure was implemented in both studies to evaluate network hyper-parameterization 
and generalization. The overall accuracy of the CAD method was evaluated by the detection sensitivities, in 
response to average false positives (FPs) per image. In the patient study, the detection accuracy was further 
compared against 9 recently published CAD studies using free-receiver response operating characteristic 
(FROC) curve analysis. Localization and diameter estimation accuracies were quantified by the mean and 
standard error between the predicted value and ground truth. 
Results: The average results among the 10 cross-validation folds in both studies demonstrated the CAD 
method achieved high detection accuracy. The sensitivity was 99.3% (FPs =1), and improved to 100% (FPs 
=4) in the simulation study. The corresponding sensitivities were 90.0% and 95.4% in the patient study, 
displaying superiority over several conventional and CNN-based lung nodule CAD methods in the FROC 
curve analysis. Nodule localization and diameter estimation errors were less than 1 mm in both studies. The 
developed CAD method achieved high computational efficiency: it yields nodule-specific quantitative values 
(i.e., number, existence confidence, central coordinates, and diameter) within 0.1 s for 2D CT slice inputs.  
Conclusions: The reported results suggest that the developed lung pulmonary nodule CAD method 
possesses high accuracies of nodule localization and diameter estimation. The high computational efficiency 
enables its potential clinical application in the future.
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Introduction

Automated pulmonary nodule detection has been a 
longstanding topic for lung cancer diagnosis. The 
implementation of computer-aided detection (CAD) 
systems for nodule detection is a hallmark endeavor used 
to optimize efficiencies and cost during routine clinical 
practice. Since the 1980s, conventional CAD studies have 
investigated multiple methods to detect nodule candidates 
[Hessian matrix (1-3); Stable 3D Mass-Spring Models (4); 
thresholding (5); 3D template matching (6)] and minimizing 
positive detection rates [support vector machine (SVM) (1); 
neural network (7)]. However, the high false-positive rates 
and feature annotation costs have remained as hurdles to 
their clinical implementation. 

Recently, deep learning techniques have become popular 
in academia and industry. Convolutional neural networks 
(CNN) is the most common deep learning technique 
in imaging science, with the ability to perform pixel-
wise feature extraction (8). Their multiple applications 
are evidenced by their use in self-driving cars, image 
segmentation, and facial recognition. Several studies 
have applied CNN architectures to nodule classification 
challenges (9-13).  However,  as they are typically 
constrained by their binary output (i.e., exist/absence, 
benign/malignant), these classification systems have not 
been able to provide detailed nodule information, such 
as anatomic location and diameters. As such, preliminary 
two-stage CNN-based CAD systems were developed for 
pulmonary nodule detection (14,15). In general, these 
methods consisted of two sub-systems, responsible for (I) 
the detection of suspicious nodules and (II) the reduction 
of false-positive rates. Due to the two-stage design, these 
CAD systems have complex detection procedures and are 
therefore prone to exceedingly high computational costs. 
As an attempt to address the issues associated with two-
stage CAD systems, a few single-stage CAD systems for 
lung nodule detection have been reported with reduced 
computational costs (16,17). However, these single-stage 
CAD systems were associated with high false-positive rates 
compared to the two-stage systems. Also, computational 
costs  are high for 3D volumetric  detection (18) . 
Furthermore, the ability of these CAD systems to determine 
nodule anatomic localization and diameter measurement 
has not been investigated.

In this study, we developed a single-stage pulmonary 
nodule CAD method based on a novel CNN algorithm—
You Only Look Once (YOLO) (19). YOLO has been 
used in multiple diagnostic modalities, including digital 

mammograms (20,21) ,  lung X-ray and computed 
tomography (CT) (22,23), and electroencephalography 
(EEG) (24). The proposed method customized the latest 
YOLO v3 algorithm as a CNN implementation (25). The 
developed method can simultaneously achieve nodule 
localization and diameter measurements with streamlined 
computational efficiency using a light-weight architecture. 
The accuracy of the developed method was first evaluated 
in a computer simulation study, using a digital phantom. It 
was subsequently examined in a patient study where data 
was extracted from a public database, and compared with 9 
current lung nodule detection methods. 

Methods

CAD method design

The developed CAD method customized a YOLO v3 
CNN algorithm for the detection of pulmonary nodules. 
Figure 1 demonstrates a schematic illustration of the CNN 
architecture. In general, the network consists of two major 
components: (I) a feature extractor that screens nodule 
characteristics among the input data, and (II) a bounding 
box generator that determines nodule coordinates and 
diameter. This CAD method takes 2D axial CT slices as 
input and yields nodule-specific quantitative values (i.e., 
number, existence confidence, central coordinates, and 
diameter) as output.

As shown in Figure 1A, the feature extractor is, more 
specifically, a residual network that contains seven residual 
units (ResUnit) (26). Each ResUnit has two or three 
convolutional layers with a skip connection design. A series 
of pooling layers in the ResUnits (ResUnit 5, 6, and 7) allow 
the feature extractor to screen potential nodules across 
three spatial scales. Three feature maps are subsequently 
generated by the feature extractor with 1/4, 1/8, and 1/16 of 
the input image resolution. The information stored at each 
site within the correlating feature space is responsible for a 
confined input range (i.e., it is spatially dependent). In the 
low-, medium-, and high-resolution feature maps, the voxel 
range coverage is 4×4, 8×8, and 16×16 pixels of the input 
image, respectively. Each feature map has 128 feature slices, 
as demonstrated in Figure 1B. 

The bounding box design is then utilized to describe the 
nodule location and diameter. As demonstrated in Figure 1C,  
a seven-layer generator network utilized feature maps as 
inputs to predict the parameters of the bounding box. These 
encompassed central coordinates ( /x yb b ), height and width 



1919Quantitative Imaging in Medicine and Surgery, Vol 10, No 10 October 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(10):1917-1929 | http://dx.doi.org/10.21037/qims-19-883

Figure 1 Convolutional neural networks (CNN) structure illustration of the developed computer-aided detection (CAD) method. (A) 
Feature extractor; (B) extension version of the feature map; (C) bounding box generator.
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(  /h wb b ), and nodule score ( 0b ). Bounding boxes were derived 
from anchor boxes, which were pre-defined bounding boxes 
at each position in the feature spaces. By associating the 
feature information at each map position, the bounding 
box generator predicted the values of coordinate shifts 
( /x yt t ) and length changes (  /h wt t ) from the anchor box to 
bounding boxes. Therefore, the central coordinates ( /x yb b ) 
were predicted by,

( )x x xb t cσ= + 	 [1]

and

( )y y yb t cσ= + 	 [2]

where, xc  and yc  were the coordinates of the anchor boxes 
in the feature space. The bounding box lengths (  /h wb b ) were 
determined by,

wt
w wb p e= ⋅ 	 [3]

and

ht
h hb p e= ⋅ 	 [4]

where, wp  and hp  were the lengths of the anchor boxes. 
The nodule score ( 0b ) was calculated by the multifaction 
of two variables: the object score ( ot ) and the nodule class 
score (c), which indicated the presence of an object in a 
feature position and the category of the detected object 
independently. For each feature map, 3 anchor boxes are 
designed at each position in the feature space. As seen in 
Table 1, they have different sizes to measure nodules across 
a wide range of diameters. As multiple anchor boxes at each 

voxel position may create detection redundancy, a non-
maximum suppression algorithm was used when a nodule 
was detected by several bounding boxes simultaneously (27). 
This algorithm calculated the overlap among all detected 
bounding boxes. Bounding boxes that exceeded an overlap 
threshold were excluded.

The loss function used for network training includes three 
terms [i.e., object loss (  objectL ), class loss ( classL ), and bounding 
box loss ( boxL )], and was mathematically defined as, 

  object class box boxL L L Lλ= + + ⋅ 	 [5]

where boxλ  referred to the weighting factor for bounding box 
loss. Object loss (  objectL ) was defined by, 
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where S was the feature map resolution, and B represented 
the number of bounding boxes in each feature map. ,1obj

i j  was 
a binary value that indicated the existence of an object inside 
the jth bounding box of ith feature position. ( )( ), ,ot i jκ τ  is 
a binary function and is triggered when ( ),ot i j  was bigger 
than the threshold (τ). Class loss ( classL ) was defined by,
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where BCE represented binary cross-entropy function.  
( ),mc i j  represented the predicted class score of category 

m inside the jth bounding box of ith feature position and 
( )ˆ ,mc i j  was the corresponding ground truth. Bounding box 

loss ( boxL ) evaluated the difference between the predicted 
bounding box parameters ( , ,,x y h wt t t t ) and the ground truth 
( ˆ ˆ ˆ ˆ, ,,x y h wt t t t ). It was mathematically defined as, 
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where SE is the square error function. 

Experiment design

The proposed CAD method was trained and evaluated via 

Table 1 Size of anchor boxes in high-/medium-/low-resolution 
feature maps

Feature map 
resolution

Anchor boxes Heights (pixels) Width (pixels)

High 1 8 8

2 10 10

3 12 12

Medium 4 15 15

5 20 20

6 25 25

Low 7 30 30

8 35 35

9 40 40
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two independent studies: (I) a computer simulation study 
and (II) a patient study from a public database. These two 
studies assessed the CAD performance in the computer-
based ground truth and human-based ground truth, 
separately. 

In the computer simulation study, 300 3D CT scans 
containing detailed anatomical information were simulated 
using the Cardiac-torso (XCAT) digital  phantom 
environment (28). Spherical nodules of various sizes (i.e., 
3–10 mm in diameter) were randomly implanted within the 
lung region of these simulated images. Transverse CT slices 
that intersect with the center of these spherical nodules 
were extracted to form the dataset, and a 10-fold cross-
validation procedure was implemented to evaluate network 
hyper-parameterization and generalization.  

In the patient study, patient data from the lung image 
database consortium and image database resource initiative 
(LIDC–IDRI) (29) were used. The LIDC–IDRI database 
has 1,018 thoracic CT scans with corresponding nodule 
information. In this study, CT images with a slice thickness 
greater than 2.5 mm were excluded, leaving 888 CT 
images for analysis. Nodule information was marked by 
four experienced radiologists into one of three groups: (I) 
no nodule, (II) nodules <3 mm, and (III) nodules ≥3 mm. 
Among these CT images, 1,186 nodules were considered as 
positive examples by the criteria of nodule sizes above 3 mm 
and marked by at least three out of four radiologists. The 
central transverse CT slices between each nodule’s upper 
and lower boundary in axial direction were used for 10-fold 
cross-validation. 

The simulated data was generated by digital phantom 
and the patient data was obtained from a publicly available 
open-source database, namely LIDC-IDRI database (29). 
Thus, no ethics approval of an institutional review board 
or ethics committees was required for this study. The 
authors acknowledge the National Cancer Institute and the 
Foundation for the National Institutes of Health, and their 
critical role in the creation of the free publicly available 
LIDC/IDRI Database used in this study.

Evaluation method

The average performance among the 10 cross-validation 
folds was used for evaluation in both the computer 
simulation study and the patient study. Evaluation metrics 
included nodule detection accuracy, nodule localization 
accuracy, and nodule diameter measurement accuracy. 

Detection accuracy was assessed based on the sensitivity 

of nodule identification. Under different nodule score 
thresholds, nodule detection sensitivities, and the 
corresponding average false positives (FPs) per image 
were calculated in the 10 testing folds. Seven sensitivity 
results (FPs = 1/8, 1/4, 1/2, 1, 2, 4, 8) were reported in two 
studies. Also, the detection accuracy in the patient study 
was compared against 9 recently published CAD studies 
which were developed using the LIDC-IDRI database. The 
techniques used in these methods included feature-based 
conventional techniques (30,31), two-dimensional (2D) 
CNN-based techniques [e.g., regional-based CNN (16),  
U-NET (32)], and three-dimensional (3D) CNN-based 
techniques (14,17). Free-receiver response operating 
characteristic (FROC) curve analysis was used in this 
comparison study (33). Specifically, detection sensitivities 
under a wide range of FPs (0<FPs≤8) were acquired by 
evaluating the proposed method with multiple nodule score 
thresholds ( [ ]0 0.01,0.6b ∈ ). As for the methods used in the 
comparison study, 7 sensitivity results covering the same 
FPs range (FPs = 1/8, 1/4, 1/2, 1, 2, 4, 8) were acquired 
from their original reports. 

Localization accuracy was quantified by central 
coordinate shifts between the predicted nodule bounding 
boxes and the ground truth bounding boxes, expressed 
as the mean value of shifts in x/y direction. Also, 2D 
histograms were plotted to visualize the spatial deviation in 
nodule localization.

The standard error was used in evaluating the diameter 
measurement accuracy,

	 [9]( )2
  ˆ1 n

d i i
i

Error d d
n

= −∑

where, id  was the diameter prediction of ith nodule, and ˆ
id

was the corresponding ground truth value. n was the total 
number of nodules.

Activation maps from the two studies were produced 
to investigate the performance difference between the 
simulation database and the patient database. To align 
with the page space requirements of the manuscript, only 
activation maps generated by the first 10 convolutional 
layers were reported.

Results 

Table 2 summarizes the nodule detection sensitivity results 
under different false positives (FPs), per image. In the 
computer simulation study, the developed CAD method 
achieved an average sensitivity of 99.5%. In the patient 
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study, the developed CAD method reached high detection 
sensitivities in high FPs settings (FP =1, 2, 4, 8). Sensitivity 
results were found to be suboptimal when FP <1.

Comparison results are shown in Figure 2 concerning 
FROC curve analysis. Here, the FROC curve of the 
developed CAD method is presented as the blue line. 
The upper/lower dotted blue curves represent the best/
poorest testing performance across the 10-fold cross-
validation procedure. In Figure 2A, the developed CAD 
method demonstrated superiority over 3 conventional 
CAD methods. Similarly, Figure 2B demonstrates improved 

performance in the developed method, compared to 2 
2D-CNN-based detection methods. Figure 2C reveals 
comparable results between the developed method and 
computationally-expensive 3D-CNN-based CAD methods. 
However, two 3D CNN methods (Pingan and JianPei 
CAD) have higher sensitivity than the developed method 
when FP <2.

Table 3 summarizes the central coordinate shifts between 
the predicted nodule and the ground truth bounding boxes. 
As shown, the average shifts in the x/y direction were less 
than 1 mm in both studies. The shift in the x-direction was 

Table 2 10-fold cross-validation results of detection sensitivities in the computer simulation study and the patient study

Study
Sensitivity of false positives (FPs) per image

Averaged sensitivity
1/8 1/4 1/2 1 2 4 8

Computer 
simulation study

98.9% 99.3% 99.3% 99.3% 99.5% 100% 100% 99.5%

Patient study 69.0% 79.7% 86.0% 90.0% 93.5% 95.4% 97.7% 87.3%
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Figure 2 FROC curve comparison between the developed and (A) conventional CAD methods, (B) 2D-CNN-based method, (C) 3D-CNN-
based method. FROC, free-receiver response operating characteristic; CAD, computer-aided detection; CNN, convolutional neural network.
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slightly higher than the shift in the y-direction. Figure 3 
illustrates the 2D histogram of central coordinate shifts. 
No apparent spatial deviation in nodule localization was 
observed, and most shifts were close to the origin.

Compared to the ground truth, the standard error of 
diameter measurements was 0.26 mm in the computer-
simulated study. The corresponding standard error in the 
patient study was 0.99 mm. In terms of implementation 
efficiency, screening a 2D image required 0.07 seconds, 
when using the developed CAD method. 

Figure 4 presents the activation maps in the computer 
simulation study. Activation slices 1 to 10 represent the 
results of the first 10 filters in each convolution layer. As 
indicated by the red arrow (Conv 1 – Activation slice 3), 
two nodules were implanted in this simulated CT image.  
Figure 5 demonstrates the activation maps of a patient 
image. A nodule was indicated by the red arrow (Conv 1 – 
Activation slice 1).

Figure 6 presents 2 independent test results from the 
simulation and the patient study, where ground truth 
bounding boxes are indicated by the blue squares on the left 
column. The detected bounding boxes are illustrated in the 
middle column, and bounding boxes at a magnified scale is 

indicated by the right column. The nodule scores ( 0b ) are 
attached to the detected bounding boxes. In the simulation 
study results presented in Figure 6A, the nodule score 
threshold was set to 0.2. Three nodules were detected by 
the developed CAD method using this threshold. Two true 
positive detections had higher nodule scores (0.9992/0.9768) 
than false positive detection (0.2074). For the false positive 
detection, the CAD misinterpreted the descending aorta as 
nodules. Figure 6B illustrates the patient study results under 
a threshold value of 0.4, where the developed CAD method 
is shown to successfully detect a nodule with a high nodule 
score (0.9666). Although the ground truth of this detection 
had a speculated perimeter, the developed method defined 
the boundary of the nodule accurately. In contrast, the false-
positive detection was associated with a much lower nodule 
score (0.4272). 

Discussion

In this study, we developed a CAD method for the 
detection of pulmonary nodules in diagnostic CT images. 
The goal of this CAD method was to achieve accurate 
nodule localization and diameter estimation. Our approach 
centralized a YOLO v3 CNN design, which, to the best 
of our knowledge, has not been used for pulmonary 
nodule detection. One possible reason that has delayed its 
application is the reported low accuracy in detecting small 
objects (34). In our study, we approached this problem 
by reducing the down-sampling scale in the feature 
extractor to increase the detection accuracy for small 
nodules. Quantitative evaluation results demonstrated 

Table 3 10-fold cross-validation results of the coordinate shifts

Study
Coordinate shifts (mm)

x y 

Computer simulation study 0.345±0.328 0.267±0.272

Public patient database study 0.736±0.657 0.575±0.608
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Figure 3 2D histograms of the coordinate shifts in (A) the computer simulation study, and (B) the patient study.
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Figure 4 Activation maps in the simulation study. Red arrow indicates two nodules were implanted in the simulated CT image.

improved performances in nodule localization and 
diameter measurements. Mainly, the CAD method was 
able to localize central nodule coordinates in a range of 
1-pixel width (<1 mm) without angular dependence for 
both studies. Also, this CAD method achieved clinically 

acceptable precision in nodule diameter estimation. The 
error in diameter measurement was less than 1 mm, which 
is smaller than the basic dimensional unit (1 mm) in clinical 
measurement guidelines and inter-/intra- reader variability 
(1.73/1.32 mm) (35,36). 
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Figure 5 Activation maps in the patient study. A nodule was indicated by the red arrow.

The reliability of the developed CAD method was 
evaluated concerning the computer-based ground truth of 
the computer simulation study. These simulated images 
could be used as a digital phantom for quality testing and 

assurance in future nodule detection studies (37). However, 
the performance of the developed CAD method is slightly 
different between the simulated database and the patient 
database (i.e., the computer simulation study achieved a 
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Ground truth: Prediction:

Ground truth: Prediction:B

A

Figure 6 Computer-aided detection (CAD) method results of two test patients from (A) the computer simulation study, and (B) the patient 
study. 

higher detection sensitivity than patient study). The superior 
performance of the simulation study may result from the 
simplicity of the images (i.e., noise-free, well-circumscribed 
simulated nodules, and homogeneous lung tissue).

The performance difference observed between the two 
studies may be reflected by the activation maps in Figures 4  
and 5. As demonstrated in Figure 4, the edges of the 
patient’s body and multiple internal organs were highlighted 
in activation slices of the first five columns (conv 1–5). It 
can be inferred that the filters in the shallow convolutional 
layers were responsible for the detection of edges in 
multiple directions. The information inside the lung region 
was highlighted in the subsequent deep layers. After that, 
two nodules were detected. Figure 5 indicates that the filters 
in the patient database study. With the assistance of edge 
filters in the shadow layers, the information outside the 
lung region (e.g., heart, bone) is greatly inhibited, while 

the information within the lung is enhanced. However, the 
deep filters in the patient study focused on highlighting 
the bronchus and pulmonary vessels instead of the nodules 
directly in the simulation study. This difference may be 
caused by the complexity inside the lung region, which 
may be associated with complex functional information 
associated with imaging data (38). Initial extraction of the 
bronchus and vessel features may be required in the CAD 
method before excluding their interference for patient 
nodule detection. 

This CAD method is most prominently characterized by 
its computationally efficient design. The developed CNN 
structure consists of 19 convolutional layers in the feature 
extractor, which was primarily reduced, compared with its 
original algorithm (i.e., 53 convolutional layers) (25). Also, 
our proposed approach did not require the computationally-
intensive false positive reduction procedure compared to 
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other two-stage methods. Computation consumption is 
reflected by the number of parameters in any CNN model. 
As such, our method reduced the total number of parameters 
compared to other CNN approaches (i.e., 3D U-net or 3D 
Resnet) due to a lower number of layers and 2D convolution 
operations. A low-performance GPU, such as GTX1060Ti 
6GB used in this study, has adequate memory for loading the 
full set of parameters needed for model training. However, it 
is noted that a quantitative comparison of parameters was not 
feasible due to the limited availability of the source code of 
other CAD methods. 

Finally, we note that the improved computational 
efficiency did not compromise detection sensitivity. As 
demonstrated in Figure 2, the developed CAD method out-
performed all conventional methods and 2D CNN-based 
methods. It also achieved comparable results at high FPs 
settings, compared with computationally expensive 3D 
CNN-based CAD systems. In low FP settings, however, 
the developed CAD method did not achieve comparable 
results to the PATECH and JianPei CAD methods. Future 
works of task-specific developments of the 3D version of 
the presented method would emphasize a balance between 
detection accuracy and implementation cost (39). For 
example, on-board (i.e., when a patient is under treatment), 
lung nodule detection for lung radiotherapy using a linear 
accelerator (LINAC) requires rapid implementation from 
a light-weight CNN design to achieve real-time detection. 
Clinical practice preference and evaluation would be the 
guidelines for future development works towards 3D CNN 
architecture.

While this study presents a novel approach to nodule 
localization and diameter estimation, it possesses limitations 
due to the simplicity of phantom images. Simulating more 
realistic phantom images (i.e., extra noise, morphological 
variations) will be essential to fully understand the rationale 
and robustness of the developed CAD method (40). 
More sophisticated digital phantoms could customize the 
simulated image database with specific nodule texture, 
location, size, and density. This way, further investigation 
of filter preference (i.e., texture, size, density, location) in 
feature extraction could be conducted by such simulated 
images. 

Conclusions

In this work, a novel deep-learning CAD method was 
developed for lung nodule detection with improving 
computational efficiency and reducing false-positive rates. 

Preliminary results demonstrated that the developed 
method achieved nodule localization and diameter 
estimation with sub-millimeter accuracy. With promising 
nodule detection accuracy and reduced computation power 
cost, the developed CAD method has an excellent potential 
for clinical application.
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