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Introduction 

The retina is a neurovascular complex network that can 
be frequently targeted by eye diseases. As one part of the 
central nervous system, the retina can also be a window 
for assessing brain function and cardiovascular conditions. 
Systemic conditions such as diabetes, can also cause 
retinal neurovascular abnormalities, including diabetic 
retinopathy (DR) and diabetic macular edema (DME). 
Long term diabetes induces hyperglycemia-induced 
vascular damage (1), hypertension and hyperlipidemia. 
Furthermore, blood clots and atherosclerosis can develop 
into pathologies such as retinal vein occlusion (RVO) (2). 
Retinal diseases, such as DR and RVO, often affect arteries 
and veins differently. One of the key observations of RVO 
is the arteriovenous AV crossings (also called AV nicking), 
in which a small artery is observed to cross a small vein, 
resulting in the compression of the vein. In patients with 
atherosclerosis, vein narrowing has been observed at the 
site of AV crossing (3). Similarly, retinal arterial narrowing 
(4,5) and venous beading (6,7) have been observed 
in patients with DR and other diseases. Therefore, 

differential AV analysis of vascular abnormalities is 
valuable for disease screening, diagnosis, and treatment 
assessment.

Di f ferent  imaging  modal i t ie s ,  such  as  fundus 
photography (8-11), optical coherence tomography (OCT) 
(12,13) and OCT angiography (OCTA) (14-18), have 
been demonstrated for quantitative assessment of retinal 
vasculatures. It is known that arteries and veins are often 
affected differently, either at the early stage or throughout 
the disease progression. Furthermore, the interactions 
between arteries and veins are also prominent microvascular 
abnormalities in certain diseases such as the compressive 
nature of AV nicking in RVO (19). However, a recent study 
that employed adaptive optics technology, has revealed 
that without detectable arteriovenous contact, there is still 
a change in morphology of the vasculature, i.e., nicking, 
narrowing, opacification, and dragging (20). Therefore, 
differential artery-vein (AV) analysis can provide enhanced 
performance for quantitative retinal imaging. Differential 
AV analysis has been demonstrated to be valuable for 
evaluating diabetes, hypertension, stroke and cardiovascular 
diseases (21-23) along with common retinopathies (24,25). 
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For differential AV analysis, the first step is to perform 
AV classification in retinal images. This step consists of 
several processing procedures, such as image intensity 
normalization, fovea/optic disc localization to find region of 
interest (ROI), vessel segmentation, and feature extraction. 
The second step is to use quantitative feature analyses or 
machine learning algorithms for robust AV classification. 
The final step is to use the AV maps to quantify the artery 
and vein features, for eye disease detection and treatment 
assessment. In order to achieve robust AV measurement, 
extensive efforts have been explored to address technical 
issues relative to these three steps of differential AV analysis. 

In this article, we provide a brief review of differential 
AV classification and analysis in quantitative retinal 
imaging. Following section 2 describes clinical importance 
of differential AV analysis. Section 3 summarizes differential 
AV in traditional color fundus photography. Section 4 
provides recent developments of differential AV analysis in 
the relatively new OCTA. Section 5 discusses current limits 
and prospective developments of differential AV analysis.

Clinical importance of differential AV analysis

Differential AV analysis has been a topic of widespread 
research for clinicians for a long time. Several large-scale 
clinical studies have been conducted both prospectively 
and longitudinally to evaluate AV abnormalities in different 
diseases. This section describes some of the studies that 
focused on quantitative AV features. Most of the clinical 
studies relied on fundus imaging, however, did not utilize 
automated AV classification techniques. Most studies 
have attempted manual or semi-automated approaches 
to identify artery and vein retinal vessels and observed 
significant AV changes for different diseases. Hence, it is 
even more evident why integration of automated and robust 
AV classification techniques is required in clinical imaging 
devices. Differential AV feature analysis for different 
diseases are summarized as follows.

Diabetes and diabetic retinopathy (DR)

DR is diabetic complication that can be broadly divided into 
non-proliferative and proliferative stages. The prevalence 
of DR symptoms increases with duration of diabetes, from 
non-proliferative to proliferative stage. The two main 
risk factors associated with DR are hyperglycemia and 
hypertension (26). Recent studies have shown evidence that 
dyslipidemia is also a major risk factor (26). In hypertension 

patients, clinical signs are arteriolar narrowing, arterio-
venous nicking, increased arteriolar light reflex, retinal 
hemorrhages, and cotton wool spots (27,28). Hypertension 
has also been associated with decrease in branching angle 
at arteriole bifurcations (29), and microvascular density 
in the retina (29-31). These retinal vascular abnormalities 
have been observed in both adults (32-42) and children (27).  
Historically, arteriolar caliber which is an early sign 
of hypertension in DR has been difficult to measure  
clinically (43). Hubbard et al. (44-46) developed several 
techniques to measure AV ratio (AVR) features for clinical 
research. These features have substantial reproducibility 
and have been validated in different epidemiological studies 
(40,44,47-49). 

Recent studies have suggested that both narrowed 
arterioles and widened venules contribute to the sensitivity 
of AVR features (50,51). Arteriolar and venular widths 
or calibers appear to reflect different pathophysiological 
processes (50,52). Three large population based studies, i.e., 
the Atherosclerosis Risk in Communities (ARIC) study (53), 
the Beaver Dam study (54) and Rotterdam study (22), have 
demonstrated that the AVR features have association with 
the development of type 2 diabetes and DR. The ARIC 
and Beaver dam study observed decreased AVR diameter 
associated with incident diabetes whereas the Rotterdam 
study observed increased overall retinal vascular caliber 
and venular caliber associated with chronic hyperglycemia 
and pre-diabetes. Apart from DR, wider venular caliber 
has been found to be associated with other microvascular 
complications of diabetes, such as diabetic nephropathy (55). 
It has been also associated with several metabolic syndrome 
and obesity (50,56). The Blue Mountain study found that 
a wider venular caliber was linked to 5-year incidence of 
obesity and higher body-mass-index (BMI) in subjects 
of normal weight at baseline as well as children aged  
6–8 years (57). It has been speculated that the venular 
widening could be the result of increased blood flow 
associated with retinal hypoxia (58) and hyperglycemia (59).  
Alternative theories behind the pathophysiological reasons 
of venular widening include inflammatory processes 
(35,40,60,61), or endothelial dysfunctions (62,63) associated 
with impaired glucose metabolism and diabetes.

Cardiovascular and other diseases

New imaging developments and AV classification capabilities 
have allowed the measurement of other architectural 
changes in the retinal microvasculature. Some of these 
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changes in retina have also been observed to be associated 
with cardiovascular risk. The Beaver Dam Study (64)  
demonstrated decreased arteriolar tortuosity and 
suboptimal arteriolar bifurcation associated with coronary 
heart mortality. The ARIC study demonstrated a semi-
automated system to measure the vessel calibers on fundus 
photograph (44-46) and observed a lower AVR of caliber 
and generalized arteriolar narrowing were able to provide 
information that could predict incident cardiovascular 
diseases without knowing other cardiovascular risk factors 
(36,38,41,44,53). Compared with other imaging biomarkers 
in fundus image such as AV nicking, hemorrhages, and 
focal arteriolar narrowing, the AVR caliber has been more 
reliable and commonly used to quantify vascular damage 
(38,41,44,53). However, this study states that it remains 
unclear, how artery and venular calibers contribute to the 
change in AVR measures. Some studies were explored to 
quantify the correlation between AVR features and blood 
pressure in the other parts of the body (36,65). 

With increasing pulse and blood pressures, the arteriolar 
diameters decreased in a linear pattern. The relationship was 
observed to be the strongest in the younger age category 
and became nonsignificant above 80 years (50). The venular 
diameters on the other hand, showed a smaller decrease. 
There was a linear decrease of AVR diameter with pulse 
and blood pressures. The relationship with AVR caliber was 
most distinct for patients in the category of age 55 to 60 
years. Also, associations of AVR caliber to atherosclerosis 
was found inconclusive. The arteriolar calibers did not 
show an association with atherosclerosis except for the 
intima–media thickness. After statistical adjustment for 
blood pressure, the association became weaker. The venular 
calibers were linearly correlated to some biomarkers of 
atherosclerosis. Larger venular calibers were associated 
with a higher carotid plaque score, lower ankle–arm index, 
aortic calcifications. Furthermore, a lower AVR caliber 
was found to be related to a lower ankle–arm index, higher 
carotid plaque score and increased intima–media thickness, 
but not to aortic calcifications. Higher leukocyte count, 
lower serum HDL levels, higher erythrocyte sedimentation 
rate, smoking, higher hip to waist ratio and total serum 
cholesterol, were related to larger venular diameters and a 
lower AVR caliber. 

In certain retinal diseases such as RVO, a common 
microvascular abnormality is AV nicking. There is a 
consensus that in AV nicking the vein is compressed by 
the bypassing artery. However, a recent study revealed that 
arteriovenous contact may not be necessary for abnormal 

venous changes, i.e., nicking, narrowing, and dragging (20). 

Differential AV analysis in traditional color 
fundus photography

Almost all the research work conducted for AV classification 
and differential AV analysis have been based on fundus 
images. Fundus photography is widely used in clinics and 
provides a non-invasive solution to look at the retinal 
vasculature with color and intensity information. A number 
of algorithms have been proposed to explore computer-
aided classification of A-V vessels (66-75). Some of these 
proposed algorithms for automated AV classification are 
representatively summarized in this section by dividing 
them into two categories: (I) feature extraction and vessel 
tracking based; and (II) machine learning (ML) based 
methods. 

Feature extraction-based methods

A majority of the AV classification algorithms are based 
on color and intensity information from arteries and veins  
(68-71,73-75). In general speaking, the arteries have lighter 
color intensity due to the presence of oxygenated blood, 
compared to deoxygenated blood in the veins. Therefore, 
this information provides a general thresholding factor to 
separate arteries and veins. Vázquez et al. (76) used a “snake” 
model to extract various feature points in two color spaces 
of RGB and HSL from the blood vessels near the optic disc 
and selected multiple sets of features for an AV classification 
method based on a K-means clustering algorithm. They 
further improved the AV classification performance using a 
minimal path approach in a follow up study (75). Niemeijer 
et al. (71) proposed an AV classification method based on 
intensity and derivative information in retinal vessels. Relan 
et al. (77-79) automatically classified AV in retinal vessels 
based on color features using GMM-EM (Gaussian Mixture 
Model, Expectation-Maximization) unsupervised classifier, 
utilizing quadrant-pairwise approach. Some researchers 
have also tried to incorporate functional features, such as 
optical density ratio (ODR) in red and green channels, 
to identify arteries and veins (80-82). Mirsharif et al. (83) 
divided the retinal vessel tree into few subsets, and then 
integrated a vascular tracking technique along with color 
information to classify the vessels into artery and vein. 
Estrada et al. (84) proposed a global AV classification 
method based on graph theory, considering the topological 
structure of retinal fundus vessels. Vessel tracking is also 
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a quite common technique used for AV classification  
(75,85-87). Alam et al. (23) introduced a method that 
incorporates both ODR based feature extraction and vessel 
tracking for AV classification. Before AV classification, they 
used matched filtering and bottom hat thresholding to 
enhance and extract a detailed vessel map from the green 
channel of color fundus image. They used ODR based 
features to identify AV source nodes near optic disc, since 
the difference in ODR value is more prevalent between 
artery and vein in that area. After identifying the AV source 
nodes, a vessel tracking algorithm was used to classify AV in 
whole vessel map. Figures 1,2 illustrate the vessel extraction 
and tacking procedures for AV classification. 

Machine learning (ML) based approaches

Both supervised and unsupervised ML algorithms have 
been explored for AV classification of retinal vasculatures. 

General methodology of these strategies is to train a 
traditional (i.e., supervised) or deep (i.e., unsupervised) 
ML classifier to identify artery and vein. In traditional 
supervised classifiers, the features are usually pre-extracted. 
These features could be color, intensity based, functional 
features or any features engineered to distinguish artery 
and vein by the researchers. The classifiers are trained to 
learn the trend of the features to distinguish artery and vein 
vessels based on the ground truths prepared by physicians. 
In deep ML, also termed as deep learning (DL), based 
approaches, the deep neural network learns to extract 
similar features, such as color, intensity, and morphological 
features, based on provided ground truths for automated AV 
classification. Although DL classifiers are quite powerful, 
most DL approaches require a large dataset, with annotated 
AV ground truths, for the reliable training process.

Semiautomatic (66,67,72) and automatic approaches 
(71,77-80,83,88-91) for supervised AV classification have 

Figure 1 Blood vessel segmentation and skeletonization. (A) Color fundus image; (B) enhanced green channel image; (C) segmented vessel 
map; (D) skeletonized vessel map. Reprinted from Ref. (23).
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Figure 2 Blood vessel tracking and AV classification. (A) A source node is identified with the cross. (B) The main branch of the vessel is 
tracked; the red dots represent all the possible branch nodes. (C) The process of choosing the forward path in the vessel map is shown in this 
enlarged window. (D) All the possible branches are identified; only four-way cross sections are marked with red crosses. (E) The decision 
taken on the four-way cross sections and whole vessel is identified. (F) Vein (blue) and artery (red) identified in the skeleton. (G) Classified 
vein and artery map. Reprinted from Ref. (23).
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been demonstrated. Vijayakumar et al. (92) proposed a color 
feature-based AV classification method utilizing Random 
Forest and support vector machine (SVM) classifier. Yang 
et al. (93) also described a method based on SVM and 
CNN. Jelinek et al. (69) presented eight features and tested 

different classifier for AV classification. Niemeijer et al. (94)  
also investigated different classifiers, i.e., K-nearest-
neighbor (KNN), Fisher linear discriminant analysis (LDA) 
and SVM for AV classification. In their analysis, SVM 
generated the best performance (true positive rate of 97% 
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Figure 3 A DL based AV classification approach [reprinted with permission from Ref. (101)].

for arteries and 90% for veins) utilizing both structural and 
functional features. 

Kondermann et al. (88) examined two profile and ROI 
feature extraction methods, and two classifiers based on 
SVM and neural networks for AV classification. Profile-
based features were RGB color space values for each 
centerline pixel (after subtracting their mean) and ROI-
based features were obtained around each centerline pixel. 
The extracted feature vectors were reduced by using 
multiclass principle component analysis before applying 
them to the classifiers. Muramatsu et al. (95) demonstrated 
an accuracy of 92.8% using LDA classifier with RGB and 
contrast features. Vázquez et al. (74,75,87) combined a 
color-based K-means clustering approach (unsupervised 
classifier) and vessel tracking for AV classification. Their 
method achieved about 88% accuracy. Another study by 

Rothaus and Jiang (96) also utilized K-means clustering 
for AV classification. However, one of the disadvantages 
of the K-means clustering method is its initialization 
problem and that the iterative method can get stuck in 
local minima. Niemeijer et al. (71,94,97) demonstrated an 
automatic supervised method using LDA, SVM and KNN 
for AV classification and observed good AV classification 
accuracy up to 88%. Fraz et al. (98) proposed an ensemble 
classifier of decision tress for AV classification that lead to 
an 83% accuracy rate. Recent works have also demonstrated 
feasibility of DL based methods for AV classification  
(99-103). Girard et al. (99) used a convolutional neural 
network (CNN) for AV classification and obtained about 
94% accuracy on publicly available DRIVE dataset (104). 
A representative DL approach is illustrated in Figure 3 and 
representative AV classification performance on publicly 
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A
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Figure 4 Classification results on publicly available databases. First column: original fundus image; second column: ground truth (blue pixels: 
veins, red: arteries, green: unknown); third column: CNN classification (yellow pixels: false positive, green: false negative); fourth column: 
final classification after the LSP step. (A) Image from CT-DRIVE (CNN: 88.3%, CNN + LSP: 95.4%); (B) image from ALL-DRIVE (CNN: 
81.7%, CNN + LSP: 86.0%); (C) image from MESSIDOR (CNN: 90.9%, CNN + LSP: 96.6%). Reprinted with permission from (99).

available dataset (99) is shown in Figure 4. 

Differential AV analysis in OCTA

As aforementioned, traditional color fundus images have 
been widely used for AV classification and differential AV 
analysis of eye conditions. However, fundus images have 
limited resolution to reveal microvascular abnormalities 
in the retina, particularly difficult for evaluating smaller 
capillary level blood vessels around the fovea. In contrary, 
relatively new OCTA can provide depth-resolved capability 

to visualize multiple vascular layers in the retina with 
capillary-level resolution. By providing unprecedented 
morphological details of retinal vasculatures, OCTA 
has been rapidly adopted for clinical management of 
DR (14), age-related macular degeneration (AMD) (15),  
glaucoma (16), sickle cell retinopathy (SCR) (17,18,24), etc. 
However, clinical OCT and OCTA don’t have the function 
for differential AV classification and analysis. In order to 
achieve differential AV analysis in OCTA, color fundus 
image analysis and OCT information processing guided 
methods are developed (17,24,25,105-107). 
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Color fundus image analysis guided AV classification in 
OCTA

Alam et al. (24) demonstrated a fundus image guided AV 
classification technique in OCTA. In this study, both 
fundus and OCTA images are obtained from subjects. 
A fundus AV map was first generated using ODR and 
vessel tracking (23) algorithm. In the next step, parafoveal 

region of fundus image was aligned with corresponding 

OCTA image. The fovea was used as an anchor point 

and a geometric-affine based image registration method 

was used to align the vessel maps of two images. Upon 

registration the AV classification from fundus image was 

mapped on to the OCTA image. The additional vascular 

branches in OCTA were tracked back to source nodes 

B

H
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I

F

D

J

A

G

E

Figure 5 Color fundus image analysis guided AV classification in OCTA. (A) Color fundus image. (B) Segmented vessel map. (C) OCTA 
image. (D) Segmented vessel map from OCTA. (E) OCTA vessel map registered with fundus vessel map. (F) Fundus artery-vein map was 
used to guide artery-vein differentiation in OCTA image. (G) Artery-vein map in OCTA. (H) Artery-vein skeleton map in OCTA. (I) 
Artery-skeleton map. (J) Vein-skeleton map. The vessel maps and skeleton maps are used to measure BVC and BVT separately for arteries 
and veins. Reprinted from Ref. (24).



1110 Alam et al. A review of differential artery-vein analysis

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(3):1102-1119 | http://dx.doi.org/10.21037/qims-20-557

B CA

2 2 2

3 3 3

1 1 1

Figure 6 Representative artery-vein classification results from control (A), mild SCR (B), and severe SCR (C) groups. (A1,B1,C1) Fundus 
image; (A2,B2,C2) OCTA image; (A3,B3,C3) OCTA artery-vein maps overlaid on corresponding fundus images. Reprinted from Ref. (24). 
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Figure 7 Differential AV analysis for DR classification. (A) BVC changes between control and NPDR patients. The unit (y axis on right) 
for a-BVC, v-BVC, m-BVC is micrometers; AVR-BVC is a ratio of a-BVC and v-BVC (y axis in left). (B) BVT changes between control 
and NPDR patients. BVT (y axis on right) is a ratio of geodesic and Euclidian distance. AVR-BVT is a ratio of a-BVT and v-BVT (y axis on 
left). Reprinted from Ref. (25).

accordingly. Figure 5 demonstrates the methodology of 
this AV classification technique. Figure 6 shows different 
AV map generated for control and SCR subjects.

Based on these AV classification maps, two AVR features 
were demonstrated: AVR-Blood vessel caliber (BVC) and 
tortuosity (AVR-BVT) for quantifying DR (25) (Figure 7) 
and SCR patients (24) (Figure 8). 

For DR study, AVR-BVC and AVR-BVT provided 

s i g n i f i c a n t  ( P < 0 . 0 0 1 )  a n d  m o d e r a t e  ( P < 0 . 0 5 ) 
improvements, respectively, in detecting and classifying 
NPDR stages, compared with traditional m-BVC. The 
opposite polarity of BVC in artery (narrow) and vein 
(dilated) caused AVR-BVC to be highly significant. 
For SCR study, the BVT was prevalent mostly in vein, 
making vein BVT the most significant feature for SCR 
classification. 
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OCT information processing guided AV 
classification in OCTA

Ouyang et al. (108) demonstrated a spectral dimension 
(SD) OCT based technique or AV classification in OCT. 
In this semi-automatic approach, the ground truth AV 
notations are generated around the optic disc using infrared 
reflectance (IR) or fluorescence angiography (FA) imaging. 
The presence or absence of hyperreflective lower border 
reflectivity features in OCT was used to differentiate 
artery and vein. This method was applied to larger vessels 
around optic disc and generated sensitivity of 0.88/0.93 and 
specificity of 0.93/0.88 for arteries and veins, respectively. 
We found two recent studies that attempted manual 
approaches for AV classification in en face OCTA based 
on some empirical rules (109,110). In the first study by 
Ishibazawa et al. (109), two masked readers were instructed 
to identify artery and vein in en face OCTA using following 
rules: (I) the presence of surrounding hypointense areas 
that represent the capillary-free zones, are associated with 
arteries; (II) arteries and veins do not cross each other, 
physiologically; (III) vessels could be traced back proximally 
and distally for identification of source nodes. The AV 
classification in en face OCTA was compared with AV maps 
from corresponding fundus images. The average accuracies 
identifying all AV vessels, first-, second-, and third-order 

AV vessels were 98.61%, 99.16%, 100%, and 98.06%, 
respectively. In another study by Xu et al. (110) used similar 
manual strategy but utilized four default en face slabs 
that included color depth encoded retina, grayscale full-
thickness retina, superficial OCTA, and deep layer OCTA. 
Manual graders identified AV maps with an accuracy of 
96.9% and 93.2% respectively for 3 mm and 6 mm OCTA 
scans. 

Son et al. (107) reported an automated approach for AV 
classification in OCTA using near-infrared OCT oximetry 
to guide AV classification in macular OCTA scans. This 
study developed a custom-built OCT/OCTA device with an 
oxygen sensitive wavelength of 765 nm which provided 2.8 
times higher oxygen extinction coefficient between artery 
and vein (Figure 9). 

Alam et al. (105) also presented a study where they 
utilized en face OCT to guide AV classification in OCTA. 
Using OCT en face to guide AV classification in OCTA 
could improve efficiency for clinical deployment of AV 
classification and differential AV analysis. Since OCT 
and OCTA are intrinsically reconstructed from the same 
raw spectrogram, it removes the requirement for image 
registration. This study employed K-means clustering 
using four OCT intensity profile features, i.e., (I) ratio 
of vessel width to central reflex, (II) average of maximum 
profile brightness, (III) average of median profile 
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intensity, and (IV) optical density of boundary intensity 
compared to background intensity, for classifying AV 
source nodes around optic disc. After the identification of 
AV source nodes, vessel tracking is employed to generate 

en face OCT AV map and consequent mapping of AV 
information into OCTA (Figure 10). This study reported 
a 96% accuracy for classifying artery and vein in OCTA 
image. 
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Figure 10 Artery-vein classification in OCTA. (A) En face OCT vessel map with artery-vein classified source nodes; (B) en face OCT artery-
vein map. (C) Original OCTA image; (D) OCTA binary vessel map; (E) en face OCT artery-vein map overlaid onto the OCTA binary vessel 
map; (F) final OCTA artery-vein map. Re-printed from Ref. (105).

Discussion 

Technical rationales and clinical applications for quantitative 
AV analysis in traditional color fundus photography and 
relatively new OCTA have been briefly summarized in 
the article. Retinal vascular abnormalities are frequently 
observed in eye diseases. As one part of the central nervous 
system, the retinal neurovascular network can also be 
targeted by neurodegenerative diseases such as Alzheimer’s, 
Parkinson’s and others. It is known the artery and vein 
systems can be affected in different ways by diseased types 
and stages. Therefore, quantitative AV analysis are valuable 
for improved disease detection and treatment managements. 
Although a variety of approaches have been developed for 
AV classification and quantitative AV analysis, there are 
still major problems to be addressed, especially for clinical 
deployments of differential AV analysis. Most of current 
AV classification works utilize color and intensity-based 
features in traditional color fundus images. The absolute 
spectral information varies greatly among images from 
different devices and even from images within the same 
subject. Some reasons of variability are oxygen saturation, 
imaging artifacts, optical distortions, motion artifacts, 

development of cataract, aging effect, etc. A solution to this 
variability is color and contrast normalization, which has 
been employed by some studies (23). Some studies also rely 
on the difference of artery and vein vessel calibers for AV 
classification near the optic disc. Compared to vessel caliber, 
a more reliable feature is central reflex which quantifies 
the inner wall of artery or vein and the actual path of 
blood flow within vessels. Combination or ratio of central 
reflex and vessel caliber could be a more reliable strategy 
for AV classification near the optic disc (111). Presence of 
micro-aneurysms, exudates, or hemorrhages can also incur 
further challenges in AV classification. All these challenges 
can make reliable AV classification difficult, especially for 
pursuing fully automates processing. Some approaches 
proposed the use of clustering or semantic segmentation 
which were successful in AV classification, but primarily 
for larger blood vessels. ML based approaches however 
are limited to ground truth quality and require a large 
number of training data. Miri et al. (85) showed that some 
studies simplified AV classification process and included 
only large vessels for differential AV analysis since the AV 
classification performance is more robust for larger vessels. 
It was argued that the AVR calculation could be sufficient 
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using the larger vessels. However, it has been shown that 
fundus images are not able to show subtle micro-vascular 
changes in retina. Early stages of retinal diseases often 
manifest in the perifoveal and parafoveal retinal blood 
vessels. Therefore, conducting differential AV analysis in 
such detailed vasculature may significantly improve the 
quantitative efficiency. OCTA as an imaging modality is 
perfectly suitable for such analysis since it provides high 
resolution microvasculature information around fovea. 
However, a major challenge for AV classification in OCTA 
is the absence of spectral information. Therefore, the 
studies that have attempted AV classification in OCTA, have 
utilized either fundus or corresponding en face OCT images 
for guiding AV information to OCTA. It was observed 
that the differential analysis of vessel caliber and tortuosity 
improved the features sensitivity for objective classification 
of different retinal diseases. It was also interesting to see 
that the use of lower wavelength for OCT imaging, the 
oxygen extinction coefficient difference between artery and 
vein was enhanced multiple times. 

Despite promising results in differentiating AV in 
OCTA, it is still challenging to establish robust end-to-
end framework for reliable AV analysis. OCTA suffers 
from different artifacts such as projection artifacts, shadow 
artifacts and segmentation errors, which can affect the 
accuracy of AV classification. The demonstrated AV 
differentiation techniques in OCTA typically excluded 
images with severe projection and shadow artifacts. 
However, it was observed that, as long as the vessel 
connection was retained for the vessel tracking, the AV 
classification was successful. One reason is the classification 
of source nodes is first based on multiple features around 
optic disk, that are not severely distorted or affected by 
OCTA artifacts. Furthermore, the AV classifications 
have been only demonstrated in superficial layer since 
the algorithms depends on the connectivity and tracking 
of the vessel map. Segmentation of the superficial layers 
are also feasible with clinical devices. Therefore, the AV 
classification accuracy may not be affected by OCTA 
segmentation errors. One limitation of current methods is 
the incapability to identify AV in deep retinal and choroidal 
layers, which consists of a more densely connected mesh-
like vessel network. At the capillary level, it is still difficult 
to distinguish artery or vein reliably. Therefore, to date 
the differential AV analysis is typically limited at superficial 
layer.

In conclusion, differential AV analysis has been 
demonstrated in both traditional color fundus photography 
and relatively new OCT angiography. Differential AV 
analysis has the potential to improve clinical managements 
of  not  only eye diseases  but  a lso systematic  and 
cardiovascular diseases. However, clinical deployment of 
quantitative AV analysis is still at a very early stage. There 
seems to be a gap between the technological development 
and proper clinical application. Further development of DL 
based fully automated platform for differential AV analysis 
may foster its clinical deployments to advance the eye 
disease detection and management. 
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