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Background: The current gold-standard formalin-fixed and paraffin-embedded (FFPE) histology typically 
requires several days for tissue fixing, embedding, sectioning, and staining to provide depth-resolved tissue 
feature visualization. During these time- and labor- intense processes, the in vivo tissue dynamics and three-
dimensional structures undergo inevitable loss and distortion.
Methods: A simultaneous label-free autofluorescence multiharmonic (SLAM) microscope is used to 
conduct ex vivo and in vivo imaging of fresh human and rat tissues. Four nonlinear optical imaging modalities 
are integrated into this SLAM microscope, including second harmonic generation (SHG), two-photon 
fluorescence (2PF), third harmonic generation (THG), and three-photon fluorescence (3PF). By imaging 
fresh human and rat tissues without any tissue processing or staining, various biological tissue features are 
effectively visualized by one or multiple imaging modalities of the SLAM microscope. In particular, some 
of the most essential features in hematoxylin and eosin (H&E)-stained histology, such as collagen fibers and 
nuclei, are also present in the SLAM microscopy images with good contrast. Because nuclei are evident from 
negative contrast, the nuclei are segmented from the SLAM images using deep learning. Finally, a color-
transforming algorithm is developed to convert the grey-scale images acquired by the SLAM microscope to 
the virtually H&E-stained histology-like images. The converted histology-like images are later compared 
with the FFPE histology at the same tissue site. In addition, the nuclear-to-cytoplasmic ratios (N/C ratios) of 
the cells in the SLAM image are quantified, which has diagnostic relevance for cancer.
Results: Various histological correlations are identified with high similarities for the color-converted 
histology-like SLAM microscopy images. By applying the color transforming algorithm on real-time SLAM 
image sequences and 3D SLAM image stacks, we report, for the first time and to the best our knowledge, 
real-time 3D histology-like imaging. Furthermore, the quantified N/C ratio of the cells in the SLAM image 
are overlaid on the converted histology-like image as a new image contrast.
Conclusions: We demonstrated real-time 3D histology-like imaging and its future potential using SLAM 
microscopy aided by color remapping and deep-learning-based feature segmentation.
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Introduction

Conventional formalin-fixed and paraffin-embedded (FFPE) 
histology has been broadly accepted for decades as the 
gold standard for cancer diagnostics. Despite the evident 
contrast provided by hematoxylin and eosin (H&E) and 
immunohistochemistry staining, there are several major 
limitations to the current gold-standard FFPE histology. 
First, the histological processing is labor-intensive and cost-
ineffective. In the U.S. alone, FFPE histopathology involves 
around 27,000 histotechnicians and histotechnologists 
to produce 40 million tissue blocks annually,  and 
approximately 15,000 pathologists using histological slides 
for diagnosis (1). Second, the complicated tissue processing 
procedures, such as fixation, sectioning, staining, and slide 
making, consume a substantial amount of time (on the order 
of days), potentially causing delays in cancer diagnosis (2,3).

In particular, the FFPE histological treatment of tissue 
often causes distortion artifacts and the loss of in vivo 
biological information (3), making it difficult for accurate 
3D image reconstruction and real-time in vivo tissue 
monitoring (4). Compared to conventional cancer diagnoses 
using FFPE histology, the 3D volumetric imaging of intact 
cancer tissues can potentially help pathologists determine 
the size, dimensions, and margins of the tumor in a more 
straightforward manner. Moreover, in vivo information and 
dynamic events in cancer tissues, such as the distribution 
and dynamics of extracellular vesicles (5-7), metabolic 
activities (8-10), and immune cell migration (11), could 
reveal cancer aggressiveness and progression at earlier 
stages, prior to morphological changes in histologically-
recognized features (5), thus increasing diagnostic sensitivity 
and accuracy.

Aiming to improve conventional FFPE histopathology, 
various optical imaging methods have been explored. 
Performing microscopy with ultraviolet surface excitation 
(MUSE) improved the efficiency of FFPE histology by 
using fluorescent dyes to label fresh or formalin-fixed 
tissues (12). With a similar optical spectrum, ultraviolet 
(UV) photoacoustic microscopy (PAM) realized label-
free multilayered histology-like imaging, but with a poor 
acoustic axial resolution of 48 µm (13). However, because 
of the phototoxicity of the UV light, these two methods 
cannot be used for real-time monitoring of in vivo biological 
events. With the help of ultrafast pulsed laser sources, 
nonlinear optical imaging methods, such as multi-harmonic 
generation (2), multiphoton fluorescence (2), and coherent 
Raman scattering (CRS) (14), have also been extensively 

studied to provide endogenous contrasts of cancer tissues for 
virtual histology staining. Another approach toward virtual 
histology is by training a deep neural network to identify 
the color correlation between grey-scale autofluorescence 
images and the strictly co-localized FFPE histology (15). 
This method produces virtual histology images that closely 
resemble the corresponding real histology. However, this 
method has not been applied for fresh tissue samples due 
to the requirement for tissue sectioning and slide making. 
Therefore, none of these methods have achieved real-time 
histology-like tissue monitoring and 3D imaging at the 
same time.

In this study, we employ an advanced imaging technique, 
simultaneous label-free autofluorescence multiharmonic 
(SLAM) microscopy (11), to realize real-time 3D histology-
like imaging of fresh untreated, unstained tissues. The 
correlations between histology and SLAM images 
demonstrate the capability of SLAM microscopy for 
visualizing essential histopathological tissue features. A 
deep neural network is trained using SLAM image data 
to segment the nuclei in SLAM microscopy images. The 
segmented tissue features were color-transformed to have 
H&E histology-like contrast. The achieved real-time 3D 
histology-like imaging can be developed as a potential tool 
to complement current FFPE histology for future studies in 
cancer detection and diagnosis.

Methods

Simultaneous label-free autofluorescence multiharmonic 
(SLAM) microscopy

A custom-built SLAM microscope integrating SHG, 
2PF, THG, and 3PF imaging modalities was used in this  
study (3,6,9,11). These four modalities can visualize 
different biological tissue features based on their 
nonlinear optical signatures. For instance, 2PF and 3PF 
signals come from specific autofluorescence molecules, 
predominantly flavin adenine dinucleotide (FAD) with 
2PF and nicotinamide adenine dinucleotide (NADH) with  
3PF (16,17). In addition, SHG and THG signals come from 
certain nanoscale and microscale structures in biological 
tissues, such as periodic collagen fibers (18) and optical 
interfaces between different refractive indices, such as 
those formed by lipids and water (19). The visualized tissue 
features by the four modalities are summarized in Table 1.

These four imaging modalities were simultaneously 
excited by a custom-developed programmable laser 
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source. As shown in Figure 1A, the programmable laser 
source was realized by the combination of a pump laser, 
a photonic crystal fiber (PCF) and a pulse shaper. The 
original pump laser pulses (Satsuma, Amplitude Systemes 
SA) were spectrally broadened by passing through the 
PCF to become a supercontinuum laser source. A part of 
the supercontinuum spectrum from 1,080 to 1,140 nm  
was chosen and temporally compressed by a pulse shaper 
(MIIPS Box640, BioPhotonic Solutions Inc.) (11). This 
excitation source of approximately 10 mW was sent into 

a laser-scanning inverted microscope equipped with a 
broadband high-numerical-aperture (NA=1.05) objective 
lens (XLPLN25XWMP2, Olympus). The mixed emission 
signals generated from the four imaging modalities were 
isolated and filtered by a set of dichroic mirrors and 
bandpass filters, whose parameters are shown in Table 2. Four 
photomultiplier tubes (PMTs, H7421-40, Hamamatsu K.K.) 
were used to detect the imaging signals simultaneously. 
The SLAM microscope was first set up on an optical 
table in the laboratory environment (Figure 1B) to reach 

Table 1 Visualized tissue features by the four imaging modalities

Tissue features Imaging modality Source of contrast Ref.

Collagen type I fibers SHG Second-order susceptibility of anisotropic collagen fibers (18)

Endothelial cell cytoplasm 3PF Autofluorescence NAD(P)H (16,17)

Stromal cell cytoplasm 2PF Autofluorescence FAD (16,17)

Red blood cells 2PF Hemoglobin photoproducts fluorescence (16,17)

Adipocytes 3PF/THG NAD(P)H and membrane (16,17)

Cancer cell cytoplasm THG/3PF Extracellular vesicles/NAD(P)H (17,19)

Nuclei Dark spots within cells Negative contract (3,11)

SHG, second harmonic generation; 3PF, three-photon fluorescence; 2PF, two-photon fluorescence; THG, third harmonic generation.

Figure 1 System schematic, photographs, and representative image from SLAM microscopy. (A) System schematics of the SLAM microscope. 
Parameters of the DMs and filters can be found in Table 2. (B) Photograph of the lab-based SLAM microscope system. (C) Photograph of the 
intraoperative portable SLAM microscope system. (D) A representative SLAM microscopy image. Photo credit: Yi Sun, University of Illinois 
at Urbana-Champaign. SLAM, simultaneous label-free autofluorescence multiharmonic; DM, dichroic mirror; PCF, photonic crystal fiber; 
PMT, photomultiplier tube.
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optimal imaging performance, and was employed in the 
design of a portable imaging system capable of conducting 
intraoperative imaging of fresh ex vivo human samples in the 
operating room (Figure 1C) (6). As shown in Figure 1D, the 
acquired SLAM image of rat mammary tissue is presented 
by the composite of the four imaging modalities assigned 
with different colors, which approximately correspond 
to the emission wavelengths. The colors assigned to the 
imaging modalities are yellow for 2PF, green for SHG, cyan 
for 3PF, and magenta for THG. Several tissue features can 
be easily identified from Figure 1D, such as the NADH-rich 
cyan adipocytes, FAD-rich yellow stromal cells, magenta-
colored adipocytes membranes, and green collagen fibers.

Ex vivo and in vivo imaging of human and rat tissues

This study of human tissue imaging was conducted under 
a protocol approved by the institutional review boards 
of Carle Foundation Hospital and the University of 
Illinois at Urbana-Champaign (No: 18CCC1708) and 
informed consent was acquired from the human subjects 
who participated in this study. A portable SLAM imaging 
system (Figure 1C) was developed to conduct imaging in 
the operating room during breast cancer surgeries (6).  
Immediately after surgical removal, resected tissue 
specimens were directly transferred to the imaging system 
for ex vivo imaging, prior to any fixation or treatment. 
After 20 minutes of imaging, the tissue specimens were 
immersed in saline and sent to the pathology laboratory. In 
the pathology lab, specimens were further sectioned grossly 
for standard histological processing, and excess tissues were 
made available to the research team for additional imaging 
experiments. The excess tissues were again immersed 
in saline before being imaged by the bench-top SLAM 
imaging system. The time interval between surgical tissue 
removal and the bench-top SLAM imaging was kept within 
2 hours to avoid severe tissue perturbation. Imaged tissue 
sites were marked with surgical ink, prepared for standard 

FFPE histology, and used for later correlations.
In vivo rat tissue imaging was conducted under a 

protocol approved by the Institutional Animal Care and 
Use Committee at the University of Illinois at Urbana-
Champaign (No: 18043) (11). Mammary tumors were 
induced in female Wistar-Furth rats (Harlan, IN, USA) 
by injecting diluted NMU (N-Nitroso-N-methylurea) 
(Sigma, St. Louis, MO, USA) at a concentration of  
55 mg·kg−1 (11). The in vivo imaging experiments were 
carried out in rats approximately 4-6 weeks later when 
mammary tumors became palpable. For in vivo imaging, 
animals were anesthetized with 1% isoflurane mixed with 
O2 (1 L·min−1 flow rate). The skin of the animals was 
surgically opened and reflected back for imaging, and 
images were collected from the mammary tissue attached to 
the inner side of the reflected skin. The time spent for the 
imaging procedures was less than 3 hours. After imaging, 
rats were euthanized. The imaged tissue sites were resected 
for standard FFPE histology and later correlations.

Nuclei segmentation by deep learning

As an essential tissue feature for cancer diagnosis, nuclei are 
effectively visualized using SLAM microscopy via negative 
contrast against the autofluorescent cytoplasm (3,6,11).  
The cytoplasm appears bright in 2PF, 3PF, and THG 
images due to the nonlinear optical signals generated from 
the intracellular molecules and structures. Although the 
nuclei from the SLAM images in Figures 1D,2A can be 
readily identified by the human eye, they still need to be 
computationally recognized and segmented before virtual 
H&E staining due to the lack of positive contrast.

Because of the limited image signal-to-noise ratio 
(SNR) and the heterogeneity in shape and size of the 
nuclei, conventional algorithms of feature extraction 
and segmentation cannot accurately segment the nuclei 
from SLAM images. To achieve a higher performance, 
we developed a deep neural network (DNN) for nuclei 

Table 2 Parameters of filters and dichroic mirrors in the SLAM system

Filter location Band pass range (nm) Dichroic mirrors Cutoff wavelength (nm)

PMT1 365–375 DM1 750

PMT2 420–480 DM2 409

PMT3 540–570 DM3 506

PMT4 580–640 DM4 570

SLAM, simultaneous label-free autofluorescence multiharmonic; PMT, photomultiplier tube; DM, dichroic mirror.
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segmentation (You et al., Label-free deep profiling of 
the tumor microenvironment. To be submitted). The 
DNN architecture was based on ResNet-2019 and  
U-Net20 (20,21). We acquired a large volume of SLAM 
image data (~300 Gigabytes) that was sufficient to be 
partitioned to training, validation, and test datasets. The 
DNN was trained by the four-channel SLAM images and 
nuclei labels. The nuclei labels were manually segmented 
from the SLAM images, serving as the ground truth for 
the training data. The parameters for DNN training 
followed our previously to-be-submitted work in cell 
segmentation (You et al., Label-free deep profiling of 
the tumor microenvironment. To be submitted). After 
training, the optimal model was chosen by evaluating the 
loss function of image segmentation using the validation 
dataset. Finally, the trained DNN was used to segment 
nuclei in the SLAM images from the test dataset. As shown 
in Figure 2B, the red shapes overlaid on the original SLAM 

image represent the nuclei segmented by the trained DNN. 
Furthermore, the DNN-segmented nuclei mask in Figure 
2C was compared to the manually segmented ground truth 
(Figure 2D). From the comparison, it is noticed that the 
DNN-segmented nuclei mask included some small dark 
spots in the lower left corner as false-positive nuclei. The 
quantitative analysis yields a pixel-by-pixel false positive rate 
of 8% and a false negative rate of 4%. Quantitative analysis 
of nuclei segmentation quality was not performed on all the 
image data included in this study due to the labor-intensive 
producing of ground truth by manual segmentation.

In practice, the performance of the deep-learning-based 
segmentation algorithm varies among different SLAM 
images. For the images collected from deeper tissue regions, 
the deep-learning-based segmentation does not work as well 
due to the low image SNR. For instance, the performance 
of the deep-learning-based nuclei segmentation in rat 
mammary tissues starts to decrease beyond the imaging 

Figure 2 Nuclei segmentation from SLAM images. (A) Representative SLAM image containing many nuclei. (B) SLAM image overlaid 
with the segmented nuclei. (C) Segmented nuclei mask by the trained DNN. (D) Ground-truth nuclei mask by manual segmentation for 
quantitative assessment of nuclei segmentation quality. SLAM, simultaneous label-free autofluorescence multiharmonic; DNN, deep neural 
network.
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depth of around 100 µm. Therefore, to compensate for this, 
we also manually segment nuclei from those images where 
deep-learning-based segmentation does not perform well, 
especially the images with relatively low SNR.

Virtual H&E staining by colormap conversion

The formation of SLAM microscopy images relies on the 
generation of nonlinear optical signals from the tissue 
sample, so gray-scale digital images were produced where 
samples appear bright in contrast to a dark background. 
The recorded intensity values in each SLAM image channel 
are related to the concentrations of the targeted molecules 
or structures. On the other hand, the FFPE histology slides 
are typically observed under a bright-field illuminated 
microscope. Therefore, the background of H&E histology 
images is bright, while the tissue components are purple- 
and pink-colored because of the light absorption by the 
staining agents. As previously studied (2), the relation 
between the concentration of N types of staining agents ni 
(i=1, …, N) and the intensity of the H&E histology image Ix 
at a specific color channel x is expressed as:

( )0 ,1
exp N

x x i ii
I I nσ

=
= −∑   [1]

where I0 is the wavelength-independent intensity from the 
illumination and σx,i is the absorption cross-section of the 
ith staining agent at the color channel x. As discussed above, 
the SLAM image intensity is related to the concentration 
of the tissue features that are approximately proportional to 
the concentration of the staining agents. Therefore, we can 
use the intensity of a SLAM image to express the staining 
concentration ni. Taking into account the quadratic and 
cubic power dependence of the nonlinear optical imaging 
modalities and the effects of detection loss, Eq. [1] can be 
rewritten in terms of the SLAM imaging signal intensity 
ISLAM,i:

( )4
0 ,1

exp im
x i x i SLAM,ii

I I k Iσ
=

= −∑  [2]

where ki is the factor to represent the detection loss and mi is 
the power of the nonlinear dependence of the concentration 
ni on the SLAM imaging intensity ISLAM,i.

In H&E-stained histology, hematoxylin (H) and eosin 
(E) are used as the two staining agents. If we consider the 
red (R), green (G), and blue (B) channels (2), which are the 
basic display colors in most digital screens, Eq. [2] can be 
expanded to be:

( ) ( )0 exp expH Em m
R H,R H SLAM,H E,R E SLAM,EI I k I k Iσ σ= − −  [3]

( ) ( )0 exp expH Em m
G H,G H SLAM,H E,G E SLAM,EI I k I k Iσ σ= − −  [4]

( ) ( )0 , , , ,exp expH Em m
B H B H SLAM H E B E SLAM EI I k I k Iσ σ= − −  [5]

The RGB values of σ are determined by the RGB 
decomposition of the color of hematoxylin and eosin in 
H&E histology images.

Hematoxylin primarily stains the DNA in nuclei. 
Shown as the dark voids in SLAM microscopy images, 
the nuclei are segmented based on their morphological 
shape and the negative contrast formed against the bright 
cytoplasm, but not the DNA within the nuclei. As a result, 

the SLAM image intensity Hm
SLAM,HI  within the nuclei cannot 

represent the concentration of DNA, but rather the low 
concentrations of NADH, FAD, and membrane structures 
that do exist in the nuclei. The image intensities within 
the segmented areas of the nuclei were converted into the 
virtual purple-colored nuclei. Although this method does 
not provide the DNA distribution in nuclei, it can still 
faithfully represent the size, shape, location, and other 
aspects of nuclei in the histology-like image results.

Another staining agent in H&E histology, eosin, is 
mostly bound to collagen fibers. The collagen fibers 
are present in the SHG imaging channel with a positive 
contrast. Therefore, the virtual staining of collagen fibers 
can be easily done by substituting the SHG imaging 

intensity of Em
SLAM,EI  into Eqs. [3-5]. In addition to collagen 

fibers, red blood cells are also stained by eosin to become 
more intensely red in conventional H&E histology images. 
In the SLAM images, the red blood cells can be readily 
segmented by manually selecting the regions of blood 
vessels, and Eqs. [3-5] can be modified by adding another 
factor to describe the color of red blood cells:

( ) ( ) ( )0 exp exp exp bloodH E mm m
R H,R H SLAM,H E,R E SLAM,E blood,R blood SLAM,bloodI I k I k I k Iσ σ σ= − − −  [6]

( ) ( ) ( )0 exp exp exp bloodH E mm m
R H,R H SLAM,H E,R E SLAM,E blood,R blood SLAM,bloodI I k I k I k Iσ σ σ= − − −

( ) ( ) ( )0 exp exp exp bloodH E mm m
G H,G H SLAM,H E,G E SLAM,E blood,G blood SLAM,bloodI I k I k I k Iσ σ σ= − − −  [7]

( ) ( ) ( )0 exp exp exp bloodH E mm m
G H,G H SLAM,H E,G E SLAM,E blood,G blood SLAM,bloodI I k I k I k Iσ σ σ= − − −

( ) ( ) ( )0 exp exp exp bloodH E mm m
B H,B H SLAM,H E,B E SLAM,E blood,B blood SLAM,bloodI I k I k I k Iσ σ σ= − − − [8]

( ) ( ) ( )0 exp exp exp bloodH E mm m
B H,B H SLAM,H E,B E SLAM,E blood,B blood SLAM,bloodI I k I k I k Iσ σ σ= − − −

Figure 3 demonstrates the image processing procedure 
for producing histology-like images from the composite 
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SLAM images. From the original SLAM image (Figure 3A), 
the essential tissue features of collagen fibers, nuclei, and 
red blood cells were segmented (Figure 3B). By creating 
RGB-colored images based on the intensities in Eqs. [6-8],  
the color-converted tissue features under virtual H&E 
staining are separately shown in Figure 3C, and the 
composite histology-like image combining these three 
essential tissue features is shown in Figure 3D.

Analysis of nuclear-cytoplasmic ratio

Typically, a high N/C ratio indicates a high likelihood of 
malignancy (22). As a well-defined diagnostic measure in 
cancer, the N/C ratio of the cells within tissue samples was 
quantified from the SLAM imaging data. First, cells were 
manually segmented to determine the area of cytoplasm. 
Next, each cell was co-located with its corresponding 
nuclei. Finally, the N/C ratio was therefore calculated by 
quantifying the number of pixels within the nucleus and 
cytoplasm of each cell using a MATLAB program. A total 
of 61 normal stromal cells and 55 cancer cells from a rat 
mammary tumor were included to represent this analysis. 
Following this analysis, and for visualization, the boundaries 
of the cells were delineated around the nuclei. To indicate 
the N/C ratio of each cell, the delineated cell boundaries 
were subsequently colored according to the value of the 
calculated N/C ratio. The color scale of the cell boundaries 
is based on the “jet” colormap in MATLAB, with red 
indicating a high N/C ratio and blue indicating a low ratio. 
The exact imaged tissue site in this analysis could not be 

located in the conventional H&E histological images due to 
the artifacts introduced in the histological processing.

Results

Correlations with co-located FFPE histology

The acquired SLAM images and converted histology-like 
images were compared with co-located conventional FFPE 
histology to identify the correlated tissue features. As shown 
in Figure 4, multiple correlations of essential tissue features 
were found with a high degree of similarity.

First, the rat endothelial cells within the mammary 
tumor microenvironment are effectively visualized in 
the SLAM image, featured by the elongated cytoplasm 
and nuclei (red arrows, upper-left image in Figure 4). In 
addition, an adipose cell of the same size is identified at the 
same location in all images (blue and white arrows, upper-
left image in Figure 4).

The upper-right image in Figure 4 shows the correlation 
of cancer cells. The images of cancer cells were acquired 
from a site of human invasive lobular carcinoma. In the 
SLAM image, the magenta-colored THG signal intensities 
represent the membrane-rich cytoplasm of the cancer cells. 
These membrane structures can be attributed mainly to the 
extracellular vesicles, which were more actively produced 
and secreted by cancer cells based on previous studies (5,6). 
The SLAM image was acquired intraoperatively from a 
freshly resected human breast tissue specimen, and the 
tumor was buried hundreds of micrometers deep below the 
specimen surface, resulting in a reduced image SNR that 

Figure 3 Virtual H&E staining of segmented SLAM image. (A) A representative SLAM image before segmentation. (B) Segmented 
collagen fibers, nuclei (blue shapes), and red blood cells (encircled by solid red line) from (A). (C) Virtual H&E staining of each segmented 
feature. (D) Composite H&E histology-like image converted from (A). Scale bar applies to all images. SLAM, simultaneous label-free 
autofluorescence multiharmonic.
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makes it difficult to segment all the nuclei from the low-
SNR SLAM image. Therefore, although the SLAM image 
shows many more cells characterized by their THG-intense 
cytoplasm, only a few of their nuclei can be segmented, 
resulting in a lower density.

The stromal cells in the SLAM image were correlated 
with the conventional FFPE histology (lower-left, Figure 4). 
The yellow 2PF signal is generated from the FAD within 
the cell cytoplasm. These stromal cells reside in the space 
between the straightened collagen fibers. A clear difference 
is noticed that the collagen fibers in the SLAM image are 
straighter than in the corresponding FFPE histology due to 
distortion artifacts induced during histology processing (4).

Finally, the histological correlation of a human mammary 
lobule is shown in the lower-right images of Figure 4. In the 
mammary lobule, the collagen fibers form several lobular 
structures for the lobular epithelial cells to reside in, and 
there are also a few epithelial cells surrounding the lobular 
structure. These features are identified with a high degree 
of similarity in both the SLAM and FFPE histology images.

Real-time three-dimensional histology-like imaging

Real-time 3D histology-like imaging was realized 
by the simultaneous detection and nonlinear optical 
sec t ion ing  capabi l i ty  o f  the  SLAM microscope .  
Figure 5 and Video 1 present the time-lapse image sequence 
that captures the motion of blood flow. At this imaging 
site near a rat mammary tumor, the red blood cells 
flow through several blood vessels that are surrounded 
by collagen fibers with scattered stromal cells. With a 
2-second acquisition time per frame, the flowing motion 

of the red blood cells in the unperturbed in vivo tissue 
can be readily identified in the SLAM and converted 
histology-like image sequence (Figure 5 and Video 1).  
In the histology-like images of Figure 5, the trajectories of 
four blood cells in eight continuous frames are delineated 
by black, blue, and green solid lines. The initial positions 
of the first three blood cells are represented by the small 
crosses in the first image (t =0 s). Then, the solid lines 
in each image record the trajectories of the blood cells 
by the time point shown above the image. These time-
lapse trajectories provided a quantitative estimation of the 
blood flow velocity. In Figure 5, the lengths of the three 
trajectories at t =6 s are 21.2, 22.1, and 21.6 µm, separately, 
giving an averaged blood flow velocity of 3.6 μm/s, with a 
standard deviation of 0.1 µm/s. The original SLAM images 
without the marked blood cell trajectories are shown below 
each histology-like image for reference. As time goes by, 
the cell marked by the blue trajectory disappeared in the 
field-of-view at t =8 s. In the meantime, the trajectory of 
the fourth cell began, which is marked by the blue solid line 
again. This result demonstrates the capability of real-time 
histology-like imaging and its potential application.

Video 2 and Figure 6 show the 3D visualization of the 
rat mammary tumor microenvironment, where many 
stromal cells are distributed at different depths within the 
extracellular matrix. The scanning of the image plane was 
realized by a piezo stage to assure the precise increment of 
1.5 µm between each z-stack image in depth. As the focal 
plane changes, each cell nucleus slightly changes size and 
shape. After a certain depth, the nuclei become out-of-
focus and disappear from the image. The depth-resolved 
information of nuclei can be used to implement 3D 

Figure 4 Representative histology correlations of essential tissue features, including human breast cancer cells, stromal cells, mammary 
lobules, and rat endothelial cells. Red arrows indicate endothelial cells. Blue and white arrows indicate adipose cells.
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Figure 5 Time-lapse histology-like images with their original SLAM images (below each histology-like image) visualizing the real-time 
blood flow with 2-second acquisition time per frame. Four blood cells are tracked with colored trajectories to estimate blood flow rates. 
Scale bar applies to all images. SLAM, simultaneous label-free autofluorescence multiharmonic.
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50 μm
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reconstructions. As shown in Video 3, a selected area (green 
dashed box in the first image of Figure 6) was selected to 
reconstruct the 3D tissue structure. The 3D structure 
of collagen fibers and 3D distribution of nuclei can be 
observed in Video 3. For the complex extracellular matrix 
composed of collagen fibers, the 3D orientation of the 
collagen fibers can be readily identified from the histology-
like image stacks. Without physically sectioning the tissue 
specimen, the cell nuclei and collagen fibers remain in 
their natural states throughout the imaging process, free 

of any form of distortion artifacts. Utilizing this approach, 
the 3D distribution and spatial profile of the nuclei and 
collagen fibers can be visualized with much higher accuracy 
compared to conventional FFPE histology as well as 
other virtual histology techniques that still require tissue 
sectioning (14,15).

Quantification of N/C ratio

After segmenting the cells and nuclei from the SLAM image, 
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the N/C ratio of each cell is quantified. Figure 7A shows 
the SLAM image acquired from the microenvironment of 
a rat mammary tumor. Around the tumor boundary, cancer 
and stromal cells were included for N/C ratio analysis. In 
Figure 7A, the cancer cells are densely distributed within 
the mammary tumor at the lower-right of the image, and 
3PF signals are generated from their cytoplasm. On the 
other hand, stromal cells, with 2PF-intense cytoplasm, are 
sparsely distributed within the extracellular matrix. The 

boundaries of these cells are delineated and overlaid on the 
SLAM (Figure 7A) and histology-like (Figure 7B) images to 
demonstrate the size and shape of each cell. By quantifying 
the number of pixels for each cell nucleus and cytoplasm, 
the N/C ratio was subsequently calculated for each cell. 
The N/C ratios of the two types of cells are separately 
plotted in Figure 7C. In each cell group, the N/C ratios 
that are remarkably deviated from the rest of the group are 
identified as outliers (red circles in Figure 7C), and they 

Figure 6 Depth-resolved histology-like images with their original SLAM images (below each histology-like image) providing the three-
dimensional structure of the rat mammary tumor microenvironment. The green dashed box marks the selected area for 3D reconstruction, 
as shown in Video 3. Scale bar applies to all images. SLAM, simultaneous label-free autofluorescence multiharmonic.
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are excluded from the statistical analysis. These outliers 
are probably the result from the limited spatial resolution 
and sampling frequency of SLAM microscopy. The inliers 
represented by the blue circles in Figure 7C give a statistical 
result of 4.08±2.06 for cancer cells, and 1.12±0.68 for 
stromal cells. Therefore, as shown in Figure 7D, the N/C 
ratios of cancer cells are markedly higher than the stromal 
cells, correlating well with pathological findings (22). The 
color of the delineated boundaries represents the N/C 
ratio of each cell, and it is observed that the boundaries of 
the stromal cells are generally bluer than the cancer cells. 
These colored cell boundaries indicating the N/C ratio are 
overlaid on the SLAM (Figure 7A) and converted histology-

like images (Figure 7B). The computationally quantified 
N/C ratio and this presentation method of overlaying cell 
boundaries with color scales serve as useful tools in addition 
to the histology-like imaging to assist in cancer diagnosis.

Discussion

This work presents real-time 3D histology-like imaging 
that is achieved by SLAM microscopy followed by feature 
segmentation and color transformation. By bypassing all 
the tissue processing procedures involved in conventional 
FFPE histology, this new imaging technique can provide 
histology-like color contrasts directly from even untreated 

Figure 7 Quantified N/C ratio of selected cancer and stromal cells in (A) a SLAM image and (B) a converted histology-like image. Color 
bar indicates the value of N/C ratio. (C) Inliers and outliers of N/C ratio in each cell group. (D) Statistical comparison of stromal cells versus 
cancer cells in terms of their N/C ratio. SLAM, simultaneous label-free autofluorescence multiharmonic.
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in vivo tissues, enabling the observation of unperturbed 
tissue features and dynamics, such as blood flow, as well 
as 3D cell distribution and tissue morphology. The 
histology-like contrast makes these in vivo image features 
more interpretable by pathologists, promoting the 
clinical translation of nonlinear optical microscopy. The 
biological information available by this new histology-
like imaging technique will not only give more insight 
into cancer investigations, but also potentially supplement 
current cancer diagnostics by providing new biomarkers or 
quantitative metrics, such as the computationally quantified 
N/C ratio and blood flow velocity. In particular, the unique 
features in SLAM images can be presented as new layers 
of contrast to overlay on the histology-like image. The 
overlaying of the cell boundaries colored according to the 
corresponding N/C ratio serves as one example of how 
the additional virtual imaging contrast provided by SLAM 
microscopy can improve and supplement histological 
imaging.

With these demonstrated merits and advantages, there 
still remain several improvements to be made on this 
imaging technique. The most evident limitation in this 
work is the absence of positive image contrast from the 
DNA within the cell nuclei. Therefore, the histology-like 
images only provide the location, shape, and size of the 
nuclei, while the actual DNA distribution within the nuclei 
cannot be retrieved and presented. Label-free visualization 
of cell nuclei, nucleoli, and DNA has been a long-standing 
challenge in the optical imaging community. The most 
promising approach is to use coherent Raman imaging 
techniques, such as coherent anti-Stokes Raman scattering 
(CARS) and stimulated Raman scattering (SRS) to identify 
the Raman signatures of the DNA (14,23). We are currently 
working on integrating coherent Raman imaging modalities 
into SLAM microscopy, without compromising system 
performance, to provide positive contrast for nuclei. 
In addition to CARS and SRS, we are also working on 
integrating fluorescence lifetime imaging (FLIM) into the 
SLAM imaging system to offer more diagnostic biomarkers.

Furthermore, it is noticed that the similarity between the 
real H&E histology images and the virtual H&E images is 
not as high as some previously demonstrated virtual H&E 
imaging approaches (12,13,15). This is mainly attributed 
to the fact that we used fresh untreated tissues to conduct 
in vivo or ex vivo imaging in real time. The tissues used to 
make the conventional histology were fixed and distorted 
after imaging and during the tissue processing. We believe 
the reduced similarity is the compromise we have to make 

to achieve these unique histology imaging capabilities like 
real-time virtual H&E video recordings and 3D histology 
imaging.

It was mentioned earlier that the DNN-based nuclei 
segmentation does not work well for low-SNR images, such 
as the images collected from deep tissue. This issue mainly 
resulted from the limited training data that relies on the 
labor-intensive and time-consuming manual segmentation. 
Therefore, the DNN model trained by the limited data was 
not very robust to noise. There are three future directions 
that might lead to the solution of this issue, including deep-
learning-based image denoising, a larger amount of training 
data, and a refined design of the deep neural network.

Potential improvements can also be made on the 
imaging speed and FOV. The current image acquisition 
time is about 2 seconds per 350×350 µm2 FOV, making 
the assessment of the entire tissue specimen rather time-
consuming for routine clinical diagnosis. To address this, 
our lab is currently developing next-generation SLAM 
microscopy that can increase the current imaging speed by 
at least an order-of-magnitude. In addition, fast imaging 
techniques like optical coherence tomography (OCT) can 
be integrated to grossly scan the entire specimen (24) and 
identify areas suspicious of cancer, followed by SLAM 
microscopy of these areas to provide the detailed local tissue 
contrasts necessary for generating the histology-like images.
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