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Introduction

Glioma is a type of tumor account for approximately 30% 
of all brain and central nervous system tumors and 80% of 
all malignant brain tumors (1). Low-grade gliomas (LGG) 

are a group of WHO grade II and grade III brain tumors 

and tend to evolve to higher grade glioma (2). Magnetic 

resonance imaging (MRI) is a promising non-invasive 

imaging technique for brain structural mapping and 
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analysis. MRI can be implemented to detect brain tumors 
including gliomas due to its ability to generate unique soft-
tissue contrast and high image resolution in humans (3).

Brain tumor segmentation is to extract the specified 
clinical information and diagnostic features from brain 
tumor images by separating the tumor from other 
normal brain tissues (4,5). The information extracted by 
segmentation plays an important role in diagnosis, staging 
and treatment (6). Based on MRI’s property, segmentation 
of MRI LGG images could benefit significantly to clinical 
diagnosis and research.

Artificial intelligence (AI) technology has demonstrated 
a tremendous success in MR imaging reconstruction and 
analysis (7,8). In the application of MR image segmentation, 
AI can be used to implement automatic image segmentation 
and significantly improve the efficiency of image processing 
and analysis. Machine learning is a subset of AI technology 
coined in 1959 by Arthur Samuel (9,10). It is an algorithm 
which solves the problem by learning through experience 
and improves itself without human intervention (11). 
Machine learning is widely applied in analyzing MRI brain 
tumor images, including normal (e.g., white matter and 
gray matter) and abnormal (e.g., brain tumors) brain tissue 
segmentation (3). Based on morphological differences 
between normal and abnormal tissues illustrated in MR 
images, machine learning algorithms can be set to perform 
LGG segmentation automatically.

Based on the utilization of labels of a dataset, machine 
learning can be classified into different categories as 
supervised learning, semi-supervised learning, and 
unsupervised learning (12,13). In supervised learning, all 
samples are combined with two parts: input observations 
(features) and output observations (labels) (9).  In 
unsupervised learning, all samples have only one set of 
observations or features and possess no labels. Therefore, 
the system will try to find out relations between all samples 
and to cluster samples in the same class together by 
itself (13). Semi-supervised learning is a combination of 
supervised learning and unsupervised learning, which uses 
both labeled and unlabeled data for training (14). In this 
study, all the image data obtained have the corresponding 
mask, which can be considered as labels. Therefore, all 
work presented in this paper will be focused on supervised 
learning. 

There have been several machine learning algorithms. 
Machine learning algorithms are widely applied for MRI 
brain tumor segmentation, such as Bayes, Random Forest, 
k-means, support vector machine (SVM), and artificial 

neural networks (ANNs). Based on the model structure, 
machine learning can be divided into traditional machine 
learning and deep learning. 

Traditional machine learning models are generally 
mathematical algorithms such as linear regression trained 
based on manually organized features; while a deep learning 
model is a combination of several connected neurons 
learning directly from raw data (11).

SVMs are advanced traditional machine learning 
algorithms for binary and non-linear problems. With 
the ability to transfer non-linear problem to linear, SVM 
demonstrated its advantages in MR image segmentation 
applications (15).

Deep learning is a special subset of machine learning. 
In deep learning, the model of ANNs is used. ANNs are 
the basic systems of deep learning and they operate as a 
simplified model of the human brain (16). Convolutional 
Neural Network (CNN) is a type of ANNs, which is 
specified to solve image processing and analysis problems. 
CNN is also widely applied to medical image research due 
to its robust performance (17).

As for brain LGG segmentation of MR images, SVM 
and CNN perform differently. In this work, we will first 
develop the SVM and CNN models to solve the LGG MRI 
segmentation problems, and then compare and analyze the 
performance of two models quantitatively. The results of 
this study could provide model selection suggestions for 
LGG MR image segmentation problems. 

Methods

Dataset

The dataset used in this work contains MR images obtained 
from The Cancer Imaging Archive (TCIA) (https://
wiki.cancerimagingarchive.net/display/Public/TCGA-
LGG) together with manual fluid-attenuated inversion 
recovery (FLAIR) abnormality segmentation masks. Images 
correspond to 109 patients included in The Cancer Genome 
Atlas (TCGA) LGG collection (https://www.cancer.gov/
about-nci/organization/ccg/research/structural-genomics/
tcga) with at least FLAIR sequence and genomic cluster 
data available. Each patient has over 20 pairs of images and 
corresponding mask data. The dataset is open source and 
free to download (https://www.kaggle.com/mateuszbuda/
lgg-mri-segmentation#TCGA_CS_4943_20000902_11_
mask.tif). Each MR image is an RGB three-channel image 
with 256×256 pixels in each channel. Each image also has a 

https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation%23TCGA_CS_4943_20000902_11_mask.tif
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation%23TCGA_CS_4943_20000902_11_mask.tif
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation%23TCGA_CS_4943_20000902_11_mask.tif
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corresponding mask image with the same size but only one 
channel. Figure 1 shows two pairs of images and masks from 
two patients.

In this data set, some MR images with less information, 
such as only black images without clear brain anatomic 
structures, are removed manually to prune the data set to 
make it perform better in training. Finally, 2,470 MRI and 
mask image pairs are selected to make up the dataset.

SVM

SVM is a strong supervised machine learning model for 
binary and non-linear classification problems based on the 
Statistical Learning Theory (15).

Founded in An Introduction to Support Vector Machines 
and Other Kernel-based Learning Methods (18) and Guo  
et al.’s research (19), SVM constructs a hyperplane called 
the optimal separation hyperplane (OSH) in the feature 
space to separate the two classes and retain the maximum 
margin between the two classes, thereby achieving binary 

classification. Assume there is a data set { } 1
, l

i i i
D x y

=
= , 

where d
ix R∈  is input samples in which i is the number of 

samples and d is the dimension of xi’s features, { }1,1iy ∈ −  
is the label of xi, and l is the length of the dataset, and it 
can be separated by OSH as x⸳w0+b0=0 with minimized 
generalization error. H is the OSH, H1 and H2 are two 
hyperplanes parallel to H and crossing the points closet to H. 
The distance between H1 and H2 is called margin and data 
points on them are called Support Vectors (SVs). Figure 2 
shows the basic idea of SVM.

Algebraically, the classification problem is set as:
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Resolving Eq. [2] requires solving the quadratic 
programming (QP) problem (20), which is described as:
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In the QP problem, ai is Lagrange multipliers. All 
coefficients ai that are not 0 are marked as 0

ia  and each 
of 0

ia  corresponds to an SV data point and these SVs 
determine the OSH. Only these data points are related to 
the solution of this problem. So, the parameters w0 and b0 of 
OSH can be calculated as:

0
0

1

 
NSV

i i i
i

w a x y
=

= ∑  [4]

( )( ) ( )( )* *
0 0 0

1 1 1
2

b w x w x = ⋅ + ⋅ −   [5]

NSV is the number of SVs and ( )* 1x  and ( )* 1x −  are 
SVs from class +1 and class -1, respectively. Once the QP 
problem is solved, w0 and b0 of OSH are generated and the 
classifier function can be written as:

Figure 1 Two pairs of brain tumor MRI images and corresponding masks from two patients. MRI, magnetic resonance imaging.

(a) (b)
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As the classifier function is shown, solving the QP 
problems is the key to train SVM.

For non-linear problems, the original input set of 
variables x needs to be projected to a higher dimension 
space and the kernels are implemented. A kernel is a 
function K with project Φ:

( ) ( ) ( ), Φ ΦK u v x v= ⋅  [7]

So, the SVM with the kernel is defined as:
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∑  [8]

Gaussian kernel {Eq. [9]} is a widely used kernel in non-
linear problems due to its properties that affect less to the 
points distant from separation boundary (15). In Eq. [9], 
u and v are points in feature space and K (u,v) is Gaussian 
similarity of u and v. By applying a Gaussian kernel, new 
features of a point are created as Gaussian similarities of the 
point and all SVs in the original feature space, in order to 
achieve the transformation of nonlinear to linear problems.

( )
2

22
/, u vK u v e δ

− −
=  [9]

CNN

ANNs are the basis of deep learning. It is a kind of 
computing systems with neural structures similar to 

biological brains (16). ANNs are composed of connected 
units or nodes called artificial neurons, which are similar 
to biological neurons. Data enter the ANN system with an 
input layer, are then calculated by one or more subsequent 
hidden layers, and finally end at an output layer, which 
represents the prediction or result (as shown in Figure 3). In 
the ANNs architecture, every connection of two neurons 
is assigned a weight that represents the weighing of input 
neuron on output neuron. One neuron can have more 
than one input or output connections (21). The input to a 
neuron is computed by a weighted sum of its former layer 
outputs and connection weights. For example, an input 
layer is written as a i×1 matrix Ii, in which i is the number of 
inputs, while the output layer h1 has j neurons and is written 
as a j×1 matrix 1

jH . The weights between these two layers 
will be a i×j matrix, written as wi×j. The calculation will 
be 

1T
i j i jw I H× ⋅ = , and this weighted sum function is called 

propagation equation (22).
The training of an ANN is to make predictions as close 

to real outputs as possible by adjusting weights and other 
parameters in the network to improve the accuracy which 
can be observed as reducing the training error. Training 
error is measured by a function called loss function or cost  
function (11). In binary classification, cross-entropy is usually 
used as loss function {Eq. [10]}, in which y is real condition 
and p is predicted condition. Backpropagation (BP) is a 
primary used algorithm in training ANNs for supervised 
learning. BP uses the chain rules to compute the gradient 
of the cost function with respect to every weight and adjusts 
weights with gradient descent to reduce the loss (23). This 
computation will be a huge job, because an ANN usually has 
millions of parameters to be trained and millions of data need 
to be processed when passing through the layer. Therefore, a 
powerful computer is essential for training ANNs.

( ) ( ) ( )( )log 1 log 1L y p y p= − + − −  [10]

CNN is a type of ANNs specifically used for image 
processing problems or some other computer version  
field (17). CNNs consist of convolutional layers, activation 
layers, pooling layers, fully connected layers, an input layer, 
and an output layer. CNN preserves spatial relationships in 
the data by passing inputs through the layers that retain the 
original relationship of inputs data and each operation of layers 
operates on a small region of the previous layer (Figure 4) (11).

CNNs are widely applied to medical image segmentation 
problems (24-29). Fully convolutional network (FCN) is 
a type of CNN proposed for segmentation problems (30). 
A specified CNN called “U-Net” is widely used for image 

Optimal 

Separation 

Hyperplane 

(OSH)

× Class A sample

o Class B sample

Support Vectors

Margin

H1

H2

Figure 2 The basic idea of SVM. SVM, support vector machine.
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segmentation problem. U-Net was initially developed for 
biomedical image segmentation based on the FCN (28,30). 
The network consists of a contracting path and an expansive 
path, which makes its architecture to have a U-shape. 
The left part is the contracting path, which is a typical 
convolutional network, while the right part is the expansive 
path that consists up-convolutions and concatenations with 
features from the contracting path (Figure 5) (28). The 
spatial information is reduced while feature information 
is increased in the contracting path, and the spatial 
information will be restored in an expansive path to make 
sure the prediction and input have the same spatial size. 
The feature information is extracted by the whole network.

In this work, U-Net is applied as CNN for MRI brain 
LGG segmentation problem.

Model evaluation

It is important to evaluate the performance of a model 
once it gets trained. Generally, model evaluation includes 
accuracy, confusion matrix, precision, recall, and F1 score.

The confusion matrix is a specific 2×2 table that 
visualizes the performance of a machine learning model. 
Four cells represent the number of false positives (type I 
error), false negatives (type II error), true positives, and true 
negatives (31). Detailed information is shown in Table 1.

Accuracy is the ratio of correct predictions to total 
predictions, as expressed in Eq. [11]. It directly shows the 
classification ability of a model. However, high accuracy 
sometimes doesn’t mean high performance of the model 
if the data is unbalanced. For example, in MR image 
segmentation, if the image has only 1% of tumor region and 
the model predicts the image has no tumor, the model still 
achieves 99% accuracy. But it is indeed unable to classify 
any tumor pixels we expect.

   
 

True positives True NegativesAccuracy
All predictions

+
=  [11]

Precision is the proportion of the true positives among 
all positives indicating the accuracy of model positive 
classification {Eq. [12]} (31).

  
  

True positivesPrecision
True positives False positives

=
+

 [12]

Recall is the proportion of condition positives that are 
correctly classified indicating the detection sensitivity to all 
positives {Eq. [13]}.

  
  

True positivesRecall
True positives False Negatives

=
+

 [13]
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Figure 3 Artificial neural network architecture.
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Figure 5 U-net architecture (example for 16×16 pixels in the lowest resolution). All arrows are data transmission flows.
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F1 score is a comprehensive evaluation calculated as the 
harmonic average of precision and recall {Eq. [14]}. Model 
reaches its best with a F1 score of 1 (32).

1  2 Precision RecallF
Precision Recall

⋅
= ⋅

+
 [14]

SVM experiment
SVM model system used in this study
The framework of the system has 4 main steps as shown 
in Figure 6: (I) data preprocessing including conversion 
to grayscale image and feature extraction, (II) training 
the SVM model, (III) prediction, and (IV) prediction 
improvement. 

Data preprocessing for SVM
Data preprocessing includes two parts: conversion to 
grayscale image and feature extraction. Conversion to 
grayscale is using a function to convert three-channel 
original RGB image to one-channel 8-bit gray image. 
Feature extraction is the application of several spatial filters 
on the original grayscale image to generate multiple filtered 
images that can be considered as different features.

MR images are RGB images which have three channels. 
Conversion to grayscale images which only have one image 
channel can reduce the data size, thereby shortening the 
training time and reducing the variance. Moreover, one-
channel grayscale images are also suitable for subsequent 
feature extraction using spatial filters.

The image segmentation model is trained to classify 

each pixel of the image, so each pixel is a sample. Pixels 
of original data have only one feature: their own original 
pixel values, which also means more features need to be 
extracted. Texture information including those detected by 
applying spatial filters can be considered as features (33).

After data preprocessing, several filtered images are 
generated as different features for following training.

Building SVM models
The initial training set was MR images of multiple patients. 
However, due to large differences in MR images of different 
patients, the training bias is high, resulting in poor model 
performance. In order to improve the performance of the 
model, only one patient’s MR image, which has 256×256 
pixels and should be enough for training, is used for each 
model training which also means each model is only suitable 
for the same patient.

One MR image with clear tumor region is selected 
manually as the training set. To ensure the accuracy and 
sensitivity of the model, the sample size difference between 
the two classes (normal pixels, level 0 and tumor pixels, 
level 1) should not be too large. Usually, there are much 
more normal pixels than tumor pixels, so all tumor pixels 
are selected for the training dataset to ensure the sensitivity 
of the model, and twice the number of pixels are randomly 
selected from the normal part. In this example, the class 1 
set has 5,936 pixel samples and the class 0 has 10,872 pixel 
samples.

Scikit-learn, a machine learning library in Python, is 
used to build the model. Seventy percent of pixels in both 
classes are chosen randomly for the training set and the rest 

Figure 6 Overview of the SVM system. SVM, support vector machine.
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of them are test set. It took a few seconds to train the SVM 
model on Google Colab cloud server with powerful CPUs 
and GPUs.

SVM prediction improvement
Other MR images with tumors from the same patient are 
used to make the prediction. Each image needs the same 
preprocessing as the image used for training to ensure that 
they have the same feature channels before prediction.

All pixels that classified by model as tumor pixels 
are marked as class 1. Because of misclassification, the 
prediction mask images usually have several pieces of masks 
and also some small holes inside the masks. Assuming there 
is only one tumor region in each image, we need to remove 
all small pieces and filling holes, which will significantly 
improve the result (Figure 7).

CNN experiment

Data augmentation for CNN
Training a CNN requires a big dataset. Small dataset 
will cause overfitting, which means model will only 
memorize the training data, suppressing the ability of 
CNN to generalize to unseen invariant data (34,35). Data 
Augmentation is a method that artificially inflates the 
dataset size without obtaining more data by using some 
transformations on original images such as dropping, 
padding, rotating, and horizontal flipping (34,36). In this 
work, the total number of MR images is 2,746, which is far 
from enough to prevent overfitting. In this study, all images 

in the training set are flipped horizontally, and then the 
original image and the flipped image are rotated by 90, 180, 
and 270 degrees, consequently expanding the training set by 
8 times. All masks are flipped and rotated in the same way 
to their corresponding images.

The initial training set consists of 2,470 MR image pairs 
(90%) randomly picked and the other 276 pairs (10%) are 
used as test set to make sure there are enough data for each 
set. After augmentation, the training set was expanded by 
8 times to reach 19,760, which is reasonably large for this 
study.

Building CNN architecture
The U-Net architecture was built in Keras library in 
Python. The U-Net architecture used in this work is shown 
in Figure 5. It has input with 256×256×3 pixels, which makes 
the minimum resolution of 16×16, because each one of four 
pooling layers reduces them by twice. Spatial resolutions 
of all layers are shown in Figure 5. Activation functions 
in all convolutional layers are set as rectified linear unit  

(ReLUs) (37), defined as ( ) 1
1 xS x

e−=
+

. Dropout regularization 
technique is used to prevent overfitting (38).

All filter kernels are 3×3. Parameters in each layer are 
initialized with the initialization algorithm by He et al. (39). 
1,941,105 parameters in total need to be trained in this 
U-Net network.

Training the U-Net
Overfitting may also occur when the model is over-trained. 
The model will over-memorize the training set and perform 

Figure 7 Prediction before (A) and after (B) improvement.

Predicted mask Improved predicted maskA B
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poorly on the testing set (35). However, if the model is not 
adequately trained, underfitting will occur, where models 
cannot capture the relationship between features and target 
labels. To prevent overfitting and underfitting, the training 
should be ended at an appropriate time. Cross-validation is 
used to monitor training.

Cross-validation is a data resampling method to 
assess the generalization ability of predictive models and 
to prevent overfitting (40). In this work, the dataset is 
randomly separated into a training set and a validation 
set. The model is fit on the training set and then predicts 
the validation set for each training epoch. By calculating 
the loss function of the validation set, the training of the 
model is monitored. When error of the validation set is not 
reducing, the training is ended to prevent over-fitting. In 
this work, 25% of the training data are randomly assigned 
for validation just as general.

Cross entropy {as expressed in Eq. [10]} is set as a 
loss function for both training and validation. Adam 
optimization algorithm (41) is used to improve training. 
The Adam optimization wil l  adjust  learning rate 
automatically based on training performance to prevent 
slow coverage or oscillation of training (Figure 8) and also 
optimize weight adjustment for the BP during training. The 
initial learning rate is set to 1 × 10−5, while β1 and β2 of the 
Adam optimization are set to 0.1 and 0.001 respectively.

The network is also trained on Google Colab cloud 
server. The batch size is set to 32, so 32 images are used for 
each forward and back propagations. One training epoch is 
that all 14,820 images of training set were fed to the model 
once, so each epoch includes 14,820÷32≈464 batches of 

forward and back propagations. The network will be trained 
300 iterations (approximately 7 hours) or until validation 
loss is not improved for 20 iterations with the powerful 
GPU of Google Colab. In our study, the training stopped 
at 71st iterations, which means that model was trained 
best at 51st epoch. The whole training process finally took 
approximately 2 hours. Figure 9 shows the model accuracy 
and loss of both training and validation sets. Only the best 
trained one will be saved and used for prediction. 

Results

SVM data preprocessing

In order to extract more features for training in this work, 7 
different filters selected manually are applied to the original 
image to generate 7 filtered images, each filtered image 
corresponding to a feature channel. These filters include 
Sobel filter (42), Gabor filter (43,44), Canny Edge filter (45), 
two Gaussian filters (46) with different parameters, Median 
filter, and Variance filter. This process is to extract some 
spatial information or relation of images. Thus, values of 
the filter parameters do not affect training results too much. 
Together with the original image, each sample now has 8 
features (Figure 10).

SVM prediction and evaluation

One hundred and nine models are built for all 109 patients. 
The prediction results of one well-performed model is 
shown as follows.

Figure 8 Slow converge (A) and oscillation (B) of training. If the learning rate is too small, the convergence will be too slow, making the 
training speed too slow. If the learning rate is too large, the oscillation occurs.

Model

Loss

Model

Loss
A B
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For the patient A who has 6 images from dataset for test, 
the model achieved a training accuracy of 0.960. Figure 11 
shows the prediction result with the ground truth.

The contrast of MR images of some patients is not high, 
so some models perform not well. Patient B which has three 
images for test is one of patients whose MR image contrast 
is low (Figure 12). As shown in Figure 12, the contrast 
between glioma and normal tissue in MR images are low. 
It’s even difficult to identify glioma lesions manually.

Evaluations are based on model predictions of other 
testing images from the patient whose MR image is used to 
train the model. All models are evaluated after training.

For the model trained on patient A, the model achieved 
a reasonable prediction performance with an accuracy of 
0.984, a precision of 0.689, a recall of 0.934, and an F1 score 
of 0.793. The confusion matrix of the model is presented in 
Table 2.

All 109 models are evaluated. Model performance in 
terms of Accuracy, Precision, Recall and F1 score are 
illustrated in boxplot (Figure 13), which is a method to 
graphically depict digital data sets by quartiles in descriptive 
statistics (47).

The four parameters used in model evaluations are also 
shown in Table 3. All models with F1 score smaller than  
0.5 will be considered as models with poor performance. 
Sixty-seven models achieved F1 score greater than 0.5. 
Therefore, the SVM method used in this work is applicable 
to 67 of 109 patients.

CNN prediction and evaluation

The test set consists of 276 MR images. The outputs are 
from Sigmoid function, so all of output value are between 0 
and 1. All prediction pixels whose values are larger than 0.5 
will be considered as a glioma tumor pixel. Figure 14 shows 
12 randomly selected predictions and their corresponding 
ground truth.

CNN evaluation

All pixels of 276 images in test set are predicted by the 
model. The model achieves an accuracy of 0.998, a 
precision of 0.999, a recall of 0.999, and an F1 score of 0.999. 
It is nearly a perfect trained model. The confusion matrix is 
shown in Table 4.

By comparing the training and performance of 
SVM and CNN method, similarities and differences 
between these two methods are concluded. Table 5  
summar i ze s  the  compar i son  o f  SVM and  CNN 
performances on the problem of segmenting MR images of 
this low-grade glioma of the brain.

Discussion

In the SVM method, only high contrast brain LGG MR 
images are applicable. The accuracy of the SVM model is 
relatively low in contrast to that achieved by using the CNN 
model, but its recall rate is relatively high, which indicates 

Figure 9 Model accuracy (A) and loss (B). Initially, the model accuracy increases and the loss decreases rapidly with a high learning rate and 
then learning rate decays by Adam optimization. Validation loss stops decreasing and reaches its lowest at 51st epoch, so the model at 51th 
epoch is the best trained model to be saved.
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Figure 10 Filtered images (original image plus 7 filtered images).

Original image                                          Sobel Edge filterd                                      Gabor filtered                                        Canny edge filtered

Gaussian s3 filtered                                   Gaussian s7 filtered                                     Median filtered                                         Variance filtered

Case 1                                                                            Case 2                                                                            Case 3

Case 4                                                                            Case 5                                                                            Case 6

Ground Truth                       Prediction                            Ground Truth                      Prediction                           Ground Truth                         Prediction

Ground Truth                       Prediction                            Ground Truth                       Prediction                           Ground Truth                         Prediction

Figure 11 Results and their corresponding ground truth of patient A.
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Figure 12 Results and their corresponding ground truth of patient B.

Case 1                                                                                                                               Case 2

Case 3

Ground Truth                                           Prediction Ground Truth                                           Prediction

Ground Truth                                           Prediction

that the SVM model is sensitive enough to the target 
glioma pixels. Features are extracted by applying manually 
selected filters. The model learns from those features to 
generate its mathematic classification algorithm. In practice, 
different filters might be chosen for specific applications to 
gain the desired performance. However, in the SVM model 
developed for LGG MR image segmentation, manually 
selected types and parameters of the generic filters are 
not always able to fit the data well. This might negatively 
impact the performance of the SVM model. Additionally, 
the SVM model is a patient specific model and has to be 
trained for each individual patient.

A well-trained CNN usually predicts nearly perfectly if a 
significantly large data set is provided. The CNN model has 
multiple convolutional layers and consists of a large number 

of filters for feature extraction. The parameters or weights 
of the filters are automatically adjusted epoch by epoch 
according to the learning outcome in order to achieve an 
approximately perfect model. During the training process, 
image features are extracted layer by layer, and ultimately no 
complex algorithms are needed for classification. Unlike the 
SVM model, the trained CNN model is not patient specific 
and can segment brain LGG MR images in different patients.

Image quality of the dataset used for training SVM and 
CNN models might affect the performance of LGG MR 
image segmentation. Higher signal-to-noise ratio (SNR) 
and contrast-to-noise ratio (CNR) of the dataset should 
produce more accurate results although there is no linear 
relationship between SNR/CNR and F1-score in this study. 
Thus, using high field technique and advanced acquisition 

Table 2 SVM model result confusion matrix of patient A

Predictions Condition positive (glioma) (pixels) Condition negative (normal) (pixels)

Predicted positive (glioma) (pixels) True positive =12,035 False positive (type I error) =5,443

Predicted negative (normal) (pixels) False negative (type II error) =844 True negative =374,894

SVM, support vector machine.
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strategies for better SNR (48-54) and CNR (55-58) to 
generate training data should be advantageous for the LGG 
MR image segmentation. 

The evaluation study indicates that the CNN model 
performs better than the SVM model on the brain low-
grade glioma MR imaging segmentation problem. One of 
the reasons is that the CNN architecture contains a large 
number of parameters (usually millions) to deal with various 
complex problems. This fact requires high performance 
computers and long hours (usually dozens of hours) in 
model training. Compared to the CNN model, the SVM 
model requires much shorter time and has nearly no special 
requirements on the computing capability. The CNN 
model also requires a drastically large data set, which makes 
the training set expensive. In this work, the CNN model 
was trained by using thousands of MR images with manually 
created masks, while each SVM model requires only one 
MR image and mask pair as the training set. Therefore, the 
training set for SVM is much cheaper. Although in SVM, 

a specific model has to be built for each patient, the task is 
still manageable, given dramatically shortened computation 
time of only a few seconds.

Conclusions

In this study, two machine learning models, SVM and 
CNN, are developed for LGG MR image segmentation. 
The experimental results demonstrate that both SVM 
and CNN models are capable of segmenting LGG MR 
images reliably and accurately. Training of SVM model 
requires only one image per patient, which significantly 
shortens the computation time to a few seconds. The 
CNN model outperforms the SVM model in accuracy, 
precision, recall, and F1 score. But the training of 
the CNN model is slow, usually taking a few hours 
with high-performance computers, and also requires a 
significantly enlarged data set, which sometimes is not 
readily available in practice.

Table 3 Evaluation of 109 models

Model evaluations Average Median

Accuracy 0.937 0.976

Precision 0.456 0.535

Recall 0.878 0.906

F1 score 0.546 0.662

Figure 13 Boxplot of model performances. 
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Ground Truth                      Prediction

Ground Truth                      Prediction

Ground Truth                      Prediction

Ground Truth                      Prediction

Ground Truth                      Prediction

Ground Truth                      Prediction

Ground Truth                      Prediction

Ground Truth                      Prediction

Ground Truth                     Prediction

Ground Truth                     Prediction

Ground Truth                     Prediction

Ground Truth                     Prediction

Case 1                                                                                  Case 2                                                                         Case 3

Case 4                                                                               Case 5                                                                           Case 6

Case 7                                                                               Case 8                                                                           Case 9

Case 10                                                                               Case 11                                                                         Case 12

Figure 14 Twelve randomly selected predictions and corresponding ground truth, demonstrating the excellent performance of CNN in 
LGG MR image segmentation. CNN, convolutional neural network; LGG, low-grade glioma.

Table 4 Confusion matrix of U-Net

Predictions Condition positive (glioma) (pixels) Condition negative (normal) (pixels)

Predicted positive (glioma) (pixels) True positive =17,814,952 False positive (type I error) =19,403

Predicted negative (normal) (pixels) False negative (type II error) =23,154 True negative =230,427
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