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Introduction

Inflammation is characterized by redness, swelling, heat, and 
pain, and is a defensive response to stimuli such as toxins 
and pathogens (1). Inflammation has been shown to play 
an important role in many diseases, such as osteoarthritis 
(OA), neurodegenerative disorders, and trauma (2-4). 
Inflammatory disorders bring great pain and financial 
burden to those affected. However, there are currently few 
suitable anti-inflammatory drugs. Clinically, nonsteroidal 
anti-inflammatory drugs (NSAIDs) or corticosteroids are 
generally used to subdue inflammatory responses, both 
of which have clear side-effects, such as gastrointestinal 
reactions, renal dysfunction, increased risk of infection, and 
so on (5,6).

Low-intensity pulsed ultrasound (LIPUS) is a form 
of ultrasound that delivers at a much lower intensity  
(<3 W/cm2) than traditional ultrasound and outputs in 
the mode of pulse wave (7), which has therapeutic effects. 
However, until now, LIPUS has not been accurately defined. 
The following parameters are widely used: pulse frequency 
of 1.5 MHz, pulse repetition frequency of 1 kHz, and the 

spatial average temporal average intensity of 30 mW/cm2 
of the LIPUS transducer’s surface area (8). As a physical 
therapy, LIPUS has been applied in many areas, including 
the musculoskeletal and nervous systems, dentofacial tissue, 
and others (8-10). In contrast with traditional drug therapy 
and invasive treatments, LIPUS works by emitting pulsed 
acoustic waves to specific regions, which is non-invasive and 
tolerable, with very minimal side effects. The therapeutic 
effects of LIPUS are mostly attributed to its non-thermal 
effects, predominantly cavitation, acoustic streaming, and 
acoustic radiation force. Cavitation, occurring in a liquid 
or liquid-like material, is considered to be associated with 
the changes of membrane permeability and activation of 
cells (11). Acoustic streaming, especially micro-streaming, 
is responsible for the diffusion rate and alteration of protein 
synthesis, cellular secretion, and sonoporation (12). Acoustic 
radiation force is capable of influencing the cardiovascular 
and nervous systems (13). Although the thermal effect of 
LIPUS is very limited because of its low intensity, it should 
still be considered when used in some temperature-sensitive 
situations, particularly when some enzymes, collagenase, 
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and the nervous system are implicated. It is reported 
that thermal deactivation is one of the most important 
mechanisms in the denaturation of enzymes induced by 
LIPUS (14).

In recent years, physical therapy has been widely 
discussed, especially in terms of inflammation (15-17). In the 
past, physical therapy was mainly used in rehabilitation. But 
with the deepening of research, researchers have revealed 
the potential of physical therapy in mediating inflammation. 
For example, Chen et al. reported that extracorporeal 
shock wave therapy attenuated cyclophosphamide-induced 
acute interstitial cystitis in rats, which was initially a 
physical treatment for kidney stones (18). Gardner et al.  
reported that exercise therapy improved circulating 
markers of endothelium-derived inflammation in patients 
with peripheral artery disease (19). These findings suggest 
that physical therapy is a promising anti-inflammatory  
method (20). The physical therapy that is LIPUS has 
also attracted significant attention. Initially, LIPUS was 

used to promote tissue repair. It could accelerate wound 
healing, decrease edema, and soften scar tissue (21). These 
changes were partly ascribed to the effect of LIPUS on 
the inflammatory phase of the repair process (22). To 
date, LIPUS has been confirmed to regulate inflammatory 
responses in many fields. The underlying mechanism has 
been shown to be related to the alteration of cytokines 
and signaling pathways. Here, we review the application 
of LIPUS in inflammatory situations, including both 
experimental studies and clinical applications.

Experimental study

Many basic studies, both  in vivo and in vitro , have 
accumulated regarding the role of LIPUS in inflammation. 
Multiple studies have also explored the underlying 
mechanisms of LIPUS. In this section, we review the 
application of LIPUS in inflammation at the cellular level 
(Table 1).

Table 1 The application of LIPUS in experimental study

Targets cells Sources LIPUS parameters Results

White cells Nagata  
et al. (4)

A frequency of 3 MHz with a spatially averaged intensity of  
30 mW/cm2 and pulsed 1:4 (2 ms on and 8 ms off)

Decreasing the number of inflammatory 
infiltrate cells (lymphocytes, plasma cells, 
macrophages, and neutrophil leukocytes)

Hsieh  
et al. (23 )

A frequency of 1.0 MHz, irradiation intensity of 0.1 W/cm2 and 
20% duty cycle for 20 min per treatment session

Decreasing lymphocytic inflammatory 
infiltration

Signori  
et al. (24)

A frequency of 1MHz, an intensity of 0.4 W/cm2 and ISATA  
0.08 W/cm2

Promoting neutrophils and monocytes 
to surgical incision in the biceps femoris 
muscle in rats at 1 hour post-surgery

da Silva Junior 
et al. (25)

A frequency of 1 MHz and medium intensity of 0.4 W/cm2 in 
1:5 pulsed mode

Reducing the number of neutrophils one 
day after injury

Montalti  
et al. (26)

A frequency of 1.5 MHz, 1:4 duty cycles and ISATA  
30 mW/cm2

Increasing inflammatory infiltration on TA 
muscle repair after 7 days in cryoinjured rats

Macrophages Zhang et al. (1) A frequency of 1.5 MHz, a pulse duty cycle of 1:4, a pulse 
repetition frequency of 1.0 kHz and various intensities (10, 30, 
60, and 90 mW/cm2)

Alleviating the expression of inflammatory 
factors induced by LPS in macrophages.

da Silva Junior 
et al. (25)

A frequency of 1 MHz and medium intensity of 0.4 W/cm2 in 
1:5 pulsed mode

Reducing in the number of M1 macrophages 
after one day and Increased the number of 
M2 macrophages after two days

Zhang  
et al. (27 )

A frequency of 1.5 MHz, 20% duty cycle and 30 mW/cm2 Suppressing the production of mature 1L1β 
in macrophages

Ogata  
et al. (28 )

A frequency of 1.875 MHz, pulse repetition frequency  
4.90 kHz, number of cycles 32, voltage applied to each 
transducer element, 17.67 volts (V), and ISPTA 117–162 mW/cm2

Attenuating macrophage infiltration

Zheng  
et al. (29 )

A frequency of 1 MHz, duty cycle of 20%, pulse repetition 
frequency of 100 Hz, output intensity of 0.5 W/cm2,  
100 mW/cm2 ISATA

Inhibiting the expression of pro-inflammatory 
cytokines in macrophages.

Table 1 (continued)
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Table 1 (continued)

Targets cells Sources LIPUS parameters Results

Vascular 
Endothelial 
Cells

Shindo  
et al. (30 )

A frequency of 1.875 MHz, pulse repetition frequency  
4.90 kHz, number of cycles 32, voltage applied to each 
transducer element, 17.67 volts (V), and ISATA 117–162 mW/cm2

Enhancing angiogenesis and ameliorates 
left ventricular dysfunction

Ogata  
et al. (28)

A frequency of 1.875 MHz, pulse repetition frequency  
4.90 kHz, number of cycles 32, voltage applied to each 
transducer element, 17.67 volts (V), and ISATA 117–162 mW/cm2

Attenuating perivascular fibrosis

Li et al. (31 ) A frequency of 1MHz, pulse repetition frequency of 1.5KHz, 
ISATA 47.12 mW/cm2, pulse width of 200 ms and intensity 
distribution of 1-100mW/cm2

Suppressing the oxidative stress-induced 
endothelial-Mesenchymal transition

Dendritic 
cells(DCs)

Li et al. (32 ) 1.5MHz frequency pulses, with a pulse width of 200 ìs, 
repeated at 1 kHz and 30 mW/cm2 ISATA

Increasing the amount of of miRNA-16 and 
miRNA-21

Wang et al. (33 ) Center frequency: 1.1 MHz; duty factor: 10%; repetition 
frequency: 100 Hz

Promoting DCs mature in the tumor 
microenvironment

Osteoblasts Tang et al. (34 ) A frequency of 1.5 MHz, 200ms burst width with repetitive 
frequency of 1 kHz at the intensity of 30 mW/cm2

Increasing PGE 2 formation and the protein 
and mRNA levels of COX-2

Bandow  
et al. (35 )

A frequency of 1.5MHz, 200-msec burst sine waves at  
1.0 kHz, and an intensity of 30mW/cm2

Increasing the expression of RANKL, MCP-
1 and MIP-1β

Nakao et al. (2) A frequency of 1.5 MHz, 200 ìs burst sine waves at  
1.0 kHz, and was delivered at an intensity of 30 mW/cm2

Inhibiting LPS-induced mRNA expression of 
RANKL, CXCL 1 and CXCL 10

osteoclast Feres et al. (36 ) A square envelop with duration of 200 ms, a carrier frequency 
of 1.5 MHz and an intensity of 30 mW/cm2

Increasing osteoclast resorptive activity in 
the absence of osteoblasts

Chondrocytes Uddin  
et al. (37 )

A frequency of 1 MHz, an intensity of 30mW/cm2 with a pulse 
duration of 200ìs repeated at 100Hz

Inhibiting the catabolic action of IL-1β

Jia et al. (38 ) A frequency of 0.6 MHz, pulse repetition frequency of  
300 Hz, 120 mW/cm2ISATA and a duty cycle of 20%

Decreasing the concentration of PGE2  
and NO.

Synovial cells Nakamura  
et al. (39 )

A frequency of 3 MHz with a spatial-average intensity of  
30 mW/cm2, and pulsed 1:4 (2 ms on and 8 ms off)

Inhibiting COX-2 and PGE2 expression 
induced by IL-1β

Nakamura  
et al. (40 )

A frequency of 3 MHz with a spatial-average intensity of  
30 mW/cm2 and pulsed 1:4 (2 ms on and 8 ms off)

Reducing Cox-2 expression and synovial 
hyperplasia in vivo

Sato et al. (41 ) A frequency of 3 MHz with a spatial-average intensity of  
30 mW/cm2, and pulsed 1:4 (2 ms on and 8 ms off).

Suppressing synovial hyperplasia and 
synovial cell proliferation

Glial cell Chen et al. (42 ) A frequency of 1.0 MHz with 528 mW/cm2 ISPTA Reducing neutrophil infiltration, and 
microglial activation

Chen et al. (43 ) A frequency of 1.0-MHz, a duty cycle of 20% with  
528 mW/cm2 ISPTA

Inhibiting the activation of astrocytes and 
reducing the protein levels of TNF-α, IL-1β, 
and IL-6 in the mice brain induced by LPS

LIPUS, low intensity pulsed ultrasound; ISPTA, spatial peak temporal average intensity; ISATA, spatial averaged-temporal intensity; LPS, 
Lipopolysaccharide; IL1β, Interleukin 1β; PGE 2, prostaglandin E2 ; COX-2, cyclooxygenase-2; RANKL, Receptor Activator for Nuclear 
Factor-κB Ligand; MCP-1, monocyte chemotactic protein 1; MIP, macrophage-inflammatory protein; CXCL, the C-X-C motif chemokine 
ligand; NO, Nitric Oxide; TNF-α, Tumor Necrosis Factor α.
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White blood cells
As we know, white blood cells play a key role in the 

repair process. After an injury, the inflammatory response 
is activated, and white blood cells are recruited to clean 
up foreign material, inhibit bacterial infection, and 
subsequently help orchestrate the tissue repair response (44).  
As time goes on, inflammation gradually subsides, and 
injured tissues begin to recover. If the infiltration of white 
blood cells is persistent, inflammation cannot subside, 
leading to tissue damage and fibrosis. It has been confirmed 
that LIPUS promotes the repair of injured tissues, and its 
effect is associated with the inflammatory infiltration stage 
of repair. On the one hand, LIPUS can accelerate tissue 
repair by increasing the infiltration of white blood cells. 
By increasing inflammatory infiltration, the inflammatory 
response is completed, and the injured tissue is advanced 
to the next phase more efficiently (22). For example, 
Signori el al. reported that LIPUS induced neutrophils and 
monocytes to the surgical incision in the biceps femoris 
muscle of rats at 1 h post-surgery (24), which was beneficial 
to form a barrier against the invasion of micro-organisms 
and clean necrotic parts. On the other hand, LIPUS can 
alleviate inflammatory infiltration, which is detrimental to 
repair in the late phase of inflammation. In a muscle injury 
model, caused by cryoinjury of the tibialis anterior (TA) 
muscle in rats, da Silva Junior et al. found LIPUS reduced 
the number of neutrophils 1 day after the injury, which 
minimized tissue damage caused by the release of reactive 
oxygen species, proteases, and other lysosomal constituents 
of these cells (25). Interestingly, Montalti et al. also reported 
that compared to untreated rats, the application of LIPUS 
24 h after the surgical procedure increased inflammatory 
infiltration on TA muscle repair after 7 days in cryoinjured 
rats (26). However, granulation tissue and newly formed 
muscle fibers displayed better tissue structure organization 
in the LIPUS group after 13 days. Although the definite 
mechanism of LIPUS in repair is not clear, these differences 
possibly relate to inconsistencies in the degree of injury. In 
the study by Montalti et al., the injury was severe, which 
meant it required more inflammatory cells to infiltrate and 
more time to repair. The application of LIPUS accelerated 
this process. The improvement in tissue organization in 
the LIPUS group confirmed that LIPUS was beneficial for 
repair.

Moreover, inflammatory infiltration also plays a critical 
role in some inflammatory diseases. Inflammatory cells 
are recruited in the lesion and release proinflammatory 
cytokines, which lead to tissue damage. It has been 

reported that LIPUS also affects inflammatory infiltration 
in inflammatory diseases. Nagata et al. reported that the 
amount of infiltrating inflammatory cells (lymphocytes, 
plasma cells, macrophages, and neutrophil leukocytes) 
on the LIPUS-treated side was decreased significantly 
compared with that on the control side in the TA muscle in 
C57BL/6 mice injured by cardiotoxin (4). They also found 
that LIPUS decreased cyclooxygenase-2 (COX-2) gene 
and protein expression at the late stage in the injured TA 
muscle, which was typically considered proinflammatory. 
Consistently, Hsieh et al. reported that the infiltration of 
inflammatory cells was less apparent in the LIPUS-treated 
group in a post-traumatic knee OA model established by 
anterior cruciate ligament transection and meniscectomy 
in rats (23). There was a significant reduction in cellularity 
and lymphocytic inflammatory infiltration observed in the 
knee joint synovium of the LIPUS group as compared with 
the control group. Inflammatory infiltration in the lesion 
is often considered as a sign of early disease and results in 
pain, edema, and other symptoms. The early inflammatory 
reaction is a possible target for potential therapeutic 
intervention (45). These findings suggest that LIPUS has 
the potential to regulate inflammation in the lesion. Further 
clinical studies are required to investigate this mechanism.

Generally, LIPUS has a bi-directional effect on white 
blood cells. In the early stage of inflammation in repair, 
LIPUS promotes the infiltration of white blood cells, which 
accelerates wound cleaning and is beneficial to repair. And 
in the last stage of inflammation in repair and in some 
inflammatory diseases, LIPUS alleviates the infiltration, 
which prevents tissue damage. However, the underlying 
mechanism is still not clear.

Macrophages

Macrophages participate in immune and inflammatory 
responses. It has been reported that macrophages and 
monocytes are sensitive to biomechanical stimulation 
and distinct mechanical impacts are likely to induce 
different effects on macrophages (46-48). The ultrasound 
pressure wave has been proven to influence the behavior of 
macrophages (35).

In tissue repair, macrophages have been shown to exhibit 
critical regulatory activity at all stages of healing and  
fibrosis (49), and LIPUS can regulate the activity of 
macrophages in the repair process. For example, in a 
cryoinjury rat model, da Silva Junior et al. reported that 
LIPUS led to reductions in the number of M1 (inflammatory 
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Figure 1 The MAPK signaling pathway and NF-κB signaling pathway are mediated by LIPUS through TLR to regulate inflammatory 
responses. When exposed to LIPUS, the TLR/MyD88 complex is inhibited. The down-streaming signaling pathways (NF-κB and MAPK 
signaling pathways) are also suppressed. These changes lead to the decrease of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6, 
and so on. LIPUS, low intensity pulsed ultrasound; TLR, toll-like receptor; MYD88, myeloid differentiation factor 88; MAPKs, mitogen-
activated protein kinases; NF-κB, nuclear factor κB; TNF-α, tumor necrosis factor α; IL-1β, interleukin-1β; IL-6, interleukin-6.

LIPUS

MYD88

MAPKs

pro-inflammatory cytokines

NF-κB

TLR

profile) macrophages after 1 day and increased the number 
of M2 macrophages (anti-inflammatory or reparative 
profile) after 2 days (25). The decrease of M1 macrophages 
suggested that LIPUS prevents persistent inflammatory 
responses in repair. The increase of M2 macrophages 
suggests that LIPUS is beneficial to the repair response. 
Generally, LIPUS can modulate the phenotype of 
macrophages in injured tissue to promote repair, but the 
specific mechanism remains unknown.

Lipopolysaccharide (LPS) is one of the primary 
pathogenic factors in many diseases, such as periodontitis, 
and macrophage cells are 1 of the target cells of LPS. 
Recently, in U937 macrophage cells, Zhang et al. reported 
that LIPUS alleviated the expression of inflammatory 
factors induced by LPS, such as tumor necrosis factor-α 
(TNF-α),  interleukin (IL)-1β ,  IL-6, and IL-8 (1). 
Further, they revealed that this process was modulated 
by suppressing the toll-like receptor 4 (TLR 4) –nuclear 
factor κB (NF-κB) signaling pathway (Figure 1). Zhang et al.  
also reported that LIPUS suppressed the production of 
mature 1L1β in macrophages in a destabilization of the 
medial meniscus (DMM) mouse model made by surgery 

and air pouch model injected LPS (27). They found LIPUS 
inhibited the production of mature IL1β by enhancing 
autophagy flux, which was associated with the autophagy-
mediated degradation of sequestosome-1 (SQSTM1), 
a receptor protein promoting ubiquitinated protein 
degradation, and the autophagic degradation of pyruvate 
kinase isoenzyme type M2 (PKM) in an SQSTM1-
dependent manner (Figure 2). Zheng et al. also reported that 
LIPUS treatment alleviated LPS-induced inflammatory 
response on RAW264.7 macrophage cells (29). In their 
experiment, LIPUS treatment decreased LPS-induced 
elevation of pro-inflammatory cytokines (TNF-α and IL-6)  
and activated caveolin-1. And the phosphorylation of p38 
mitogen-activated protein kinase (MAPK) and extracellular 
signal-regulated kinase (ERK) was inhibited by LIPUS 
(Figure 3). Caveolin-1 is 1 of 3 structural proteins of 
caveolae, flask-shaped plasma membrane invaginations, 
and takes part in cell metabolism, proliferation, and 
inflammatory response (50-53). It is expressed ubiquitously 
in all cells and can be affected by many factors, such as 
shear stress alteration, some proinflammatory factors, and 
so on. Besides, Ogata et al. reported that the macrophage 
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Figure 2 The production of mature IL-1β in macrophages is suppressed by LIPUS. LIPUS enhances the autophagy flux in macrophages, 
which promotes the degradation of SQSTM 1 and PKM in autophagy-dependent way. The decrease of SQSTM 1 and PKM inhibits 
the production of mature IL-1β. SQSTM 1-dependent autophagic degradation of PKM 2 in macrophages. LIPUS, low intensity pulsed 
ultrasound; SQSTM 1, sequestosome 1; PKM 2, pyruvate kinase M2; NLRP3, NLR family, pyrin domain containing 3; IL1β, interleukin 1β.
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Figure 3 The MAPKs signaling pathway is affected by LIPUS through AT1 and caveolin-1 to mediate inflammation. The phosphorylation 
of ERK is induced by LIUPS through AT 1, and this increases the expression of inflammatory cytokines. However, the activation of 
caveolin-1 induced by LIPUS can suppress the expression of inflammatory kinases through MAPKs. LIPUS, low intensity pulsed 
ultrasound; AT 1, angiotensin type 1; MAPKs, mitogen-activated protein kinases; ERK ½, extracellular signal-regulated kinase.
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infiltration was significantly attenuated after irradiation with 
LIPUS in left ventricle pressure-overloaded hearts in mice 
induced with transverse aortic constriction (28).

Overall ,  LIPUS can regulate the phenotype of 
macrophages (decrease M1 macrophages and increase M2 
macrophages) in repair and prevent macrophage infiltration 
in inflammatory diseases. These effects are associated with 
signaling pathways, such as the MAPK and NF-κB signaling 
pathways.

Vascular endothelial cells (VECs)

VECs can sense blood flow-induced mechanical stimuli 
and convert these stimuli into a sequence of biological 
responses (54). This suggests VECs may sense other 
mechanism stimuli, such as LIPUS. Recently, Shindo 
et al. stated that LIPUS enhanced angiogenesis and 
ameliorated left ventricular dysfunction in a mouse model 
of acute myocardial infarction (ligation of the proximal left 
anterior descending coronary artery) (30). They suggested 
that caveolin-1 played a critical role by transmitting the 
mechanical stimuli to intracellular signaling pathways 
with subsequent phosphorylation of Fyn, focal adhesion 
kinase (FAK), ERK1/2, and protein kinase B (Akt), and 
resultantly enhanced the expression of vascular endothelial 
growth factor (VEGF) and angiogenesis. These findings 
suggest that LIPUS can possibly regulate anti-inflammatory 
responses in VECs. Previous studies demonstrated that 
shock wave therapy could improve heart function through 
its anti-inflammatory effects (55). The therapeutic effects 
of shock wave therapy and LIPUS are both caused by 
the mechanical energy from acoustic waves. For some 
diseases, shock wave therapy and LIPUS have similar 
therapeutic effects, such as promoting fracture repair, 
improving erectile function, and protecting cartilage 
tissue (56-58). Therefore, LIPUS seems to also exert 
anti-inflammatory effects in VECs. Recently, Ogata et al. 
reported myocardial perivascular fibrosis was significantly 
attenuated after irradiating with LIPUS in chronic left 
ventricular pressure overload mice (28). They indicated 
that LIPUS therapy attenuated perivascular fibrosis by 
suppressing anti-inflammatory responses; however, the 
mechanism is unknown. In human aortic endothelial cells, 
Li et al. reported that LIPUS produced cytoprotective 
effects against oxidative injuries to endothelial cells through 
suppressing the oxidative stress-induced endothelial-
mesenchymal transition and limiting cell migration and 

excessive extracellular matrix deposition (31). In addition, 
they found the phosphatidylinositol 3-kinase (PI3K)/Akt 
pathway was activated by LIPUS under oxidative stress. 
Activation of PI3K increased the expression of endothelial 
markers (CD31 and VE-cadherin) and decreased the 
expression of mesenchymal markers (FSP-1 and α-SMA) 
(Figure 4). Oxidative stress also exists in inflammation. It has 
been confirmed that the PI3K/Akt pathway plays a critical 
role in inflammation in vascular endothelial cells. Thus, 
LIPUS may exert its anti-inflammatory effects through 
suppressing oxidative stress and activating the PI3K/Akt 
pathway in VECs.

Generally, LIPUS has protective effects on vascular 
endothelial cells. The protective effects can partly ascribe 
to the anti-inflammatory effects of LIPUS. The Caveolin-1 
and PI3K/Akt signaling pathways may be one of the 
underlying mechanisms.

Dendritic cells (DCs)

DCs are specialized antigen-presenting cells, which have an 
important involvement in the induction and amplification 
of immune responses during inflammatory reactions (59,60). 
DCs produce proinflammatory cytokines and exosomes, 
which can release some anti-inflammatory compounds, 
such as microRNAs (miRNAs) (61). The miRNAs regulate 
gene expression post-transcriptionally, function within 
the cells in which they are transcribed, and several specific 
miRNAs (miRNA-145 and miRNA-146a) have recently 
demonstrated an ability to suppress inflammatory immune 
responses (62). For example, Hui et al. reported that 
miRNA-145 attenuated high glucose-induced oxidative 
stress and inflammation in retinal endothelial cells (63). 
Exosomes have been reported as potentially promising 
novel therapeutics for inflammation (64,65). Previous 
studies have indicated that DCs can sense the stimulation 
of ultrasound waves (66). Recently, Yang et al. also reported 
that LIPUS enhanced DC-derived exosome biogenesis and 
docking (67). In an in vitro experiment, Li et al. explored the 
effects of LIPUS for bone marrow dendritic cells (BMDCs) 
in atherosclerosis (AS). They found that the exosomes 
derived from LIPUS-treated BMDCs contained higher 
amounts of miRNA-16 and miRNA-21, which possessed 
anti-inflammatory functions (32). Human umbilical vein 
endothelial cells injected with these exosomes expressed 
less intercellular cell adhesion molecule-1 (ICAM-1) and 
vascular cell adhesion molecule-1 (VCAM-1) and had lower 
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activity of NF-kB signaling in response to TNF-α (Figure 
5). Previous studies revealed that miRNA-16 inhibited 
the activity of the NF-κB signaling pathway through 
suppressing the expression of IκB kinase, and miRNA-21 
limited the activation of the NF-κB signaling pathway 
through inhibiting the expression of proinflammatory 
factors (68,69). Consistently, Li et al. also found that 
exosomes dose-dependently attenuated TNF-α-induced 
p65 phosphorylation and stimulated inhibitory-kB kinase 
α (IKKα) degradation. These findings suggest that LIPUS 
can alleviate inflammations through mediating the exosome 
of DCs.

However, in a tumor microenvironment, DCs become 
immature and deprived of their abilities of antigen-
presenting cells, which contributes to the state of immune 
equilibrium and immune escape (70). It has been reported 
that LIPUS can promote immature DCs to develop into 
mature DCs, which would enhance the inflammatory 

immune response in tumor tissue. The mature DCs 
enriched microenvironment is not favorable for the survival 
of tumors. Wang et al. reported that LIPUS facilitated 
DCs maturation and increased the expression of IL-10, 
interferon (IFN)-γ, and TNF-α, which was not conducive 
to the survival of tumor tissue (33). It suggests that LIPUS 
is harmful to the survival of tumors by enhancing the 
inflammatory response.

In conclusion, DCs can sense the stimuli of LIPUS 
and translate this stimulus into bioeffects to regulate 
inflammation. The DC-derived exosome and NF-κB 
signaling pathways may be involved in this process. In special 
tumor microenvironments, LIPUS promotes mature DCs to 
active the inflammatory immune response within tumors.

Osteoblasts

Osteoblasts, differentiated from mesenchymal stem cells 

Figure 4 Oxidative injuries are alleviated by LIPUS through the activation of the PI3K-Akt signaling pathways. LIPUS can protect vascular 
endothelial cells from oxidative injuries. Under oxidative stress, LIPUS activates PI3K-Akt signaling pathways. Activation of PI3K increases 
the expression of endothelial markers (CD31 and VE-cadherin) and decreases the expression of mesenchymal markers (FSP-1 and α-SMA). 
LIPUS, low intensity pulsed ultrasound; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; FPS-1, fibroblast specific protein; 
α-SMA, α-smooth muscle actin.
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(MSCs), are one of the main cells in bone. Osteoblasts have 
been confirmed to express some inflammatory chemokines, 
such as monocyte chemotactic protein 1 (MCP-1), 
macrophage-inflammatory protein (MIP)-1, regulated 
upon activation normal T cell expressed and secreted factor 
(RANTES), and Interleukin-8 (IL-8) (35,71). Osteoblasts 
are also able to sense the stimuli of LIPUS.

It is recognized that inflammatory cytokines are critical 
for fracture healing (72,73); they promote the proliferation 
and differentiation of MSCs and osteoprogenitor cells, 
which are important to bone remodeling (74,75). As 
mentioned above, osteoblasts can release inflammatory 
cytokines after a fracture. Findings have indicated LIPUS 
could enhance cyclooxygenase-2 (COX-2) gene expression 
and subsequently enhance endogenous prostaglandin E2 
(PGE2) synthesis in various osteoblastic cell lineages (76,77). 
Consistently, Tang et al. reported that LIPUS promoted 
the production of COX-2 and PGE2 (34). The role of 
PGE 2 is essential in fracture healing and stimulates bone 

formation and resorption. Bandow et al. also reported that 
the expression of MIP-1 and MIP-1β mRNA was increased 
by LIPUS more efficiently in differentiated osteoblasts, 
which was caused by LIPUS-induced ERK phosphorylation 
through angiotensin type 1 (AT1) receptor (Figure 3) (35). 
These findings suggest that LIPUS promotes the release of 
inflammatory cytokines in osteoblasts and facilitates bone 
remodeling. It has also been confirmed that LIPUS has an 
impact on osteoclasts. As regulators of mineral metabolism 
in the case of fracture, osteoclasts resorb necrotic bone 
fragments and the necrotic ends of the fractured bone and 
initiate the process of remodeling (73). Feres et al. reported 
that LIPUS increased osteoclast resorptive activity in the 
absence of osteoblasts in RAW 264.7 cells (36). This result 
suggests that LIPUS can also promote the repair of fracture 
by promoting bone absorption.

Interestingly, osteoblasts also play an important role 
in some inflammatory bone diseases. Under the stimuli 
of pathogen-associated molecular patterns, osteoblasts 

Figure 5 An anti-inflammatory effect is exerted by LIPUS by increasing miR-16 and miR-21 in exosomes. LIPUS increases miRNA-16 
and miRNA-21 in exosomes derived from BMDCs. Human umbilical vein cultured endothelial cells preincubated with exosomes from 
LIPUS-treated BMDCs express less ICAM-1 and VCAM-1 and have lower activity of NF-κB signaling in response to TNF-α. miRNA-16 
inhibitsthe activity of the NF-κB signaling pathway by suppressing the expression of IκB kinase, and miRNA-21 limits the activation of 
the NF-κB signaling pathway by inhibiting the expression of proinflammatory factor. BMDCs, bone marrow dendritic cells; LIPUS, low 
intensity pulsed ultrasound; NF-κB, nuclear factor κB; IKK, inhibitor of nuclear factor κB kinase; IκBα, inhibitor of nuclear factor κBα; 
VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intercellular adhesion molecule-1.
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express inflammatory cytokines, which can aggravate 
inflammation in lesions. It has been reported that LIPUS 
has a therapeutic effect on these diseases by regulating the 
activity of osteoblasts. For example, Nakao et al. recently 
reported that LIPUS effectively inhibited LPS-induced 
mRNA expression of receptor activator for NF-κB ligand 
(RANKL), the C-X-C motif chemokine ligand (CXCL), 
1, and CXCL 10 in mouse osteoblast cell line and calvaria-
derived osteoblasts, which suggested LIPUS alleviated 
inflammatory responses (2). Further, they found that 
LIPUS inhibited the formation of toll-like receptor (TLR4)/
myeloid differentiation factor 88 (MyD88) complex, which 
suggested that LIPUS exerted anti-inflammatory effects 
on LPS stimulated osteoblasts by inhibiting TLR4 signal 
transduction (Figure 1). However, it is unknown how the 
TLR4/MyD88 complex formation is inhibited by LIPUS. 
As a pathogenic factor, LPS plays an important role in 
some bone inflammatory diseases, such as arthritis and 
periodontitis. These findings suggest that LIPUS is a 
potential therapy for inflammatory bone diseases.

In conclusion, osteoblasts, as inflammatory regulators 
in bone tissue, can be regulated by LIPUS promotion 
through mediating the inflammatory cytokines released by 
osteoblasts are mediated by LIPUS to promote fracture 
healing and suppress inflammation in inflammatory bone 
diseases. The underlying mechanism is related to some 
signaling pathways such as the MAPK, NF-κB, and TLR 
signaling pathways.

Chondrocytes

C h o n d r o c y t e s ,  t h e  c a r t i l a g e  c e l l s ,  c a n  e x p r e s s 
proinflammatory cytokines under the stimulation of 
inflammation (78,79). These inflammatory cytokines are 
implicated in the damage of chondrocytes; for example, 
IL-1 can induce chondrocyte apoptosis (80). It has been 
reported that chondrocytes are highly mechanosensitive 
(81,82), which suggests they can sense the stimuli of LIPUS. 
In human cartilage explants, Uddin et al. found that LIPUS 
inhibited the expression of IL-1 receptor type 1 (IL-1R1) in 
the presence of IL-1β, making chondrocytes less susceptible 
to the catabolic and inflammatory effects of IL-1β (37). 
Consistently, in an OA model, excising the complete 
medial meniscus and both cruciate ligaments of rabbits, 
Jia et al. reported that LIPUS down-regulated apoptosis 
and reduced inflammatory mediators (PGE2 and nitric 
oxide [NO]) in chondrocytes (38). These findings suggest 
that LIPUS can attenuate inflammation in chondrocytes, 

which protects articular cartilage. Recently, Sahu et al. also 
reported that continuous low-intensity ultrasound could 
repair cartilage in a pro-inflammatory environment by 
inhibiting the activation of NF-κB induced by TNF-α and 
IL-1β in bovine osteochondral explant (83). Continuous 
ultrasound and pulsed ultrasound have been confirmed to 
have similar bioeffects. For example, they can both be used 
to improve endothelial function, alleviate pain, and improve 
physical disability (84-86). Continuous ultrasound produces 
more significant thermal effects than pulsed ultrasound 
when the parameters are the same (87,88). As far as we 
know, the therapeutic effect of low-intensity ultrasound is 
mainly caused by mechanical effects. But the thermal effect 
of ultrasound is inevitable, which increases the temperature 
of and may impair tissue. Therefore, LIPUS seems to be a 
better candidate than continuous ultrasound.

In clinical practice, there is a lack of methods to protect 
cartilage tissue. It has been revealed that LIPUS can prevent 
chondrocytes from inflammatory damage, which presents 
LIPUS as a promising method to ease this situation; 
however, the underlying mechanism is still unknown.

Synovial cells

The synovial membrane is a metabolically active tissue, 
which is susceptible to inflammation (89,90). Under the 
stimuli of inflammation, the metabolism of the synovial 
membrane becomes imbalanced, giving rise to the early 
pathogenesis of some diseases, such as rheumatoid arthritis 
(RA) and OA (91). It has been reported that LIPUS is able 
to regulate synovial cells. For example, exposing rabbit 
knee synovial membrane cell line (HIG-82) to LIPUS, 
Nakamura et al. found LIPUS exposure down-regulated 
COX-2 and PGE2 expression, and up-regulated hyaluronan 
synthase (HAS) 2 and HAS3 expression in IL-1β stimulated 
synovial membrane cells, leading to the promotion of the 
anti-inflammatory system (39). Interestingly, in another 
study, they found LIPUS suppressed the proliferation and 
growth of synovial cells stimulated with IL-1β or TNF-α 
in HIG-82 and reduced COX-2 expression and synovial 
hyperplasia in MRL/lpr mice, a model of RA (40). Similarly, 
Sato et al. reported that LIPUS could mediate synovial 
cell proliferation and apoptosis to inhibit the synovial 
hyperplasia via the integrin/FAK/MAPK pathway in HIG-
82 (Figure 6) (41). We understand that abnormalities 
of hyaluronan metabolism and synovial hyperplasia are 
characteristics of synovial inflammation. These findings 
show that LIPUS can improve hyaluronan metabolism 
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and inhibit synovial hyperplasia; thus, LIPUS appears to 
be a suitable therapeutic candidate for treating synovial 
inflammation.

Glial cells

Glial cells, an important part of the nervous system, 
are essential in neuroinflammatory reactions (92-94).  
The activation of glial  cells  is  a characteristic of 
neuroinflammation, and inflammatory cytokines released 
by glial cells are associated with nerve injury. As a physical 
stimulation, LIPUS has been widely used in nervous 
system pathologies to modulate ion channels, promote 
nerve regeneration, and regulate neuronal function (95-
98). It was recently discovered that LIPUS plays a role in 
neuroinflammation. In cortical impact injury mice, Chen 
et al. reported that LIPUS reduced neutrophil infiltration 
and microglial activation in the injured brain (42). They 

also reported LIPUS inhibited the activation of astrocytes 
and significantly reduced the protein levels of TNF-α,  
IL-1β, and IL-6 in the mice brain induced by LPS. Chen 
et al. also indicated that the anti-inflammatory effects of 
LIPUS might be due to the attenuation of TLR4/NF-
κB-induced inflammation signaling (43). In their studies, 
LIPUS suppressed the expression of TLR4/NF-κB  
pathway-related mediators, including upstream factors 
(TLR4/NF-κB) and downstream factors (TNF-α, IL-1β,  
and IL-6) expression. Glial cells have also been shown 
to play a critical role in Alzheimer’s disease, Parkinson’s 
disease, and epilepsy (99-101). These findings suggest 
LIPUS can inhibit the activation of glial cells, so LIPUS 
may possibly be an effective treatment for those diseases.

Interestingly, it has also been reported that LIPUS 
promotes peripheral nerve regeneration and mediates 
the activity of Schwann cells (102). As we understand, the 
presence of inflammation can prevent nerve repair. It has 

Figure 6 The influence of LIPUS on the integrin/FAK/MAPK signaling pathway to mediate inflammation. LIPUS induces the 
phosphorylation of integrin and FAK. The down-streaming MAPKs signaling pathways are also activated by LIPUS. These changes may 
result in the inhibition of synovial hyperplasia. LIPUS, low intensity pulsed ultrasound; FAK, focal adhesion kinase; MKKK, mitogen-
activated protein kinase kinase kinase; MKK, mitogen-activated protein kinase kinase; JNK, c-Jun N-terminal kinase; ERK, extracellular 
signal-regulated kinase. 
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been found that shock wave therapy promotes peripheral 
nerve regeneration through its anti-inflammatory effects 
(103). As mentioned above, LIPUS is similar to shock 
wave therapy. So, it seems that the effects of LIPUS in 
nerve regeneration are partly achieved through an anti-
inflammatory mechanism.

Generally, LIPUS prevents the activation of glial cells 
in the central nervous system and possibly plays an anti-
inflammatory role in peripheral nerve repair. The TLR and 
NF-κB signaling pathways seem to be involved.

Clinical application

The Food and Drug Administration (FDA) has approved 
LIPUS as a physical therapy to use in accelerating the 
repair of fresh fractures and treating fractures at risk of 
non-union (7,104). Although LIPUS has been widely 
used in clinical research, there are few studies regarding 
its use in inflammation (17,105) (Table 2). In a pilot 
study, Samuels et al. recruited 20 patients suffering from 
venous ulcers, and LIPUS was used as the therapeutic 
tool (106). They tracked a reduction in wound size on 
a weekly basis. Their results showed that LIPUS was-
beneficial for treating venous ulcers. Similarly, in an 8 
patient pilot study, Bajpai et al. reported that diabetic 
ulcers treated with ultrasound showed a significantly 
faster closure rate than sham-treated ulcers (107).  
Moreover, they confirmed that ultrasound-induced healing 
was associated with a reduction in the M1/M2 score, 
which indicated a reduction of inflammation in the treated 

wounds. In their study, all healing ulcers showed a decrease 
in the M1/M2 score over time, while all non-healing ulcers 
showed an increase in the score over time. Recently, Cui 
et al. conducted a multicenter, randomized, double-blind, 
sham-controlled clinical study including 120 patients (108),  
and reported that LIPUS could safely and effectively 
treat patients with mild to moderate erectile dysfunction 
(ED) without significant adverse events. This effect was 
related to the mechanical force of LIPUS being able to 
restore the pathological changes of the corpus cavernosum. 
However, they did not explore the underlying mechanism 
of LIPUS; they simply speculated the anti-inflammatory 
effects of LIPUS might be involved, which required further 
investigation to confirm. The anti-inflammatory effect 
of LIPUS is also thought to be one of the mechanisms 
for alleviating pain, inducing dental root resorption, 
and promoting lumbar spondylolysis repair in patients  
(111-113). Interestingly, in a randomized, clinical trial, 
Cruz et al. reported that LIPUS could improve endothelial 
function in humans by increasing NO production, which 
suggested that LIPUS had anti-inflammatory vascular 
effects (84). Consistently, Hauck et al. reported both 
continuous or pulsed ultrasound could improve endothelial 
function in a randomized clinical trial of 30 patients (109).

It appears that LIPUS is also efficient at treating bacterial 
infection. For example, Feizabadi et al. reported that LIPUS 
decreased the population of Staphylococcus aureus in chronic 
rhinosinusitis patients (110). Karosi et al. exposed nasal 
polyps removed from a patient with chronic rhinosinusitis 
to low-intensity continuous ultrasound (114) and found 

Table 2 The application of LIPUS in clinic

Sources Samples The parameters of LIPUS Results

Samuels  
et al. (106)

20 patients A frequency of 20 kHz or 100 kHz, 100 mW/cm2 ISPTP, a pulse 
repetition frequency (PRF) of 1 Hz and 500 ms pulse duration

Accelerating wound closure

Bajpai  
et al. (107)

8 patients A frequency of 20 kHz, 100 mW/cm2 ISPTP and a pulse repetition 
frequency of 25 Hz

Promoting the reduction of wound 
size

Cui et al. (108) 120 patients A pulse duration time-to-pulse rest time ratio of 1:4 (200 ìs:800 ìs) at 
1,000 Hz, a frequency of 1.7 MHz and 300 mW/cm2 ISATA

Safely and effectively improving 
erectile dysfunction

Cruz  
et al. (84)

42 health 
volunteers

1MHz, 20% duty cycle (2 ms on, 8 ms off), and 0.08 W/cm2 ISATA Improving endothelial function

Hauck  
et al. (109 )

30 health 
volunteers

1MHz and 3Mhz, a 20% duty cycle (2 milliseconds on, 8 
milliseconds off) and an intensity of 0.08 W/cm2ISATA

Improving endothelial function

Feizabadi  
et al. (110)

14 patients 1 MHz, an intensity of 1 W/cm2 and 0.5 W/cm2 and 10% duty cycle Decreasing the S. aureus population 
in chronic rhinosinusitis patients

ISPTP, spatial peak temoral peak intensity; ISATA, spatial averaged-temporal intensity.
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the inflammatory cell count was significantly decreased 
in the sub-epithelial layer of nasal polyps after irritation. 
This antibiotic effects of low-intensity ultrasound may be 
attributed to the destruction of the biofilm structure of 
bacterium caused by cavitation (115). In general, LIPUS, as 
a non-invasive, cheap, and convenient method, is promising 
in clinical settings.

Prospect and limitation

Inflammation, a defensive bodily response, aggravates 
damage, hinders repair, and delays recovery. As a physical 
tool, LIPUS continues to attract the attention of many 
researchers. It has been confirmed that LIPUS can regulate 
multiple cells to mediate inflammatory responses through 
the activation or inhibition of signal pathways. Some 
clinical studies have also confirmed that LIPUS is effective 
at alleviating inflammatory responses. These findings 
indicate that LIPUS is a promising anti-inflammatory 
therapy. Although the effect of LIPUS has been explored 
across many diseases, there are limited papers regarding 
metabolic diseases, such as diabetes and hyperlipidemia. It 
has been confirmed that inflammation plays a critical role 
in these diseases. For example, chronic inflammation has 
been demonstrated to be a key player in the development of 
diabetes and its complications (116-118). The cells involved 
in these diseases, including adipocytes, have been shown to 
respond under the stimuli of LIPUS (119,120). It is possible 
that the anti-inflammatory effects of LIPUS could play 
an important role in the treatment of diabetes, and future 
research should be conducted.

Another use of LIPUS is in tissue engineering; for 
example, LIPUS has been used to promote the proliferation 
and differentiation of MSCs (121-123). Inflammation can 
inhibit the ability of self-renewal and tissue reconstitution 
of stem cells. Basic experiments have reported no obvious 
inflammatory reaction when used stem cells were combined 
with LIPUS, but a slight inflammatory response in the 
absence of LIPUS (124,125). Yang et al. reported that 
LIPUS could mediate exosomes produced by MSCs by 
increasing exosome biogenesis, docking mediators, and 
enhancing extracellular vesicles and exosomes to deliver 
their anti-inflammatory molecules to target cells (67). These 
findings suggest that LIPUS can alleviate inflammation 
in stem cells, which can influence their proliferation and 
differentiation.

There are also some limitations to the use of LIPUS. 
First, the specific LIPUS device and parameters are different 

among individual experiments. Different parameters can 
lead to different results, as it has been confirmed in previous 
studies (126,127). Moreover, LIPUS does not yet have a 
precise definition. Generally, parameters of LIPUS include 
the frequency of 1–3MHz, intensity ranging from 0.02–1W/
cm2, pulse repetition rates of 0.1–1KHZ, and duty cycles of 
20–50% (122). The following parameters are widely used: 
pulse frequency of 1.5 MHz, pulse repetition frequency 
of 1 kHz, spatial average temporal average intensity of 
30 mW/cm2 of the LIPUS transducer’s surface area (8). 
Second, clinical data is lacking; although there are some 
clinical studies, the sample sizes have been small. Recently, 
the therapeutic value of LIPUS has been questioned. In 2 
clinical trials, respectively, including 501 and 62 patients, 
it was indicated that LIPUS had no effect in bone healing 
(128,129). Tarride et al. also reported that LIPUS is not 
cost-effective for fresh tibial fractures (130). Further 
studies are required to confirm the effectiveness of LIPUS. 
Third, the definite mechanism of LIPUS is unknown. It 
has been demonstrated that LIPUS can regulate a broad 
range of inflammatory cytokines to mediate inflammation, 
irrespective of cell types and origin. Although it has been 
shown that some signaling pathways are affected by LIPUS 
stimulation, this only partially illustrates how LIPUS 
works. Some questions remain regarding the mechanisms of 
LIPUS, including how LIPUS influences specific signaling 
pathways. There are newly emerging theoretical models 
which aim to further elucidate the bioeffects of LIPUS (131).

In conclusion, LIPUS, as a safe and convenient method, 
is promising for clinical use, further research is required to 
substantiate these findings.
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