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Introduction

Advanced techniques in cancer treatment such as volumetric 
modulated arc therapy (VMAT) and intensity-modulated 
radiation therapy (IMRT) require precise target localization 
to deliver the radiation to the tumor while minimizing the 
damage to surrounding normal tissues (1). For lung cancer 

treatments, patient respiratory motion induces errors in 
the target localization, and consequently, deviations in the 
dose delivery. To address this, four-dimensional imaging 
techniques, such as 4D-CT and 4D-CBCT, have been 
developed to capture the respiratory motion of the patient 
for treatment planning and delivery (2). 

Deformable image registration (DIR) is often used 
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to register different phases of 4D-CT or 4D-CBCT 
for motion modeling, contour propagation, 4D dose 
accumulation or target localization. DIR is a process of 
transforming different sets of data into one coordinate 
system and establishing a spatial relationship between 
corresponding volume elements in volumetric images via the 
deformable vector field (DVF). For example, by knowing 
the phase-to-phase DVF, dose to tumor and organ at risk 
(OAR) from different phases could be added to evaluate the 
treatment planning, and the contours of planning treatment 
volume (PTV) and OAR can be propagated from one phase 
to other phases (3,4). 

Although plenty of registration methods have been 
proposed in recent years, it is still a challenging problem 
to register two images with large anatomic differences. In 
general, intensity-based (5) or feature-based methods (6)  
aimed at reducing the intensity or structure difference 
between the target and the deformed moving image by 
optimizing the deformation field iteratively. Since the DIR 
is a complex and ill-posed problem with excessive degrees 
of freedom, many constraints regularizing the DVF, such 
as elastic energy (7) and Laplacian term (8), have also been 
proposed to fit the DIR into a well-posed scenario. Despite 
the developments in DIR, the optimization of DVF in most 
conventional methods is still challenging, especially for the 
large anatomic difference in the moving and target images. 
Generally, the conventional DIR algorithm suffers from 
(I) long computational time due to the iterative process, 
(II) manual parameter tuning to achieve the optimal 
performance, which makes the process non-automatic and 
user-dependent and (III) the possibility of being trapped in 
a local optimum. 

Recently, deep learning methods have been introduced to 
address some of the limitations of conventional registration 
methods (9). Kim et al. (10) introduced a patch-based initial 
deformation prediction framework to estimate the initial 
deformation between the moving and the target using 
brain images from HAMMER. The aim of this framework 
is to improve the registration performance of existing 
registration algorithms by providing an initial estimation 
of the DVF. Furthermore, Cao et al. (11) has investigated 
the direct deformable registration using different brain 
image datasets based on a patch-based convolutional 
neural network (CNN) model. It was found that despite 
the variable anatomical differences across the different 
datasets, the trained CNN model from one dataset can be 
transferred to another dataset. These studies demonstrated 
the potential of the patch-based deep learning model as a 

novel method in DIR. 
In this paper, a patch-based CNN is proposed to directly 

register DVF between individual phases of 4D-CT or 
4D-CBCT images.

In the training stage, image patch pairs from the moving 
and target images were used as input, and the network 
is supervised with the reference DVF generated with 
VelocityAI (Varian). In the prediction stage, the trained 
network takes image patch pairs as the input and predict 
the corresponding DVF. This method demonstrated the 
feasibility of using deep learning to register respiratory 
motions. Compared with conventional iterative methods, 
the deep learning method is fast, fully automatic, and user-
independent, making it much more preferable for clinical 
applications. 

Methods

A patch-based CNN architecture is proposed to register the 
4D image pairs (e.g., phase 1, the moving image M, to phase 
n, the target image(s) T, of a 4D-CT volume) to obtain 
the corresponding deformation field ϕ. The reference 
deformation field is generated with VelocityAI (Varian). 
The aim of our network is to establish the local mapping 
between the input image pair. Therefore, our registration 
process has three parts, data preparation, training and 
predicting. All the coding procedures were implemented 
with MATLAB2018a on a PC (Intel Xeon CPU, 32GB 
RAM) using a single NVIDIA Tesla K40s GPU with 12GB 
memory.

Sample preparation

For a pair of moving image M and target image T with 
their deformation vector field ϕ, a patch pair {PM(u), PT(u)} 
and the displacement vector ϕ(u) = (dx,dy,dz) at the same 
position u were extracted, where PM(u) is the patch of 
moving image, PT(u) is the patch of the target image, and 
ϕ(u) is the displacement vector registered by VelocityAI at 
position u. A sample is represented as {PM(u), PT(u)lϕ(u)}. 
The characteristics of the sample were determined by the 
patch center and the patch size. The centers of the patch 
pair determine the location of the patch, and the patch size 
determines the range of features included in the patch pair. 

The patch center points were chosen on a 3-dimensional 
uniform grid across the lung. The density of the grid 
determines the number of samples. In order to ensure 
sufficient training samples, the density was chosen such 
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that the number of patch pair samples is around 20,000. 
The center points sampling density was designed to be 
denser along the superior-inferior direction than the 
anterior-posterior and medial-lateral directions because the 
magnitude of the deformation field along superior-inferior 
direction is generally larger than the other two directions. 
The patch size was chosen to be large enough to cover the 
motion range of the anatomical structures within the patch.

CNN architecture

The workflow and CNN architecture is shown in Figure 1. 
There are four convolutional layers, the kernel number for 
each layer is 64, 128, 256, and 256, and the kernel size is (3 
× 3 × z) with stride (1,1), where (x,y) is the transverse plane 
and z is the axial direction of the input. All the convolution 
operations are performed to keep the size of the output 
the same as the input after each convolutional layer. Each 
convolutional layer is followed by a batch normalization 
layer and a ReLU activation. The first two convolutional 
layers are followed by an average pooling 2-D layer with a 
size of 2×2 and stride of (2,2). Then, a dropout layer with 

20% drop rate connects the last convolutional layer and 
fully connected layer. Finally, the fully connected layer with 
output size 3 connects the output deformation vector ϕ(u) 
= (dx,dy,dz). The loss function is the Mean Squared Error. In 
the training stage, the epochs are 60, the batch size is 128, 
the initial learning rate is 1e-3, and the learning rate drop is 
10% every ten epochs. 

Experimental design

The goal of the network is to predict the DVF that 
registers the input image pair efficiently. In order to 
test the generalizability of our network under different 
circumstances, different studies combining different 
training and testing data sets were used, as shown in Table 1. 
Overall, nine 4D-CT volumes from eight patients with lung 
cancer from Duke University Medical Center were used for 
study 1, 2, 3 and 6. The study was approved by the Ethics 
board of Duke (No.: 00049474) and informed consent was 
taken from all the patients. Also, the 4D-CBCT volumes 
and projections from the public datasets Sparse-view 
Reconstruction Challenge for Four-dimensional Cone-

Figure 1 The CNN architecture and the general workflow of training and testing. CNN, convolutional neural network.
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beam CT (SPARE) (12) were used for study 4 and 5. For 
each dataset, there are 10 phases for the respiratory motion.

Study 1: feasibility study
The training and predicting samples are from the same 
4D-CT volume. The network is trained with learning 
the deformation from phase 1 to phase 6, and it is applied 
to predict the deformation from phase 1 to phase 7. The 
feasibility of CNN for deformable registration was tested 
with this study. 

Study 2: robustness study against inter-fractional 
anatomical differences
The training and predicting samples are from the two 4D-
CT volumes from the same patient with lung cancer. The 
model is trained to learn the deformation from phase 1 to 
all the other phases from the first set of 4D-CT volume, 
and it is applied to predict the deformation from phase 1 to 
all the other phases on the second 4D-CT volume. Two sets 
of 4D-CT volumes were taken at different times. Therefore 
anatomic difference was introduced between training and 
predicting samples to test the network’s robustness against 
inter-fractional anatomical differences. 

Study 3: robustness study against cone-beam sampling 
artifacts
Two simulated 4D-CBCT were reconstructed from 
digital reconstructed radiography (DRRs) generated from 
the double 4D-CT in study 2 based on the cone-beam 
geometry. The training and predicting setup is the same as 
trial 2. The sampling artifacts of cone-beam geometry was 

introduced in this test.

Study 4: robustness study against CBCT artifacts
Two 4D-CBCT volumes were reconstructed with FDK 
methods using the projections from SPARE. The training 
volume is reconstructed with 680 projections/phase for high 
image quality, and the predicting volume is reconstructed 
with 170 projections/phase to mimic the clinic 4D-CBCT 
acquisition. The adaptability of the network to poor image 
quality in predicting volume was tested.

Study 5: robustness study against cross-modality 
differences
A ground truth 4D-CT volume and an FDK-reconstructed 
4D-CBCT volume from Sparse-view Reconstruction 
Challenge for Four-dimensional Cone-beam CT (SPARE) (12)  
were used. The ground truth 4D-CT volume is used for 
training, and the FDK-reconstructed 4D-CBCT is used 
for predicting. There is a tumor in ground truth volume 
but not in reconstructed 4D-CBCT volume; therefore, the 
adaptability of the network to the big anatomic difference 
between training and predicting sets was predicted. In 
addition, the robustness of the network against cross-
modality differences was predicted.

Study 6: robustness study against inter-patient 
anatomical differences
Six 4D-CT volumes from six patients with lung cancer 
from Duke University Medical Center were used. Five of 
them were used as the training samples, and the last one was 
used for predicting. The interpatient anatomic difference 

Table 1 Studies with different training and testing datasets

Number Training Predicting Purpose

1 Single 4D-CT, phase 1 & phase 6 Single 4D-CT, phase 1 & phase 7 Feasibility study

2 4D-CT Another 4D-CT from the same patient Study robustness against inter-fractional 
anatomical difference

3 Simulated 4D-CBCT Another simulated 4D-CBCT from the 
same patient

Study robustness against cone-beam sampling 
artifacts

4 4D-CBCT Another 4D-CBCT from the same 
patient

 study robustness against CBCT imaging artifacts

5 4D-CT 4D-CBCT from the same patient Study robustness against cross-modality 
differences

6 Five 4D-CT from different patients One 4D-CT from another patient Study robustness against inter-patient anatomical 
differences

The first five studies are intra-patient studies. The last one is the inter-patient study.
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between training and testing volumes was introduced. 

Evaluation

For all studies, phase 1 and phase 7 of the 4D images were 
used for testing due to the large deformation between the 
two phases. The output of the network is the deformation 
vectors at control points, which are then used to generate 
the dense deformation vector field at individual voxels based 
on B-spline interpolation. Since each control points only 
have one deformable vector, there was no edge effect to deal 
with in this scheme. For qualitative evaluation, the main 
anatomical features, such as the diaphragm, were compared 
between predicted deformed image and reference deformed 
image. For quantitative evaluation, the cross-correlation, 
root-mean squared error (RMSE) and structural similarity 
index measure (SSIM) between predicted DVF and 
reference DVF obtained from Velocity was calculated. 
Besides the direct comparison of DVF, the deformed 
images by reference DVF and predicted DVF were 
reconstructed, and their cross-correlation was calculated in 
the diaphragm region. The diaphragm motion is one of the 
most representative features of the respiratory motion. It is, 
therefore, the region of interest in our analysis. 

Results

Overall, our CNN network can perform decent DVF 
predictions, and the test results against VelocityAI (Varian) 

were shown below. In terms of computational time, the 
training of our network is around two hours, and the 
prediction time is within a few seconds per phase. 

The result of study 1

In study 1, the training and the predicting samples were 
from the same 4D-CT volumes (e.g., training samples are 
phase 1 and phase 6 with associated reference DVF, and 
the application samples are phase 1 and phase 7. Note that 
only the result showing registering of phase 1 to phase 7 
is shown in the paper, due to the most noticeable motion 
between these two phases). The coefficients of cross-
correlation of whole body DVF and image in the diaphragm 
region between reference and prediction are both 0.99. The 
coefficients of cross-correlation, root mean squared error, 
as well as structural similarity, were shown in Table 2. The 
comparison of the image were shown in Figure 2.

The result of study 2

In study 2, the training and predicting samples are from 
different 4D-CT volumes but the same patient. The 
coefficients of cross-correlation of whole body DVF and 
image in the diaphragm region between reference and 
prediction are 0.91 and 0.99, respectively. The coefficients 
of cross-correlation, root mean squared error, as well as 
structural similarity, were shown in Table 3. The comparison 
of the image was shown in Figure 3.

Table 2 The cross-correlation, root mean squared error (RMSE), and structural similarity (SSIM) of study 1

Evaluation metrics Phase 1 Deformed phase 7ref Deformed phase 7pred

Cross-correlation

Phase 7 0.77 0.95 0.94

Deformed phase 7ref – – 0.99

RMSE

Phase 7 222 110 122

Deformed phase 7ref – – 51

SSIM

Phase 7 0.43 0.55 0.52

Deformed phase 7ref – – 0.87

The coefficient of cross-correlation has a significant improvement after the deformation with our network, and the reference deformed 
image and predicted deformed image has very high similarity.
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Figure 2 The (A) moving image (phase 1), (B) reference deformed image and (C) predicted deformed images are shown respectively for 
study 1. The horizontal lines were drawn for the reference of the diaphragm and fiducial marker. The red arrows indicate the main features 
of the lung. 

Figure 3 The (A) moving image (phase 1), (B) reference deformed image and (C) predicted deformed images are shown respectively for 
study 2. The horizontal lines were drawn for the reference of the diaphragm and fiducial marker. The red arrows indicate the main features 
of the lung. 

Table 3 The cross-correlation, root mean squared error (RMSE), and structural similarity (SSIM) of study 2

Evaluation metrics Phase 1 Deformed phase 7ref Deformed phase 7pred

Cross-correlation

Phase 7 0.84 0.97 0.95

Deformed phase 7ref – – 0.98

RMSE

Phase 7 171 68 80

Deformed phase 7ref – – 55

SSIM

Phase 7 0.44 0.66 0.56

Deformed phase 7ref – – 0.69

The coefficient of cross-correlation has a significant improvement after the deformation with our network, and the reference deformed 
image and predicted deformed image has very high similarity.

A B C

A B C
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The result of study 3

In study 3, the training and application samples are from 
different 4D-CBCT volumes, which are FDK-reconstructed 
with simulated DRRs from the double 4D-CT in study 2. 
The projections used for reconstruction is 340 per phase 
for both training and application volumes. The coefficients 
of cross-correlation of whole body DVF and image in the 
diaphragm region between reference and prediction are 0.77 
and 0.97, respectively. The coefficients of cross-correlation, 
root mean squared error, as well as structural similarity, 
were shown in Table 4. The comparison of the image was 
shown in Figure 4.

The result of study 4

In study 4, the training and predicting samples are from 
different 4D-CBCT volumes but the same patient. The 

coefficients of cross-correlation of whole body DVF and 
image in the diaphragm region between reference and 
prediction are 0.90 and 0.96, respectively. The coefficients 
of cross-correlation, root mean squared error, as well as 
structural similarity, were shown in Table 5. The comparison 
of the image was shown in Figure 5.

The result of study 5

In study 5, the training volume is the ground truth 
volume of SPARE Challenge, and the application volume 
is the 4D-CBCT, which is FDK-reconstructed with 680 
projections per phase. The training and application volumes 
are from the same patient. The coefficients of cross-
correlation of whole body DVF and image in the diaphragm 
region between reference and prediction are 0.78 and 0.95, 
respectively. The coefficients of cross-correlation, root 

Table 4 The cross-correlation, root mean squared error (RMSE), and structural similarity (SSIM) of study 3

Evaluation metrics Phase 1 Deformed phase 7ref Deformed phase 7pred

Cross-correlation

Phase 7 0.84 0.98 0.96

Deformed phase 7ref – – 0.97

RMSE

Phase 7 93 35 43

Deformed phase 7ref – – 36

SSIM

Phase 7 0.44 0.72 0.65

Deformed phase 7ref – – 0.68

The coefficient of cross-correlation has a significant improvement after the deformation with our network, and the reference deformed 
image and predicted deformed image has very high similarity.

Figure 4 The (A) moving image (phase 1), (B) reference deformed image and (C) predicted deformed images are shown respectively for 
study 3. The horizontal lines were drawn for the reference of the diaphragm and fiducial marker. The red arrows indicate the main features 
of the lung. 

A B C
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Figure 5 The (A) moving image (phase 1), (B) reference deformed image and (C) predicted deformed image are shown respectively for 
study 4. The horizontal lines were drawn for the reference of diaphragm and fiducial marker. The red arrows indicate the main features of 
the lung.  

Table 5 The cross-correlation, root mean squared error (RMSE), and structural similarity (SSIM) of study 4

Evaluation metrics Phase 1 Deformed phase 7ref Deformed phase 7pred

Cross-correlation

Phase 7 0.84 0.98 0.94

Deformed phase 7ref – – 0.96

RMSE

Phase 7 128 41 68

Deformed phase 7ref – – 58

SSIM

Phase 7 0.59 0.63 0.54

Deformed phase 7ref – – 0.67

The coefficient of cross-correlation has a significant improvement after the deformation with our network, and the reference deformed 
image and predicted deformed image has very high similarity.

mean squared error, as well as structural similarity, were 
shown in Table 6. The comparison of the image was shown 
in Figure 6. 

The result of study 6

In study 6, the inter-patient study was conducted. The 
training samples were from five 4D-CT from 5 different 
patients with lung cancer. The application set is another 
4D-CT from a new patient. The coefficients of cross-
correlation of whole body DVF and image in the diaphragm 
region between reference and prediction are 0.5 and 0.91, 
respectively. The coefficients of cross-correlation and 
comparison of images were shown in Table 7 and Figure 7. 

Discussion 

The network predicts the deformation vectors in the center 

of the input patch. The coefficients of cross-correlation 
of the deformation vectors between the reference and 
the prediction are 0.99, 0.91 and 0.90 for study 1, 2 and 
4 respectively and 0.77, 0.78 and 0.5 for study 3, 5 and 6 
respectively. As shown by the comparison, the study 1, 2 
and 4 showed a better performance than study 3, 5 and 
6 in the performance of matching between the reference 
and the prediction. There are two reasons that contributed 
to the performance differences. The first reason is the 
image quality, which largely affects the feature extracting 
performance of the network, and therefore affects the 
learning and prediction efficiency of the network. Study 3 
and study 5 both have poor image quality performance when 
reconstructing 4D-CBCT volumes, and it may contribute 
to inaccurate learning and predicting of deformation 
vectors. The second reason is the large anatomic difference 
between training and predicting image volumes. The 
network will extract the features and learn the respiration 

A B C
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Figure 6 The (A) moving image (phase 1), (B) reference deformed image and (C) predicted deformed image are shown respectively for study 
5. The horizontal lines were drawn for the reference of the diaphragm and fiducial marker. The red arrows indicate the main features of the 
lung. 

Table 6 The cross-correlation, root mean squared error (RMSE), and structural similarity (SSIM) of study 5

Evaluation metrics Phase 1 Deformed phase 7ref Deformed phase 7pred

Cross-correlation

Phase 7 0.88 0.98 0.95

Deformed phase 7ref – – 0.95

RMSE

Phase 7 112 42 68

Deformed phase 7ref – – 69

SSIM

Phase 7 0.64 0.75 0.65

Deformed phase 7ref – – 0.65

The coefficient of cross-correlation has a significant improvement after the deformation with our network, and the reference deformed 
image and predicted deformed image has very high similarity.

Table 7 The cross-correlation, root mean squared error (RMSE), and structural similarity (SSIM) of study 6

Evaluation metrics Phase 1 Deformed phase 7ref Deformed phase 7pred

Cross-correlation

Phase 7 0.74 0.92 0.86

Deformed phase 7ref – – 0.95

RMSE

Phase 7 239 109 151

Deformed phase 7ref – – 119

SSIM

Phase 7 0.29 0.46 0.36

Deformed phase 7ref – – 0.45

The coefficient of cross-correlation has a significant improvement after the deformation with our network, and the reference deformed 
image and predicted deformed image has very high similarity.

A B C
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pattern from the training image volume. If the image 
volume for prediction is from a new patient or changed 
dramatically, which is the case of study 6 and study 5, the 
feature learned by the network will be different from that 
in the new patient’s anatomy, leading to degradation of the 
registration accuracy. Besides, the patient data used covered 
a variety of patient scenarios in terms of tumor location and 
motion patterns. These may affect the reconstructed phase 
images and, consequently, the accuracy of the registration. 

However, as shown in Figures 2-7 referenced with red 
lines and arrows, the prediction and reference images have 
a good match in the main features such as in the diaphragm. 
The coefficients of cross-correlation between the reference 
image and predicted image are all above 0.9 for all the cases 
in the region of the diaphragm, which also indicates the 
good match between the predicted image and the reference 
image. 

Studies 3, 5 and 6 do not have high coefficients of cross-
correlation in comparison of deformation vectors, but 
they have a good matching in the image comparison. This 

contrary indicates the network is able to predict accurate 
deformation vectors at the edge of the feature. For the 
smooth region such as the liver, it is difficult for the network 
to learn the features in the region to generate an accurate 
deformation vector prediction. 

In order to improve the registration performance of our 
network in the inter-patient scenario, two things will be 
explored in future studies. The sample size will be increased 
to cover more patients, and a more sophisticated model will 
be adopted. However, as suggested in the latest paper (13),  
increasing in sample size will not further increase the 
performance of the network after achieving a saturation 
sample size. Therefore, a careful choice of sample size is of 
importance to balance the performance of the network and 
the efficiency of training.

Figure 8 shows the potential application of our network, 
which is the contour propagation from phase 1 to all the 
other phases. Figure 8A shows the axial view of phase 1 
with a manual contour on the liver in study 2, and Figure 
8B shows the same slice but the deformed contour with our 

Figure 7 The (A) moving image (phase 1), (B) reference deformed image and (C) predicted deformed image are shown respectively for 
study 6. The horizontal lines were drawn for the reference of diaphragm and fiducial marker. The red arrows indicate the main features of 
the lung. 

Figure 8 The phase 1 with manual contour (green contour) on liver (A), and the phase 7 with CNN deformed contour (red contour) on 
liver (B) for study 2. The liver boundary and the contour have a good match. CNN, convolutional neural network.

A B C

A B



747Quantitative Imaging in Medicine and Surgery, Vol 11, No 2 February 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(2):737-748 | http://dx.doi.org/10.21037/qims-19-1058

network. Our network achieved an excellent performance 
registering the boundary of features. In the clinic scenario, 
the physician only needs to contour on phase 1, and our 
model will perform the automatic contour propagation to 
other phases. Then the registration accuracy will be revised 
by physicians. It potentially improves contour efficiency and 
contour consistency, and consequently, the efficiency of the 
treatment flow will be increased.

A main advantage of using CNN to register phase-to-
phase DVF is its fast speed. Our CNN network only takes 
a few seconds to predict the DVF even for large image 
volumes. In contrast, the VelocityAI takes around 1 min 
to calculate the DVF. Furthermore, our deep learning 
method is fully automatic without human intervention. In 
contrast, Velocity requires manual tuning of the parameters, 
which is highly dependent on the user experience and can 
significantly prolong the registration process.

Despite the network showing decent registration 
performance in the main features of respiration, there 
are some limitations to this method. First, the control 
points were chosen uniformly. The result of this is that 
some patches containing no features will be included 
in the training samples, and the network cannot learn 
anything from the patch pair without corresponding 
features. Therefore, useless patches will affect the learning 
efficiency of the network. Second, the reference DVF used 
for supervision of the network training has inaccuracy 
itself. The Velocity uses a smoothing and regularization 
function derived from B-spline to optimize the free-form 
deformation, but such regularization limits the ability to 
deform small localized warping and therefore affects the 
accuracy (14). 

In our work, the network is to mimic the deformation 
procedures of Velocity and the accuracy of prediction is 
limited by the accuracy of the Velocity DVF. In order to 
get rid of this limitation, an unsupervised network directly 
learns the deformation from the moving image to the target 
image can be considered. 

Conclusions

The feasibility and generalizability of using deep learning 
to register phase-to-phase respiratory DVF from 4D 
images were demonstrated using 4D-CT/CBCT images. 
CNN based deep learning achieved comparable deformable 
registration accuracy as Velocity. Compared to Velocity 
registration, the deep learning method is faster and fully 
automatic without user dependency, which makes it more 

preferable in clinical applications. 
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