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Background: Discriminating the subtypes of non-small cell lung cancer (NSCLC) based on computed 
tomography (CT) images is a challenging task for radiologists. Although several machine learning methods 
such as radiomics, and deep learning methods such as convolutional neural networks (CNNs) have been 
proposed to explore the problem, large sample sizes are required for effective training, and this may not be 
easily achieved in single-center datasets.
Methods: In this study, an automated subtype recognition model with capsule net (CapsNet) was developed 
for the subtype discrimination of NSCLC. CapsNet utilizes an activity vector to record the relative spatial 
relationship of image elements that can subsequently better delineate the global image characteristics. CT 
images of 72 adenocarcinoma (AC) and 54 squamous cell carcinoma (SCC) patients were retrospectively 
collected from a single clinical center. The cancer region on the CT image was manually segmented for 
every subject by an experienced radiologist, and CapsNet, CNN, and four radiomics models were then used 
to construct the recognition model.
Results: The study demonstrated that CapsNet achieved the best discriminative performance (accuracy 
81.3%, specificity 80.7%, sensitivity 82.2%) although its area under the curve was just marginally better than 
that of the optimal random forest (RF) based radiomics model. Not surprisingly, the performance of the 
CNN was only comparable to the other radiomics models.
Conclusions: This study demonstrated that CapsNet is a viable potential framework for discriminating 
the subtypes of NSCLC, and its use could be extended to the recognition of other diseases especially in 
limited single-center datasets.
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Introduction

Lung cancer is the leading cause of cancer-related death 
in the world (1). Non-small cell lung cancer (NSCLC) 
accounts for about 89% of all types of lung cancers, and 
adenocarcinoma (AC) and squamous cell carcinoma (SCC) 
are the two major histological subtypes of NSCLC (2).  
Current advancements in the precision therapy for 
NSCLC are dependent on the accurate differential 
diagnosis of the histopathological subtypes of NSCLC 
(3,4). Histopathological examination of tumor tissue via 
biopsy or surgery is the golden criterion for diagnosing 
AC and SCC in routine clinical practice. However, both 
procedures are invasive and costly. Specifically, biopsies and 
cytological examinations of small pieces of tumor may be 
not representative of the entire tumor (5,6). In addition, 
to evaluate the efficacy of treatments through repeated 
biopsies are inconvenient and not feasible. Therefore, a 
non-invasive, low-cost, and convenient method for the 
accurate differential diagnosis of NSCLC subtypes is highly 
desirable for clinical application.

Computed tomography (CT) imaging serves as the 
initial screening tool for lung cancer. Although AC and 
SCC lesions are obviously different under microscopic 
examination of pathology sections, these lesions display 
similar visual characteristics on CT images, which 
makes the discrimination between AC and SCC a highly 
challenging task for radiologists. Radiomics is an alternative 
technique that employs high-throughput quantitative 
imaging features for clinical diagnosis and prognosis 
(7-10). Previous studies have explored the potential of 
radiomics and machine learning methods in the histological 
subtype classification of NSCLC using CT images (11-16). 
However, these prediction models rely upon predefined 
radiomics feature sets for training the model. As different 
studies have adopted different radiomics feature sets (17-19),  
it is difficult for radiologists to choose the appropriate feature 
sets, making the application of these prediction models in 
clinical practice not straightforward (20). Thus, a more 
intelligent and expert-like automatic feature detection method 
is essential for improving these types of diagnostic tasks.

Convolutional neural networks (CNNs) are popular 
deep learning methods that have been widely used in 
medical images processing. They are capable of discovering 
the informative feature representations in a self-taught 
manner and thus can function independently from prior 
knowledge and human input (21,22). CNNs have been used 
to discriminate the subtypes of NSCLC (23). However, 

large amounts of data are usually needed for effective 
training, and this requirement is not easily satisfied for most 
medical imaging datasets. Moreover, CNNs are sensitive 
to any changes in the viewpoint of the image element, and 
cannot interpret images in terms of objects and their parts. 
Therefore, the performance of CNNs may be weakened in 
situations where the sample size is limited.

Capsule net (CapsNet) is an improved type of neural 
network with a structural basis called the “capsule”. 
The capsule is a group of neurons whose activity vector 
represents the instantiation parameters of an object in the 
image (24). The two key features of CapsNet are layer-
based squashing and dynamic routing. Unlike CNNs with 
individual neurons squashed through nonlinearities, the 
CapsNet output is squashed as an entire vector. Dynamic 
routing iteratively tunes the weight coefficients and routes 
the outputs of low-level capsules to the appropriate high-
level capsule, thus determining the pose of the objects 
more accurately. Taken together, CapsNet is both rotation 
invariant and spatially aware, and can encode the relative 
relationships (e.g., locations, scales, orientations) between 
local parts and the whole object, resulting in a satisfactory 
performance within small datasets.

Thus far, few studies have compared the three above-
mentioned models in discriminating the subtypes of 
NSCLC within the same dataset. It is unclear whether 
CapsNet can achieve better performances relative to the 
CNN and radiomics models in a limited dataset. Therefore, 
in this study, we retrospectively collected NSCLC CT 
imaging data from a single clinical center, and proposed and 
evaluated three classification models: CapsNet, CNN, and 
radiomics (with four different machine learning methods). 
We hypothesized that CapsNet would achieve the best 
performance among the three models.

Methods

Subjects

We retrospectively collected the CT data of suspected 
lung cancer patients from the picture archiving and 
communication system (PACS) of the Third Medical 
Center of PLA General Hospital between January 2014 
and June 2018. The study was approved by the institutional 
ethics board of the Third Medical Center of PLA General 
Hospital. Individual patient consent for this retrospective 
analysis was waived. The inclusion criteria were as follows: 
(I) the non-enhanced CT images were obtained by the same 
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scanner with identical scanning parameters; (II) all lesions 
showed a solid-appearing mass; (III) the tumor short-
axis diameters were at least 10 mm to guarantee sufficient 
volume of interests (VOIs); (IV) histopathological evidence 
of AC or SCC was obtained by tumor resection or biopsy 
after the CT scans; and (V) there were no treatments prior 
to the CT scan. Patients who had accepted any treatments, 
or patients with a diameter of lesion less than 10 mm were 
not enrolled in the study. Patients showing ground-glass 
opacities or part-solid nodules were excluded. Patients 
presenting with other types of lung cancer identified by 
histopathology including small cell lung cancer and adeno-
squamous carcinoma were also excluded. Finally, 126 
patients were enrolled in this study, including 72 patients 
with AC and 54 patients with SCC.

The demographic data and semi-quantitative clinical 
features of all patients in the AC and SCC cohorts were 
summarized and listed in Table 1. Tumors detected in the 
segmental or more proximal bronchi were classified as 
centrally located, while tumors found in the subsegmental 
bronchi or more distal airway were classified as peripherally 
located. The grade of tissue adhesion was based on the 
surface area of the tumor adhering to neighboring tissues. 
The differences in the patient’s age, tumor density, and 
tissue adhesion grade between the AC and SCC cohorts 
were assessed using an independent two sample t-test, and 
the difference in gender and tumor location were assessed 
by the χ2 test. The reported statistical significance levels 
were all two-tailed with P<0.05.

Imaging protocol and data acquisition

All patients were scanned with a 64-slice CT system 
(Discovery CT750 HD, GE Healthcare, USA). The non-

enhanced CT images were acquired encompassing the 
entire thorax with the identical scanning protocol (120 kV; 
40–200 mA; scan type: helical; rotation time: 0.6 s; detector 
coverage: 40 mm; interval: 5 mm; reconstruction width:  
1.25 mm; matrix: 512×512).

VOI segmentation

The segmentation of lung tumor is essential for subsequent 
image analysis. In this study, a semi-automatic active 
contour segmentation method was used to segment the 
VOIs with ITK-SNAP software (http://www.itksnap.org) 
by a radiologist with more than 10 years of experience in 
thoracic diagnosis. To confirm the accuracy of the VOI 
segmentation, all segmentation results were reviewed by 
another radiologist with more than 15 years of experience 
in thoracic diagnosis. In the case of disagreements in 
segmentation, a consensus would be reached by discussions 
and modifications between two experts. All Images were 
resampled into isotropic voxels of unit dimension to 
ensure comparability, with one voxel corresponding to  
1 mm3. This was achieved using linear and nearest neighbor 
interpolations for the image and annotations, respectively.

The radiomics framework

The radiomics features were extracted from the VOIs of 
the CT images by using Pyradiomics 1.2.0, and included 
14 shape-based features, 18 first-order statistic features, 
24 gray level co-occurrence matrix features, 14 gray level 
dependence matrix features, 16 gray level run-length 
matrix features, 16 gray level size zone matrix features, and 
5 neighboring gray tone difference matrix features. The 
details of these radiomics features are described in http://

Table 1 The demographic and clinical characteristics of all the patients

Category Details AC (n=72) SCC (n=54) P value

Demographic information Gender (M/F) 44/28 48/6 0.0005

Age 61.5 [35–85] 62 [45–76] 0.4240

Radiographic features Location (central/peripheral) 15/57 24/30 0.0045

Volume (cm3) 44.6 [0.4–404.2] 74.6 [0.8–325.5] 0.0153

Tissue adhesion (no/yes) 16/56 11/43 0.8025

Density (Hu) 33 [12–57] 33.5 [16–62] 0.3478

Age, volume, and density are displayed as mean [range]. AC, adenocarcinoma; SCC, squamous cell carcinoma; M/F, male/female; Hu, 
Hounsfield unit.

http://www.radiomics.io/pyradiomics.html
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www.radiomics.io/pyradiomics.html. Finally, a total of 107 
radiomics features were obtained for every subject. In our 
study, the demographic information and semiquantitative 
features (six features in total, see Table 1) obtained from the 
CT reports were incorporated with the radiomics features.

Fisher score (14,25) was then used to select the effective 
feature sets; because there was no optimal threshold for the 
Fisher score, the numbers of feature sets were incrementally 
increased by 10% of the total features. The best performing 
feature sets were used in the radiomics model. Four machine 
learning methods were then used on the extracted features 
(after normalization) to discriminate the subtypes of 
NSCLC, including random forest (RF), logistic regression 
(LR), logistic regression with L1 regularization (LR-L1), 
and logistic regression with principal component analysis 
(LR-PCA). All of these methods were conducted using the 
widely used machine learning tool, Scikit-Learn (www.scikit-
learn.org). For RF and LR, the default parameter settings 
were used in respective functions within Scikit-Learn. For 
LR-PCA and LR-L1, an inner grid search cross-validation 
was conducted to determine the optimal dimensionality of 
PCA and the sparse coefficient C. The whole flowchart of 
the radiomics framework is shown in Figure 1.

The CapsNet framework

In contrast to alternative deep neural networks, each 
node of the capsule layers in the CapsNet is a capsule 

containing a series of neurons. The activity of each capsule 
is represented by an activation vector (activation values 
of a certain number of neurons inside). The norm of this 
vector represents the probability that an object of interest 
possesses a certain property. The classification layer consists 
of classification capsules, and the classification output norm 
represents the probability that an instance belongs to a 
certain class.

In our proposed CapsNet for histological subtype 
identification, the cropped image patches were firstly 
filtered by two convolution layers. Then, a capsule layer 
which contains two identification capsules (representing AC 
and SCC) was introduced to obtain identification results.

As illustrated in Figure 2, the CapsNet used in this study 
contains two convolution layers which acted to obtain 
feature representation F, and a capsule layer for identifying 
histologic subtypes. For convolution layer 1, the number of 
input channels is 16, and the number of output channels is 
256. For convolution layer 2, the number of input channels 
is 256, and the number of output channels is 64. The kernel 
size of these two convolution layers is set as 9 and the stride 
is set as 2.

For the capsule layer, F is first reshaped to form a series 
of 8-dimension capsules [f1,…,fi,…,fM]. Then, [f1,…,fi,…,fM] 
are connected to identification capsules that model the 
probability that an instance is AC or SCC. The length of 
each identification capsule is 8.

The connections between [ f1,…, f i,…, fM]  and the 

Figure 1 The flowchart of the radiomics framework for the subtype discrimination of NSCLC. NSCLC, non-small cell lung cancer; CT, 
computed tomography.
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identification capsules are optimized via the dynamic 
routing by agreement algorithm. Denoting the output of 
capsule i in representation capsules with fi, its parent capsule 
j among the identification capsules is computed by:

|j i ij iW fµ =  [1]

where Wij is a trainable weight matrix between fi and its 
parent capsule j (AC or SCC). A coupling cij between them 
is defined as follows:

( )
( )
ij

ij
ikk

exp b
c

exp b
=
∑   [2]

Where bij represents the probability that fi is coupled 
with capsule j. The probability is initialized with a value of 
0, and k =2 is the number of capsules in the identification 
capsules. The parent capsule j has an input, sj, as computed 
by the following:

|j ij j i
i

s c µ=∑  [3]

Then, a squashing function, as formulated by Eq. [4], 
is applied to restrict the norm of output vector vj which 
is obtained from the capsule j to the range of [0, 1]. 
Therefore, the norm of this vector can act as a probability 
for classification.
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For the identification capsules, the norm of vj represents 
the probability that a subject belongs to AC or SCC.

An agreement factor aij between fi and its parent capsule j 
is defined as follows:

|ij j j ia v µ= ⋅   [5]

The agreement factor aij is then added to bij in the next 

iteration step of the dynamic routing to enhance or weaken 
the coupling between these two capsules. The loss function 
LD of CapsNet is defined as follows:

( ) ( ) ( )2 2
 max 0, 1 0,D c c c cL T m v T max v mλ+ −= − + − −     [6]

where Tc=1 iff an instance belongs to class c (AC or SCC), 
vc is the output of the capsule, representing subtype c, λ is a 
weight set to 0.5, m+=0.9, and m−=0.1.

The CNN framework

As shown in Figure 3, the comparative CNN model shared 
the same convolutional layers as the CapsNet described 
above, which contained a 16-to-256 convolutional layer 
and a 256-to-64 convolutional layer to obtain feature 
representation from the cropped region of interest (ROI) 
input. Then, a fully connected network layer was placed 
to achieve the final classification results instead of the 
identification capsule layer (Figure 2). The number of 
neurons in this fully connected layer shared the same 
value as that in the identification capsule layer for fair 
comparison.

The deep learning models were implemented based 
on the widely used deep learning framework PyTorch 
(https://pytorch.org/). 3D isotropic patches of 64×64×64 
in size were extracted around manually labeled lesions and 
normalized to act as input to our deep learning models. The 
CNN and CapsNet shared the same training strategy, the 
applied optimizer was Adam, and the parameter setting of 
the optimizer was set to learning rate =0.001, betas = (0.9, 
0.999), and eps =1e–08. An early stopping strategy was not 
used during the model training. Several data augmentation 
strategies (such as translation and rotation) were also tested 
for the CNN, but without any improvement in performance, 

Figure 2 The flowchart of the CapsNet framework for the subtype discrimination of NSCLC. CapsNet, capsule net; NSCLC, non-small 
cell lung cancer; CT, computed tomography; ROI, region of interest; Conv, convolutional layer.
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so only results without data augmentation are reported in 
the following sections. Moreover, the demographic and 
semiquantitative features (six features in total, see Table 1) 
were not adopted in either CapsNet or the CNN.

The patients were proportionally appointed to the 
training data group (75% of all patients, n=94) and the 
testing data group (the remaining 25% of patients, n=32). 
The appointing process was repeated four times. All three 
classification models were evaluated using the mean value 
obtained from the four repetitions. Sensitivity, specificity, 
accuracy, area under the curve (AUC), F1_score, Matthews 
correlation coefficient (MCC), and log_loss were calculated.

Results

For the demographic and semi-quantitative clinical 

features, there were significant statistical differences in the 
patient’s gender (P<0.01) and tumor location (P<0.05), with 
SCC more prone to occur in males and AC more likely to 
occur in the peripheral lung field (Table 1). No significant 
statistical differences were found in age, tissue adhesion, or 
tumor density (all P>0.05; Table 1).

Figure 4 illustrates the classification performances 
with different radiomics features (increment: 10% of 
total features), and it was clear that model performances 
fluctuated with the number of input features. A comparison 
of the accuracies of the different methods is shown in Table 2. 
Based on the results, CapsNet outperformed CNN and the 
four radiomics methods, and obtained an 81.3% accuracy, 
82.2% sensitivity, and 80.7% specificity. Notably, the AUC 
of CapsNet was only marginally better than the AUC of 
the optimal radiomics model with RF. The CNN, the 
radiomics with RF, and the radiomics with LR-PCA models 
achieved suboptimal performances with accuracy of 75% 
(sensitivity: 68.3%, specificity: 80.7%), 75.9% (sensitivity: 
72.6%, specificity: 79.1%) and 74.1% (sensitivity: 64.4%, 
specificity: 82.4%), respectively. Among the four radiomics 
models, the LR and LR-L1 penalty performed the worst 
(both with accuracy <0.7). Figure 5 displays the receiver 
operating characteristic (ROC) curves for the three models.

Discussion

We developed and compared three frameworks for the 
classification of AC and SCC using CT images. The 
investigations revealed that CapsNet could better classify 
AC from SCC compared with the CNN and radiomics 
models using our dataset. Although the highest accuracy 
obtained by CapsNet was just 81.3%, it displayed great 
potential in future studies especially for limited single-

Figure 3 The flowchart of the CNN framework for the subtype discrimination of NSCLC. CNN, convolutional neural network; NSCLC, 
non-small cell lung cancer; CT, computed tomography; ROI, region of interest; Conv, convolutional layer.

Figure 4 The classification of performances with different 
numbers of radiomics features. RF, random forest; LR, logistic 
regression; PCA, principal component analysis.
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center datasets.
Although radiomics has been widely used in the diagnosis 

of various cancers (26), it only had an adequate performance 
among the three models and obtained a maximum 75.9% 
accuracy. In addition, the radiomics performance was also 
dependent on the classifier type, and RF and LR-PCA 
performed better than the other two models. Several factors 
may limit the performance of the radiomics models. First, 
the feature sets of radiomics are predefined before the 
model construction. However, if there exist certain features 
that do not belong to the radiomics feature sets but in fact 
contribute to discrimination, then the radiomics model 
will miss these features. Second, the principal source of 
radiomics features is texture feature, which is predominantly 

the first-order or second-order statistical description for 
voxel-level image characteristics. In comparison, deep 
learning models may dig further into the hierarchical 
features through the multi-layer network structure. The 
four machine learning methods including RF, LR, LR-L1, 
and LR-PCA performed differently from each other but 
with accuracy all lower than 80%. One possible explanation 
for this is that the radiomics feature sets might not have 
fully delineated the differences between SCC and AC, 
thereby limiting the performances of these machine learning 
methods. Although there are other kinds of radiomics 
feature sets with more features, high correlation has been 
shown to exist in radiomics feature sets (11). Lastly, it is 
important to note that feature selection and the selection of 
classifier types are both important to the performances of 
the radiomics models.

CNNs have been developed and successfully used in 
various medical imaging tasks, such as tumor segmentation, 
classification, and evaluation of prognosis (22). When 
applied in this study, CNN did not achieve sufficiently 
satisfactory results compared with CapsNet. One possible 
reason may be the relatively small training dataset, which is 
a common condition for most medical imaging studies. The 
current solution for this problem is to collect large datasets 
through multicenter accumulation. However, multicenter 
datasets may have larger heterogeneity than single datasets, 
and few studies have developed the specific algorithm to 
eliminate these multicenter differences. It is still not clear 
exactly which factors contribute to multicenter differences, 
and hence, even if CNNs could achieve good results in large 
samples, it would be difficult to interpret the biological 
significance of the features detected by the CNNs. Future 
studies are needed to enhance the interpretability of CNNs 

Figure 5 The ROC curve of the three classification models. 
ROC, receiver operating characteristic; CNN, convolutional 
neural network; RF, random forest; LR, logistic regression; PCA, 
principal component analysis; AUC, area under curve.

Table 2 The classification results of all the models

Classifiers ACC Sen Spe AUC F1_score MCC Log_loss

RF 0.759 (0.074) 0.726 (0.018) 0.791 (0.061) 0.84 0.727 0.511 8.325

LR 0.643 (0.016) 0.619 (0.029) 0.657 (0.045) 0.669 0.53 0.272 12.335

LR-L1 0.670 (0.014) 0.667 (0.020) 0.675 (0.014) 0.656 0.641 0.336 11.41

LR-PCA 0.741 (0.034) 0.644 (0.014) 0.824 (0.078) 0.777 0.688 0.473 8.943

CNN 0.750 (0.029) 0.683 (0.103) 0.807 (0.048) 0.725 0.708 0.492 8.635

CapsNet 0.813 (0.018) 0.822 (0.070) 0.807 (0.048) 0.852 0.796 0.624 6.476

ACC, Sen, and Spe are displayed as mean (standard deviation). ACC, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the 
curve; MCC, Matthews correlation coefficient; RF, random forest; LR, logistic regression; PCA, principal component analysis; AUC, area 
under curve; CNN, convolutional neural network; CapsNet, capsule network.
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and to incorporate brain-inspired structures into CNNs.
CapsNet achieved the best performance in this study, 

and demonstrated its validity in a limited sample set. Most 
single-center datasets are not large enough, but the clinical 
criteria for the collective data are easy to control. Therefore, 
training a medical image prediction model with single-
center dataset has distinct clinical values since intercenter 
and intersubject differences have yet to be clearly explained. 
There may be multiple reasons why CapsNet displayed 
the best performance for the discriminative analysis of 
NSCLC subtypes. First, AC and SCC patients may show 
different global feature patterns. CNNs and radiomics 
models generally focus on the local feature patterns, while 
CapsNet can record and recognize global patterns (that is, 
the relative spatial relationship of image elements). Second, 
CapsNet can record the object orientation information for 
local feature patterns, while both CNN and radiomics lack 
this function. The orientation information is important for 
the differential diagnosis of histological images between 
AC and SCC, and therefore it may also be helpful for the 
discriminative analysis of CT imaging features. Thus, 
CapsNet could obtain better classification performance 
than CNN with the same network structure within limited 
sample sets, making it popular in disease classification 
(27,28). Meanwhile, the theory of CapsNet is continuously 
improving (29), and it can be expected that CapsNet will 
contribute significantly to the medical imaging domain, 
especially for datasets with limited samples.

There were several limitations in this study. First, the 
features used in the three models have not been compared 
because it is difficult to display the extracted features for the 
deep learning methods. Moreover, the radiomics models 
combined the demographic and semiquantitative features, 
while the CNN and CapsNet models did not include 
these features. Indeed, incorporating the demographics 
and semiquantitative features may further improve the 
performance of the deep learning models. Second, this 
study only compared a commonly used network design for 
CapsNet and CNN, and did not identify the optimal design 
for Capsnet or CNN. Therefore, future studies could be 
conducted using more complex network architectures so 
as to achieve the most effective design for the CNN and 
CapsNet.

Conclusions

In this study, three discrimination models for subtypes 
of NSCLC were compared, and CapsNet demonstrated 

the best performance in classification with an accuracy of 
81.3%. This may be due to its capacity to discover global 
feature patterns and orientational local feature patterns. 
The current study demonstrated the potential of CapsNet 
in identifying subtypes of NSCLC in a limited single-center 
dataset, and its use could be extended to the diagnosis of 
other diseases.
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