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Background: Magnetic resonance imaging (MRI) has demonstrated its potential in the evaluation of renal 
function. Texture analysis (TA) is a novel technique to quantify tissue heterogeneity. We aim to investigate 
the feasibility of using TA based on the apparent diffusion coefficient (ADC), as well as T1 and T2 maps to 
evaluate renal function. 
Methods: Patients with impaired renal function and subjects with a normal renal function who underwent 
renal diffusion weighted imaging (DWI), as well as T1 and T2 mapping at 3T, were prospectively enrolled. 
The participants were classified into four groups according to the estimated glomerular filtration rate (eGFR, 
mL/min/1.73 m2): normal (eGFR ≥90), mildly impaired (60≤ eGFR <90), moderately impaired (30≤ eGFR 
<60), and severely impaired (eGFR <30) renal function groups. Texture features quantified from the renal 
cortex or medulla were selected to build classifiers to discriminate different renal function groups by plotting 
receiver operating characteristic (ROC) curves and calculating the area under the curve (AUC), sensitivity, 
specificity, positive predictive value (PPV), and negative predictive value (NPV). 
Results: In total, 116 candidates were included (94 patients and 22 healthy volunteers, mean age 37.9±14.9 years).  
There were 46 participants in the normal renal function group, 14 in the mildly impaired renal function 
group, 27 in the moderately impaired renal function group, and 29 in the severely impaired renal function 
group. Texture features from the ADC and T1 maps exhibited a good correlation to eGFR. The AUC, 
sensitivity, specificity, PPV, and NPV to differentiate between the normal and impaired renal function 
groups were 0.835, 0.792, 0.867, 0.905, and 0.722, respectively; to differentiate between the mildly impaired 
and moderately impaired groups were 0.937, 0.889, 0.857, 0.923, and 0.800, respectively; and to differentiate 
between the moderately impaired and severely impaired groups was 0.940, 0.759, 0.889, 0.880, and 0.774, 
respectively. 
Conclusions: TA based on ADC and T1 maps is feasible for evaluating renal function with relatively good 
accuracy. 
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Introduction

Chronic kidney disease (CKD) is a global public health 
problem with an unabated rise in prevalence and  
mortality (1). The early detection of renal function 
impairment and prediction of the likelihood of a progressive 
decline in the glomerular filtration rate (GFR) is important 
for timely therapeutic management (2). It has been 
established that decreased perfusion, chronic hypoxia, 
and renal fibrosis play a critical role in causing kidney  
damage (3). Thus, researchers have made efforts to develop 
novel biomarkers that can accurately assess these renal 
changes to detect and evaluate renal function impairment 
early and potentially predict disease progression (4). 

Magnetic resonance imaging (MRI) has been applied as 
a useful tool to assess chronic kidney disease noninvasively, 
and different MRI techniques have shown great potential 
in the evaluation of renal function (5). Diffusion weighted 
imaging (DWI), one of the most studied techniques, has 
been demonstrated to characterize renal function, with 
decreased apparent diffusion coefficient (ADC) values in 
patients with renal dysfunction (6). Other studies have 
evaluated T1 and T2 mapping, which have already been 
applied in clinical practice to quantify myocardial edema 
or fibrosis in patients with myocardial infarction or 
cardiomyopathy (7,8). It has been shown that T1 mapping 
can detect the severity of acute kidney injury and predict 
further outcomes and that T2 values are sensitive markers 
of early cystogenesis in polycystic kidney disease (9,10). 
However, the study of T1 and T2 mapping to evaluate 
humans' renal function is limited (11). Also, DWI and 
T1 and T2 mapping measure the average value within 
a particular lesion and do not reflect the tissue’s signal 
heterogeneity. 

Texture analysis (TA) is a novel technique that performs 
an ensemble of mathematical computations on conventional 
images to quantify tissue heterogeneity (12,13). It has been 
applied as new imaging biomarkers in oncology to classify 
tumors, predict prognosis, and monitor treatment responses 
(14-16). Previous studies have also demonstrated that TA 
based on T2-weighted images offers an approach to refine 
autosomal dominant polycystic kidney disease (ADPKD) 
and that TA based on DWI, blood oxygen level-dependent 

(BOLD) MRI, and susceptibility-weighted imaging (SWI) 
can assist in evaluating renal dysfunction (17,18). However, 
renal function evaluation in humans using TA based on 
ADC, T1, and T2 values has not yet been explored.

Therefore, the purpose of this study was to investigate 
the feasibility of using TA based on DWI and T1 and T2 
mapping to detect GFR decline and discriminate different 
degrees of renal function impairment. 

Methods

Patients

This prospective study was approved by the Medical 
Ethics Committee of Peking Union Medical College 
Hospital (Ethical No.: ZS-1271), and written informed 
consent was obtained from each participant. From 
February 2017 to May 2017, patients were randomly 
and consecutively recruited from the Department of 
Nephrology in our hospital. The inclusion criteria were 
as follows: (I) age ≥18 years old; and (II) biopsy-proven 
or clinically confirmed renal diseases, including Gitelman 
syndrome, immunoglobulin (Ig) A nephropathy, CKD, 
IgG4 nephropathy, malignant hypertension, acute kidney 
injury, and antineutrophil cytoplasmic antibodies (ANCA)-
associated systemic vasculitis. The exclusion criteria 
included pregnancy, lactation, malignancies, hemodialysis, 
renal tumors with maximal diameter >1 cm or number of 
renal tumors >5 in each kidney, and patients unable to hold 
their breath for over 10 seconds, and general contradictions 
for MRI examination. 

All participants followed 4-hour pre-examination fasting. 
Clinical information was collected from the medical 
database of our hospital. Estimated GFR (eGFR) was 
calculated using the Chronic Kidney Disease Epidemiology 
Collaboration equation as follows: GFR (mL/min/1.73 m2) 
=141×min (Scr/κ,1)α×max (Scr/κ,1)1.209×0.993age×1.018 (if 
female) ×1.157 (if black), where κ is 0.9 for males and 0.7 
for females, α is −0.411 for males and −0.329 for females, 
min indicates the minimum value and max indicates the 
maximum value, age is in years, weight is in kilograms, and 
Scr is the serum creatinine level in micromoles per liter. 
The enrolled subjects were classified into four different 
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groups according to their eGFR: (I) a normal renal 
function group (nRF), eGFR ≥90 mL/min/1.73 m2; (II) a 
mildly impaired renal function group (mi-IRF), 60≤ eGFR  
<90 mL/min/1.73 m2; (III) a moderately impaired renal 
function group (mo-IRF), 30≤ eGFR <60 mL/min/1.73 m2; 
and (IV) a severely impaired renal function group (se-IRF), 
eGFR <30 mL/min/1.73 m2. 

MRI protocol

All MRI images were obtained on a MAGNETOM Skyra 
3T MR scanner (Siemens Healthcare, Erlangen, Germany) 
using an 18-channel phased-array body coil combined with 
a 32-channel spine coil with imaging parameters in each 
sequence described in Table S1. To reduce the respiratory 
motion artifacts, patients held their breath during T1 
mapping scanning. During T2 mappin scanning, motion 
artifacts were reduced by using respiratory triggerin 
through synchronizing the measurement with the breathing 
cycle of the patient. We also asked patients to use thoracic 
breathing and take shallow breaths during the scanning. 
Axial and coronal T2-weighted images were acquired 
for the kidney structure's anatomical identification, and 
then axial DWI and coronal T1 and T2 mapping of 
both kidneys were performed. T1 mapping based on the 
inversion recovery SNAPSHOT-FLASH sequence with 
respective reconstruction was described in detail in the 
work of Deichmann and Haase (19). For T1 mapping, free 
relaxation of the longitudinal magnetization after a 180° 

inversion is modeled by ( ) 1
0 02

t
free TM t M M e

−
= − , where  

t is the time after the 180° inversion, Mfree (t) is the 
longitudinal magnetization at time t, M0 is the equilibrium 
longitudinal magnetization, and T1 is the relaxation time 
in the considered voxel. T2 mapping was based on the 
work of Sumpf et al. (20,21). The model of the T2 mapping 
is a simple spin-echo mono-exponential signal-model: 

( ) ( ) ( ), R r tM t r r eρ − ⋅= ⋅


 

,  where M  is the magnetization 
in voxel r  at time point t, ( )R r  is the relaxation-rate 
parameter, and ( )rρ 

 is the spin density at position r . ADC 
maps were computed automatically using the DWI images 
at five b-factors. ADC, as well as T1 and T2 maps, were 
subsequently used for TA. 

Image analysis

The images were anonymized before being reviewed by 
radiologists who were blinded to the participants’ clinical 

information, including renal function. One genitourinary 
radiologist (13 years of experience) selected the slice at 
the renal hilum level for each ADC and T1 and T2 map. 
Anatomical landmarks and visual coregistration were used 
to find corresponding slices among different maps. The 
selected images were transmitted to a workstation for 
TA afterward. TA was performed by a trained radiologist 
with 6 years of experience in renal imaging and 4 years of 
experience in TA using the commercially available research 
software TexRAD (TexRAD Ltd., www.texrad.com, part of 
Feedback Plc, Cambridge, UK). On each selected image, 
regions of interest (ROIs) for the cortex and medulla were 
placed in both kidneys (Figure 1A,B). For the cortex, the 
ROI was delineated along the cortex’s outline to cover the 
entire cortex. For the medulla, since many patients with 
impaired renal function had diminished corticomedullary 
differentiation (CMD), it was difficult to draw the medulla 
outline accurately. Thus, we placed at least three pyramidal 
ROIs in each kidney to represent the entire medulla, and 
the average of the values in these pyramidal ROIs was 
subsequently used for analysis. 

Texture quantification by histogram analysis was 
performed after an image filtration process using a 
Laplacian Gaussian spatial bandpass filter (22). The spatial 
scaling factor (SSF) represented the size of the image 
features highlighted by the filter, and ranged between object 
radii of 0, 2, 3, 4, 5, and 6 mm. An SSF of 0 indicated no 
filtration, an SSF 2 represented fine, an SSF 3–5 represented 
medium, and an SSF 6 represented coarse texture scales. 
At each SSF, six texture features were extracted. The six 
texture features generated using the histogram were mean 
gray-level intensity (mean), standard deviation (sd), entropy, 
mean of positive pixels (mpp), skewness, and kurtosis. The 
value of each texture parameter across each SSF on each 
slice was recorded for both the cortex and medulla of the 
left, right, and both kidneys, respectively, on ADC and T1 
and T2 maps. The values of the parameters for the cortex 
and medulla of both kidneys were automatically provided by 
the software. The process was repeated three times, and the 
average values of three measurements for each parameter 
on the ADC and T1 and T2 maps were used for statistical 
analysis. 

Statistical analysis

The texture feature analysis and prediction model 
construction were implemented with scikit-learn (https://
scikit-learn.org/) on Python 3.5.4 (https://www.python.

https://cdn.amegroups.cn/static/public/QIMS-20-842-supplementary.pdf
https://scikit-learn.org/
https://scikit-learn.org/
https://www.python.org/
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Figure 1 Demonstration of ROIs and examples of ADC and T1 and T2 maps obtained in a healthy volunteer and a patient with impaired 
renal function. (A) and (B) show ROIs in axial and coronal anatomic reference images. Red ROIs are cortex delineation, and blue ROIs are 
medulla delineation. (C,E,G) show ADC and T1 and T2 maps of a healthy volunteer (male, 26 years old). (E,F,H) show ADC, T1 and T2 
maps of a 46-year-old female diagnosed with IgA nephropathy with mildly impaired renal function. ROI, region of interest; ADC, apparent 
diffusion coefficient. 
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org/). For each patient, a total of 6 (mean, sd, mpp, entropy, 
skewness, kurtosis) ×6 (SSF 0, 2, 3, 4, 5, 6) ×6 (cortex of 
right, left, both kidneys; medulla of right, left, both kidneys) 
×3 (ADC, T1 mapping, T2 mapping) =648 features were 
extracted. Spearman's rank correlation coefficients were 
calculated between all features and prediction labels. We 
removed features that were strongly correlated with each 
other (those exhibiting a high correlation coefficient over 
0.75). Features with a low correlation coefficient (<0.3) or 
a corresponding P value greater than 0.05 were removed 
accordingly. The least absolute shrinkage and selection 
operator (LASSO) algorithm was used to implement next-
step feature dimensionality reduction. The remaining 
features were then used to train a prediction model in the 
training cohort. 

We compared six machine-learning classifiers, including 
Ridge Classifier,  LogisticRegression, LinearSVC, 
Perceptron, SGDClassifier, and PassiveAggressiveClassifier. 
Five-fold cross-validation was used to compare the 
performance (prediction accuracy) of different machine-

learning classifiers and help to select the optimal one. 
Receiver operating characteristic (ROC) analysis was 
performed, and the area under the ROC curve (AUC) 
was calculated for each comparison. The Delong test was 
used to calculate the 95% confidence index (CI) of the 
ROC curves. A two-sided P<0.05 indicated a statistically 
significant difference.

Results 

Patient characteristics

In total, 116 participants were included in this study. 
Figure 1C,D,E,F,G,H shows examples of ADC and T1 
and T2 maps of a healthy volunteer and a patient with 
impaired renal function, respectively. Figure 2 depicts the 
flowchart of patient selection in this study. Of the 116 
subjects, 94 were patients with renal diseases (male/female 
57/37, mean age 42.3±14.1 years), and 22 were healthy 
volunteers (male/female 12/10, mean age 29.4±6.2 years). 

Figure 2 Flowchart of patient selection. nRF, normal renal function, eGFR ≥90 mL/min/1.73 m2; IRF, impaired renal function, eGFR  
<90 mL/min/1.73 m2; mi-IRF, mildly impaired renal function, 60≤ eGFR <90 mL/min/1.73 m2; mo-IRF, moderately impaired renal 
function, 30≤ eGFR <60 mL/min/1.73 m2; se-IRF, severely impaired renal function, eGFR <30 mL/min/1.73 m2. eGFR, estimated 
glomerular filtration rate. 

Patients from the Department of Nephrology
from February to May 2017

Potential patients, n=105

Patients included in the study, n=94 Healthy adult volunteers, n=22

Participants in the study, n=116

nRF, n=46 IRF, n=70

mi-IRF, n=14 mo-IRF, n=27 se-IRF, n=29

Inclusion criteria:
Age ≥ 18 years old
Biopsy-proven or clinical confirmed renal diseases

Exclusion criteria:
Pregnancy or lactation, n=0
Malignancies, n=1
Hemodialysis, n=4
Presence of renal tumors with maximal diameter > 1cm or
number of tumors > 5 in each kidney, n=3
Unable to hold breath over 10 seconds, n=1
Contradictions for MRI examinations, n=2

https://www.python.org/
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Of the 94 patients with renal diseases, 20 had genetic 
testing confirmed Gitelman syndrome, 26 had biopsy-
proven IgA nephropathy, 26 had clinically confirmed 
CKD, 12 had biopsy-proven IgG4 nephropathy, eight 
had malignant hypertension, one had acute kidney injury, 
and one had biopsy-proven ANCA-associated systemic 
vasculitis. The etiologies of CKD were as follows: chronic 
glomerulonephritis (n=9), diabetic mellitus nephropathy 
(n=5), chronic interstitial nephritis (n=4), and unknown 
etiology (n=8). 

According to the eGFR, there were 46 patients with 
nRF (male/female 22/23, mean age 30.2±11.1 years, mean 
eGFR 117.3±14.0 mL/min/1.73 m2), 14 patients with mi-
IRF (male/female 9/5, mean age 41.9±14.3 years, mean 
eGFR 72.0±6.5 mL/min/1.73 m2), 27 patients with mo-IRF 
(male/female 18/9, mean age 41.2±14.9 years, mean eGFR 
46.4±8.9 mL/min/1.73 m2), and 29 patients with se-IRF 
(male/female 21/8, mean age 44.6±15.7 years, mean eGFR 
19.1±7.5 mL/min/1.73 m2). Table 1 details the distribution 
of patients and healthy volunteers in each eGFR group. 
Patients in the nRF group were significantly younger 
than the patients in any of the IRF groups. The ages of 
the patients in the mi-IRF group were similar to those of 
the patients in the mo-IRF group, and both were slightly 
younger than the patients in the se-IRF group. 

Detection and characterization of impaired renal function

None of the texture features quantified from the T2 map 
were selected to build classifiers to detect or evaluate renal 
function impairment. As for selecting the optimal classifier, 

RidgeClassifier was used to distinguish between nRF and 
IRF. Linear SVC and RidgeClassifier were further used to 
characterize the severity of impaired renal function: mi-IRF 
vs. mo-IRF and mo-IRF vs. se-IRF, respectively (Figure 3). 
Table 2 summarizes different classifiers’ performance built 
by texture features from ADC and T1 maps to differentiate 
between normal and abnormal, mildly impaired and 
moderately impaired, and moderately impaired and severely 
impaired renal function. 

Normal vs. abnormal renal function
To distinguish between the normal and abnormal renal 
function groups, the patients were divided into two groups: 
nRF (n=46, eGFR ≥90 mL/min/1.73 m2) and IRF (n=70, 
eGFR <90 mL/min/1.73 m2). Data were randomly divided 
into training and testing datasets at a ratio of 2:1 (training 
n=77, testing n=39). The six texture features with the 
highest coefficients were selected to build the classifier. 
The selected features and corresponding coefficients are 
provided in Table 3. All of the selected texture features 
were quantified from ADC maps. The ADC-based texture 
features demonstrated favorable discrimination in both 
the training and testing datasets (AUC training: 0.877, 
testing: 0.835, P=0.63). The ROC curves for both datasets 
with five-fold cross validation are shown in Figure 4A,B. 
The performance of the classifier to distinguish between 
normal and abnormal renal function in both datasets was as 
follows: accuracy: training 0.821, testing 0.779; sensitivity: 
training 0.792, testing 0.761; specificity: training 0.867, 
testing 0.806; NPV: training 0.722, testing 0.694; and PPV: 
training 0.905, testing 0.854. The distribution plot showing 

Table 1 The distribution of patients and healthy volunteers in each eGFR group

No. of subjects eGFR≥90 60≤eGFR<90 30≤eGFR<60 eGFR <30 Total

Healthy volunteers 22 – – – 22

Gitelman syndrome 19 1 0 0 20

IgA nephropathy 2 11 9 4 26

CKD – – 10 16 26

IgG4 nephropathy 3 1 2 6 12

Malignant hypertension – – 6 2 8

Acute kidney injury – 1 – – 1

ANCA vasculitis – – – 1 1

Total 46 14 27 29 116

eGFR, estimated glomerular filtration rate: mL/min/1.73 m2; CKD, chronic kidney disease.



1262 Zhang et al. MR texture analysis for renal function evaluation

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(4):1256-1270 | http://dx.doi.org/10.21037/qims-20-842

the differences in the normal and abnormal function groups’ 
selected texture features is demonstrated in Figure 4C.

Mildly vs. moderately impaired renal function 
To distinguish between mi-IRF (n=14, 60≤  eGFR  
<90 mL/min/1.73 m2) and mo-IRF (n=27, 30≤ eGFR  
<60 mL/min/1.73 m2), nine texture features were selected, 
including seven features quantified from the ADC map 
and one feature quantified from the T1 map to build the 
classifier (Table 4). The classifier produced an AUC of 0.937 
[95% confidential interval (CI): 0.864–1], an accuracy of 
0.878, a sensitivity of 0.889, a specificity of 0.857, an NPV 
of 0.800, and a PPV of 0.923 to differentiate between mi-
IRF and mo-IRF (Table 2). The ROC curves with cross 
validation are shown in Figure 5A,B, and the distribution 
plot of the selected texture features in the mildly and 
moderately impaired renal function groups is demonstrated 
in Figure 5C.

Figure 3 Comparison of machine learning classifiers for differentiation of different renal function. Accuracies of six machine learning 
classifiers for differentiation between (A) normal and abnormal renal function, (B) mildly and moderately impaired renal function, (C) 
moderately and severely impaired renal function. 
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Table 2 The performance of detecting and characterizing the severity of impaired renal function

Metric nRF vs. IRF mi-IRF vs. mo-IRF mo-IRF vs. se-IRF

AUC 0.835 (0.712, 0.966) 0.937 (0.864, 1) 0.940 (0.883, 1)

ACC 0.821 (0.700, 0.941) 0.878 (0.778, 0.978) 0.821 (0.721, 0.922)

SEN 0.792 (0.664, 0.919) 0.889 (0.793, 0.985) 0.759 (0.647, 0.871)

SPE 0.867 (0.760, 0.973) 0.857 (0.750, 0.964) 0.889 (0.807, 0.971)

NPV 0.722 (0.582, 0.863) 0.800 (0.678, 0.922) 0.774 (0.665, 0.884)

PPV 0.905 (0.813, 0.997) 0.923 (0.842, 1) 0.880 (0.795, 0.966)

The numbers represent the mean and the 95% confidential interval is in the parentheses. nRF, normal renal function; IRF, impaired renal 
function; mi-IRF, mildly impaired renal function; mo-IRF, moderately impaired renal function; se-IRF, severely impaired renal function; AUC, 
area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; NPV, negative predictive value; PPV, positive predictive value.

Table 3 The selected texture features and the corresponding  
coefficients for classification between normal and abnormal renal 
function

Texture feature Coefficient

ADC_SSF6_LM_mean 1.002

ADC_SSF2_LM_mean 0.806

ADC_SSF5_C_kurtosis −0.494

ADC_SSF6_LM_skewness −0.549

ADC_SSF0_LC_mpp −0.840

ADC_SSF5_M_entropy −1.295

Intercept 0.810

ADC, apparent diffusion coefficient; SSF, spatial scale factor; 
LM, medulla of left kidney; C, cortex of both kidneys; LC, cortex 
of left kidney; M, medulla of both kidneys; mpP, mean of positive 
pixels. Example of feature nomination: ADC_SSF6_LM_mean 
means the texture feature of mean quantified from left medulla 
at SSF 6 on the ADC map. 
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Figure 4 ROC curves and the distribution plot of the selected texture features for differentiation between normal and abnormal renal 
function. (A) shows ROC curves with an AUC of 0.880 (95% CI: 0.81, 0.97) in the training dataset and an AUC of 0.835 (95% CI: 
0.712,0.966) in the testing dataset. (B) shows ROC curves of five-fold cross validation for differentiation between normal and abnormal renal 
function. (C) shows differences in the ADC-based texture features in the normal and abnormal renal function groups. Lines and asterisks 
indicate statistical significance to the boxplot with * indicating P<0.05, ** indicating P<0.01 and *** indicating P<0.001. Labels on the x-axis 
of the boxplot are named according to the specific MR sequence, SSF, and ROI location from which the texture feature is quantified. For 
example, ADC. SSF0. LC. mpp means the feature mpp quantified from left cortex at spatial scale factor 0 on the ADC map. ROC, receiver 
operating characteristic; AUC, area under the curve; ADC, apparent diffusion coefficient; CI, confidential interval; SSF, spatial scale factor; 
LM, left medulla; RM, right medulla; LC, left cortex; RC, right cortex; M, medulla of both kidneys; C, cortex of both kidneys. 
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Moderately vs. severely impaired renal function
For separating mo-IRF (n=27, 30≤ eGFR <60 mL/min/1.73 m2)  
from se-IRF (n=29, eGFR <30 mL/min/1.73 m2), we found 
that the classifier with 10 selected features quantified from 
ADC maps could yield an AUC of 0.940 (95% CI: 0.883–1), 
an accuracy of 0.821, a sensitivity of 0.759, a specificity 
of 0.889, an NPV of 0.774, and a PPV of 0.880 (Table 2). 
The selected features and corresponding coefficients are 

provided in Table 5. The ROC curves with cross validation 
are shown in Figure 6A,B, and the distribution plot of the 
selected texture features of the moderately and severely 
impaired renal function groups is shown in Figure 6C.

Discussion 

This study demonstrated that texture features quantified 
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from ADC and T1 maps were related to eGFR, and a 
higher number of texture features on ADC maps showed 
a correlation with eGFR than those based on T1 maps. 
Texture features quantified from the renal medulla seemed 
to be more related to renal function than features quantified 
from the renal cortex. Combinations of different texture 
features could enable the detection of eGFR decline, and 
the discrimination between different degrees of eGFR 
decreases with relatively satisfactory performance. 

Consistent efforts have been made to reveal DWI's 
potential for evaluating renal diseases, and promising 
results have been achieved for estimating fibrosis in CKD 
and guiding biopsy in acute graft dysfunction (23,24). Of 
the DWI models, the monoexponential model with ADC 
calculation is the most robust and widely used. Numerous 
studies have confirmed that ADC can differentiate between 
normal and impaired kidneys and correlates with renal 
function estimated by creatinine values (25-29). A few 
studies have also revealed that cortical ADC is relatively 
well correlated with cortical fibrosis and chronic lesions 
(30-32). In the present study, certain texture features 
quantified from the ADC map showed good correlation 
with eGFR changes and were selected to build models for 
the classification of different degrees of renal impairment, 

which achieved satisfactory performance. All of the selected 
texture features to classify normal, abnormal, moderately, 
and severely impaired renal function were quantified from 
the ADC map, indicating the potentially significant role 
of the ADC map in evaluating renal function. However, as 
ADC is a single parameter in the monoexponential model, 
and since renal impairment is a rather complicated process, 
it remains unclear whether alterations in ADC values reflect 
the decline of renal function alone, the degree of tissue 
fibrosis, or both. 

Several studies have investigated renal T1 mapping 
for evaluating renal transplants and renal function. T1 
CMD could be used to evaluate renal interstitial fibrosis 
in allografts, and T1 values are sensitive to possible acute 
kidney injury changes in patients with lung transplantation 
(33-35). Cortical T1 and T1 CMD are moderate to strongly 
correlated with the severity of renal impairment (36,37). 
Our study revealed that standard deviation quantified from 
the left kidney's medulla at SSF2 on the T1 map showed 
a good correlation with eGFR decline and was selected 
to build the classifier to differentiate between mildly and 
moderately impaired renal function. However, no other 
texture features quantified from the T1 map were selected 
to build classifiers to detect or evaluate renal function 
impairment. One possible explanation for this is that ADC-
based texture features outperformed T1 map-based texture 
features in the assessment of renal function; thus, T1 map-
based texture features were not selected when building the 
classifiers. The only selected T1 map-based texture feature 
was quantified from the renal medulla. However, as previous 
studies have demonstrated that cortical T1 is sensitive to 
oxygenation level changes, the implication of medullary 
T1 modulations has yet to be determined. Thus, this result 
should be interpreted with caution, and whether specific 
texture features quantified from medullary T1 values 
truly correlate with eGFR decline still needs to be further 
clarified and remains a subject for future exploration. 

The role of T2 mapping in evaluating renal function in 
humans is also under investigation, but studies involving  
in vivo measurements of renal T2 values are relatively 
scarce. Elevated T2 values were observed in patients with 
early-stage ADPKD, and T2 mapping may potentially 
improve the assessment of early-disease progression 
compared with total kidney volume (17). It has also been 
shown that renal T2 values measurements have the potential 
to assess ischemia-reperfusion injury (38). In the present 
study, we attempted to identify the relation of in vivo renal 
T2 values to eGFR and clarify the role of T2 mapping in 

Table 4 The selected texture features and the corresponding  
coefficients for classification between mildly and moderately  
decreased renal function

Texture feature Coefficient

T1_SSF2_LM_sd 1.316

ADC_SSF0_LC_skewness 0.971

ADC_SSF2_LM_sd 0.733

ADC_SSF6_LM_mean 0.638

ADC_SSF6_RM_skewness 0.519

ADC_SSF3_LM_mpp 0.260

ADC_SSF3_RM_sd 0.087

ADC_SSF0_LM_entropy −0.550

ADC_SSF2_RM_entropy −0.623

Intercept −1.026

ADC, apparent diffusion coefficient; SSF, spatial scale factor; 
LM, medulla of left kidney; RM, medulla of right kidney; LC,  
cortex of left kidney; sd, standard deviation; mpP, mean of  
positive pixels. Example of feature nomination: T1_SSF2_LM_sd 
means the texture feature of standard deviation quantified from 
left medulla at SSF 2 on the T1 map.
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Figure 5 ROC curves and the distribution plot of the selected texture features for differentiation between mildly and moderately impaired 
renal function. (A) shows the ROC curve for discrimination between mildly and moderately impaired renal function with an AUC of 0.937 
(95% CI: 0.864, 1) and (B) shows the corresponding ROC curves of five-fold cross validation. (C) shows differences in the ADC and T1 
map-based texture features in the mildly and moderately impaired renal function groups. Lines and asterisks indicate statistical significance 
to the boxplot with * indicating P<0.05, ** indicating P<0.01 and *** indicating P<0.001. Labels on the x-axis of the boxplot are named 
according to the specific MR sequence, SSF, and ROI location from which the texture feature is quantified. For example, ADC. SSF0. LC. 
mpp means the feature mpp quantified from left cortex at spatial scale factor 0 on the ADC map. ROC, receiver operating characteristic; 
AUC, area under the curve; ADC, apparent diffusion coefficient; CI, confidential interval; SSF, spatial scale factor; LM, left medulla; RM, 
right medulla; LC, left cortex; RC, right cortex; M, medulla of both kidneys; C, cortex of both kidneys.
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evaluating renal function. Our results, however, showed 
that none of the texture features quantified from the T2 
map were selected to detect eGFR decline or discriminate 
between different degrees of renal function impairment. It 
seems that renal T2 values are not correlated with eGFR, 
and it is possible that T2 mapping may not be of great value 
in evaluating renal dysfunction. However, further research 

is needed to confirm our results and explore the potential of 
T2 mapping in assessing renal diseases. 

TA has become a novel research focus on rapid 
development in recent years, especially in oncological 
imaging. Quantitative texture features are promising 
biomarkers for pathological changes or the response to 
treatment (14). Several studies have explored the potential 
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of TA to evaluate kidney diseases. Kline et al. demonstrated 
that TA of T2-weighted MRI images could be a significant 
prognostic biomarker for the subsequent eGFR decline 
and disease progression in ADPKD (17). Researchers 
used the stability of texture features as the basis for feature 
selection, and entropy was selected as a result that showed 
a strong correlation with the subsequent percentage change 
in eGFR. Ding et al. performed TA on DWI, BOLD, and 
SWI to evaluate renal dysfunction and found that BOLD 
and SWI (but not DWI) may be suitable for assessing 
renal dysfunction in the early stages (18). They showed 
that entropy was correlated with eGFR, which was similar 
to our results; however, skewness and kurtosis were not 
significantly correlated with eGFR, which differed from 
our findings. This discrepancy may be attributable to the 
fact that they quantified texture features from the renal 
parenchyma instead of our study, which quantified texture 
features from the renal cortex or medulla, respectively. Like 
the study by Kline et al., entropy quantified from BOLD 
also showed the capability to differentiate non-severe renal 
function impairment from normal renal function (17).  
In line with these two studies, our results support the 

conclusion that TA based on MRI could evaluate renal 
dysfunction. In addition to the ADC map, we explored the 
potential of texture features quantified from T1 and T2 
maps to evaluate renal function, and our results implied that 
T1 mapping might be of value for the evaluation of renal 
function. However, our findings need to be confirmed in 
future studies.

The present study has several limitations that should 
be noted. First, since the subjects were divided into four 
groups according to eGFR, each group's sample size was 
small, especially the mi-IRF group (n=14). The dataset was 
imbalanced when differentiating mi-IRF from mo-IRF 
(n=27). A greater number of subjects with more balanced 
grouping should be enrolled to validate the results further. 
Second, since we focused on evaluating renal function based 
on eGFR rather than underlying renal diseases, patients 
with different renal pathologies were included. Our results 
showed that TA based on quantitative MRI could detect 
and characterize impaired renal function regardless of the 
cause of renal impairment. However, we did not assess TA’s 
potential to distinguish among these renal pathologies, 
which is worth investigating in the future.

Third, the data were not divided into training and 
validation datasets when differentiating between mildly and 
moderately impaired renal function and between moderately 
and severely impaired renal function because of the limited 
number of patients in each group. Further investigation 
with an independent validation cohort should be conducted 
to validate our results. Fourth, we only selected the slice 
at the renal hilum level for analysis, given the time-saving 
nature of this method and the fact that not all the slices 
of the included patients exhibited sufficiently good image 
quality for TA. We plan to perform whole kidney analysis in 
the future to validate our study. Fifth, since many patients 
with impaired renal function in this study had diminished 
CMD, it was hard to draw the medulla outline accurately. 
Thus, we adopted a compromise approach by placing at 
least three pyramidal ROIs on the medulla to represent the 
whole medulla, which may have introduced bias. A greater 
number of patients with visible CMD should be enrolled to 
allow the entire medulla’s delineation for further analysis. 
Sixth, undoubtedly, TA based on MRI is not time- or cost-
effective for evaluating renal function; however, our study 
demonstrated the possibility of using this novel technique 
to evaluate renal dysfunction or disorders. 

In conclusion, TA based on quantitative MRI offers 
an opportunity to monitor renal dysfunction. Compared 
with those from T2 maps, texture features quantified from 

Table 5 The selected texture features and the corresponding  
coefficients for classification between moderately and severely  
decreased renal function

Texture feature Coefficient

ADC_SSF4_LC_kurtosis 0.724

ADC_SSF3_RM_mean 0.711

ADC_SSF2_LM_mean 0.547

ADC_SSF6_LC_kurtosis 0.492

ADC_SSF6_RM_sd −0.300

ADC_SSF6_RM_entropy −0.444

ADC_SSF6_LM_skewness −0.462

ADC_SSF0_LC_mpp −0.524

ADC_SSF6_C_mpp −0.748

ADC_SSF2_RC_entropy −0.777

Intercept 0.883

ADC, apparent diffusion coefficient; SSF, spatial scale factor; 
LM, medulla of left kidney; RM, medulla of right kidney; LC,  
cortex of left kidney; RC, cortex of right kidney; C, cortex of 
both kidneys; sd, standard deviation; mpP, mean of positive 
pixels. Example of feature nomination: ADC_SSF4_LC_kurtosis 
means the texture feature of kurtosis quantified from left cortex 
at SSF 4 on the ADC map.
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Figure 6 ROC curves and the distribution plot of the selected texture features for differentiation between moderately and severely impaired 
renal function. (A) shows the ROC curve for differentiation between moderately and severely impaired renal function with an AUC of 0.940 
(95% CI: 0.883, 1) and (B) shows the corresponding ROC curves of five-fold cross validation. (C) shows differences in the ADC-based 
texture features in the moderately and severely impaired renal function groups. Lines and asterisks indicate statistical significance to the 
boxplot with * indicating P<0.05, ** indicating P<0.01 and *** indicating P<0.001. Labels on the x-axis of the boxplot are named according 
to the specific MR sequence, SSF, and ROI location from which the texture feature is quantified. For example, ADC. SSF0. LC. mpp 
means the feature mpp quantified from left cortex at spatial scale factor 0 on the ADC map. ROC, receiver operating characteristic; AUC, 
area under the curve; ADC, apparent diffusion coefficient; CI, confidential interval; SSF, spatial scale factor; LM, left medulla; RM, right 
medulla; LC, left cortex; RC, right cortex; M, medulla of both kidneys; C, cortex of both kidneys. 

ADC and T1 maps may be more suitable for detecting and 
characterizing renal dysfunction with relatively satisfactory 
performance. It is promising that texture features based on 
quantitative MRI may serve as imaging biomarkers to reveal 
renal impairment and potentially act as a tool to evaluate 
renal pathologies with further exploration in the future 
noninvasively. 
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