
© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2011;1(1):24-30www.amepc.org/qims

Introduction

Fetal magnetic resonance imaging (MRI) on 1.5T clinical 
scanners has increasingly been performed to detect the brain 
abnormalities and potential neurodevelopmental disabilities 
since its first introduction in early 1980s (1-9). Due to fetal 
motion, multiecho ultrafast MRI techniques such as single-
shot fast spin-echo (ssFSE) and half-Fourier acquired ssFSE 
are primarily used but at the price of signal-to-noise ratio 
(SNR) degradation. Parallel acquisition (10-12) and excitation, 
as a fast imaging technique, are feasible for fetal MRI with less 
focal SAR hot spots, higher SNR and reductions in scan time 
(13,14). However, since there are no dedicated fetal phased 
arrays available, commercial torso or cardiac phased arrays 
are routinely used instead, which are not optimized in SNR, 

safety and parallel imaging performance for fetal MRI, due to 
the limited coil elements, filling factor and B1 field coverage. 
This poses a demand for investigation and development of 
dedicated radiofrequency (RF) hardware for efficient MR 
signal excitation and reception in fetal imaging.

Previous work demonstrates that well designed flexible 
transceiver arrays using microstrip elements (15-21) are 
feasible for various subjects with different sizes (22,23), which 
suggests the possibility of utilizing flexible phased array 
in fetal MRI. Current research has shown the significant 
SNR improvement in the region near the coil array as well 
as the deep region of a maternal body model by increasing 
the number of coil elements (24,25). By optimizing coil 
configuration and increasing coil elements, the filling factor 
and imaging coverage can be improved to achieve high SNR, 
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therefore, higher spatial resolution, sensitivity, and image 
homogeneity, and reduce scanning time in clinical fetal MRI.

Numerical calculation of RF electromagnetic fields in 
human models with realistic geometry and tissue properties 
using finite-difference time-domain (FDTD) algorithm 
is an efficient means in evaluating and optimizing coil 
configuration for better transmit/receive performance in MR 
imaging (26,27). The numerical calculation results lead to 
prospective insight into the coil performance for fetal MRI 
such as SNR, specific absorption rate (SAR) and parallel 
imaging feasibility, which provides important guideline for 
fetal array design and fabricating prototype coil arrays (28-32).

In this work, we propose a flexible 32-channel fetal 
phased array design to increase SNR, imaging coverage, 
parallel imaging performance and imaging safety in the 
whole uterus region. The performance of the proposed 
flexible array is investigated numerically and compared 
with the commercial 8-channel torso array at 1.5T. The B1 
field distribution of the proposed fetal array is analyzed by 
using FDTD method. In addition, GRAPPA reconstructed 
images with different acceleration factors are generated 
based on simulation results. Artifact power is measured to 
quantitatively evaluate parallel imaging performance.

Materials and methods 

In order to improve imaging coverage and filling factor, the 
element number of dedicated fetal array increased to 32 while 
the size of each element was reduced correspondingly to cover 
the abdomen of mother. As shown in Figure 1, the fetal array 
consisted of 4×2 square surface coils with 110 mm width and 
160 mm length on the bottom and 8×3 coils with 60 mm width 
and 70 mm length at the top except the four trapezoidal coil 
indicated by yellow arrows. By increasing the number of coil 
elements and the relative small size of each element, the array 
is more flexible, suitable for patients with different abdomen 
sizes and shapes. Compared with the 8-channel commercial 
torso array, which consisted of 4 square surface coils with 
160 mm width and 160 mm length on the bottom and the 
other four with 110 mm width and 110 mm length at the 
top as shown in Figure 1, the coverage and filling factor were 
improved along with the increased flexibility. 

The simulations of the two arrays were carried out using 
commercial FDTD software XFDTD 6.5 (REMCOM 
Inc., State College, PA) to compare array performance. The 
conductors (red region) were copper tapes (σ=5.8×107 S/m, μr=1 
and 3 mm in width). The phantom (green region, σ=0.7 S/m and 
μr=72) was ellipse cylinder with 800 mm length, 205 mm 
long axel and 120 mm short axel, combined with a sphere 

with 140 mm radius. In order to achieve better coverage and 
filling factor, the coil elements at the top of the torso array 
were rotated 15º along the anterior-posterior direction. All 
the elements of the proposed fetal array were placed close 
to the phantom. A three-dimension FDTD simulation 
was performed at 64 MHz, corresponding to the proton 
Larmor frequency at 1.5T. Each element of the two arrays 
was excited by sinusoidal current source with RMS value of 
1A and the same phase. Outer boundaries were absorbing 
perfectly matched layer (PML) with 7 layers. The meshing 
cells of the two models were 3 mm × 3 mm × 5 mm.

To evaluate the parallel imaging performance of the fetal 
array, GRAPPA (12,33-35) algorithm was utilized for image 
reconstruction. The electromagnetic field distribution of each 
element coil was simulated separately. The images of each 
element were calculated pixel by pixel based on simulation 
results. Ignoring relaxation and susceptibility effects, the 
gradient echo image intensity SI is given by (36,37).

                                            
[1]

where C is constant proportional to resonance frequency 
and initial magnetization, γ is the magnetogyric ratio, τ is 
the RF pulse duration, B1

+ and B1
- denote the positive and 

negative circularly polarized component respectively and 
the asterisk denotes a complex conjugate operation (38,39). 
As the phantom is assumed to be uniformly excited, SI is 
proportional to | B1

-*| according to equation [1]. A second 
order polynomial fit is performed to smooth the images.

The GRAPPA reconstruction was carried out by using 
PULSAR toolbox (40). 32 Auto-Calibration Signal (ACS) 
lines in the center of the k-space were used to estimate the 
missing lines. The block size was 2. All the coils were used 
for GRAPPA reconstruction. The coil distribution was set to 
linear. 90% of k-space along frequency-encoding direction 
was employed for fitting. The GRAPPA reconstruction 
with subsampling factors of 2, 4, 6 and 8, corresponding to 
acceleration factors of 1.7, 2.6, 3.2 and 3.5 respectively, was 
performed to A/P direction in axial plane. Sum-of-square 
(SoS) images were calculated as reference (41).

Results 

The B1 field distributions in the transversal and sagittal 
planes of the two arrays, which was scaled to 2×10-7 W 
input power of each element, was shown in Figure 2 and 3. 
The mean B1 in 3 cm × 3 cm region at different location in 
the whole uterus was shown in the black boxes. As shown in 
Figure 2, B1 was increased 20% in the surface region at the 
center of transversal plane, whilst that on left and right sides 
increased 40% to 180% due to the better coverage of the 
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Figure 1 Configurations of coils and phantoms, 32 channel fetal array (A) and 8 channel torso array (B)

Figure 2 B1 map of (A) 32 channel fetal array and (B) 8 channel torso array in the central transversal plane of the phantom calculated by 
XFDTD. The numbers in the boxes indicated the mean B1 (10-8T) in the 3 cm × 3 cm region

A B

A



27Quantitative Imaging in Medicine and Surgery, Vol 1, No 1 December 2011

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2011;1(1):24-30www.amepc.org/qims

A B

Figure 4 GRAPPA reconstructed images. 32 Auto-Calibration Signal (ACS) lines in the center of the k-space were used to estimate the 
missing lines. The GRAPPA reconstruction with acceleration factors of 1.7, 2.6, 3.2 and 3.5 was performed to A/P direction in axial plane

Figure 3 B1 map of (A) 32 channel fetal array and (B) 8 channel torso array in the central sagittal plane of the phantom calculated by 
XFDTD. The numbers in the boxes indicated the mean B1 (10-8T) in the 3 cm × 3 cm region
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Figure 6 The image intensity of SoS and GRAPPA reconstructed images with subsampling factor 8 at the center lines (blue dash lines in 
Figure 4). The right figure is zoom-in image, showing image intensity in deeper region in uterus

Figure 5 Artifact power comparison between fetal array and torso array with subsampling factors of 2, 4, 6, and 8

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

A
rt

ifa
ct

 P
ow

er

Artifact Power vs. Subsampling Factor

Subsampling Factor
2                    3                   4                    5                  6                    7                   8

Fetal Array
Torso Array

6

5

4

3

2

1

0

×10-6

R=8, Fetal Array
SoS,  Fetal Array
R=8, Torso Array
SoS,  Torso Array

Image intensity at the central line

0            20           40           60          80          100        120        140         160        180

40                50                60                70                80                90               100

7

6

5

4

3

2

1

0

R=8, Fetal Array
SoS,  Fetal Array
R=8, Torso Array
SoS,  Torso Array

×10-7

Bottom Top



29Quantitative Imaging in Medicine and Surgery, Vol 1, No 1 December 2011

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2011;1(1):24-30www.amepc.org/qims

32 channel fetal array. As shown in Figure 3, B1 increased 
50% in the center of surface region as well as that on the 
anterior and posterior sides was increased 28% due to better 
filling factor of the fetal array. B1 in the center of uterus 
and in deeper region such as the center of the patient was 
increased 87% and 79% respectively because of increasing 
the number of element. Besides the improvement of B1 
field strength, the sensitivity homogeneity also increased 
substantially which is important for fetal MRI due to the 
possibility of fetus head location in the whole uterus. 

The GRAPPA and sum-of-square reconstructed images 
were shown in Figure 4. The first row was the images 
of eight-channel torso array and the second row was of 
32-channel fetal array. Artifact power was calculated to 
quantitatively evaluate the parallel imaging performance of 
two arrays. The artifact power (AP) was defined as (40).

           

 [2]

where ISoS and IGRAAPA were the image intensity of sum-
of-square images and GRAPPA reconstructed images. As 
shown in Figure 5, the fetal array dramatically reduced 
the artifact power compared with the torso array. The 
artifact power of fetal array with subsampling factor 8 was 
diminished to 7.8% of that of torso array. Figure 6 showed 
the image intensity of SoS and GRAPPA reconstructed 
images with subsampling factor 8 at the center line, which 
demonstrated the image intensity of the fetal array increased 
5-fold in surface region. The zoom-in image in Figure 6 
showed 50% improvement in the deeper region compared 
with that of torso array, although the sizes of each element 
of the fetal array were smaller than torso array (42).

Conclusions and Discussions

This study indicates the proposed 32-channel fetal array 
improves SNR, sensitivity homogeneity and imaging 
coverage by increasing the number of array element. 
The artifact of parallel reconstructed images is reduced 
dramatically by using the proposed flexible fetal array. 
These results demonstrate the feasibility of the 32 channel 
flexible array and the performance improvement over the 
torso or cardiac array, providing a more sensitive, faster and 
safer imaging method for fetal MR imaging at 1.5T.

Some B1 drop-off near the surface of maternal body model 
as shown in Figure 2 and Figure 3 can be observed. This 
field distribution can be further improved by performing B1 
shimming with the fetal array or fine adjusting the phase and 

amplitude on the array elements, or even by simple post-
processing during the image reconstruction. This certainly 
deserves a further study. 

With the use of multichannel RF transmitter, the flexible 
fetal array can be also used as a transmit/receive array to 
perform regularly transmitting or parallel excitation for B1 
filed shimming and fast selective excitation. Since the region 
of interest is relatively smaller than the maternal abdomen, 
the excitation power can be reduced by using transmit array 
instead of regular body coil. Therefore, the average SAR 
and resulting temperature rise will decrease which improves 
patient safety.
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