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Background: MRI pulse sequences and imaging parameters substantially influence the variation of MRI 
radiomics features, thus impose a critical challenge on MRI radiomics reproducibility and reliability. This 
study aims to prospectively investigate the impact of various imaging parameters on MRI radiomics features 
in a 3D T2-weighted (T2W) turbo-spin-echo (TSE) pulse sequence for MR-guided-radiotherapy (MRgRT).
Methods: An anthropomorphic phantom was scanned using a 3D-T2W-TSE MRgRT sequence at 1.5T 
under a variety of acquisition imaging parameter changes. T1 and T2 relaxation times of the phantom were 
also measured. 93 first-order and texture radiomics features in the original and 14 transformed images, 
yielding 1,395 features in total, were extracted from 10 volumes-of-interest (VOIs). The percentage deviation 
(d%) of radiomics feature values from the baseline values and intra-class correlation coefficient (ICC) with 
the baseline were calculated. Robust radiomics features were identified based on the excellent agreement 
of radiomics feature values with the baseline, i.e., the averaged d% <5% and ICC >0.90 in all VOIs for all 
imaging parameter variations. 
Results: The radiomics feature values changed considerably but to different degrees with different imaging 
parameter adjustments, in the ten VOIs. The deviation d% ranged from 0.02% to 321.3%, with a mean 
of 12.5% averaged for all original features in all ten VOIs. First-order and GLCM features were generally 
more robust to imaging parameters than other features in the original images. There were also significantly 
different radiomics feature values (ANOVA, P<0.001) between the original and the transformed images, 
exhibiting quite different robustness to imaging parameters. 330 out of 1395 features (23.7%) robust to 
imaging parameters were identified. GLCM and GLSZM features had the most (42.5%, 153/360) and least 
(3.8%, 9/240) robust features in the original and transformed images, respectively. 
Conclusions: This study helps better understand the quantitative dependence of radiomics feature values 
on imaging parameters in a 3D-T2W-TSE sequence for MRgRT. Imaging parameter heterogeneity should 
be considered as a significant source of radiomics variability and uncertainty, which must be well harmonized 
for reliable clinical use. The identified robust features to imaging parameters are helpful for the pre-selection 
of radiomics features for reliable radiomics modeling.
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Introduction

Radiomics (1-5) holds great promises in clinical oncology 
to aid better diagnosis, prognosis, and personalized clinical 
decision making, as witnessed by a huge number of research 
studies published in recent years (6-13). However, the broad 
validity and generality of radiomics are much hindered by 
the concerns on its reliability (14-20). Besides disease, tissue, 
and physiological characteristics in the patients, variability 
and uncertainty of radiomics can be introduced in many 
procedures of the complicated workflow. These procedures 
include but not limited to imaging hardware configuration, 
patient setup, image acquisition, reconstruction, image post-
processing (filtering, segmentation and registration etc.), 
radiomics feature computation, and radiomics modeling. 

Image acquisition is one of the key procedures that 
could substantially influence clinical image characteristics 
and thus radiomics reliability, no matter for computerized 
tomography (CT), magnetic resonance imaging (MRI), 
ultrasound or positron emission tomography (PET). 
Different from the quantitative nature of CT and PET, 
anatomical MRI has no exact physical meaning in its 
voxel value. Rather, MRI voxel value (or intensity) is 
comprehensively influenced by a number of endogenous 
and exogenous factors. The endogenous factors include the 
tissue properties such as proton density, T1/T2 relaxation 
times, fat-water composition, tissue susceptibility, and 
physiological motion. The exogenous factors include but 
not limited to MRI scanner field strength and homogeneity, 
radiofrequency (RF) coil, scan setup, MRI pulse sequences 
and imaging parameters, MRI reconstruction algorithms, 
as well as contrast agent administration. Among all clinical 
imaging modalities, MRI has the most flexible and superior 
soft tissue image contrasts. However, on the other hand, 
flexibility and superiority of MRI image contrast also 
impose even greater challenges on radiomics reliability in 
MRI than in CT and PET, in that MRI image intensity 
subjects much more to the greater variability in imaging 
acquisition by various MRI pulse sequences and imaging 
parameters. 

Phantom study is a valuable and useful means to gauge 
the radiomics reliability, in which the radiomics feature 
reference could be well defined, and the contributing 
factors could be well controlled (4). Compared to CT and 
PET, dependence of radiomics features on MRI acquisition 
parameters has been much less investigated. Collewet  
et al. (21) was the first to investigate the effects of two MRI 
acquisition protocols and intensity normalization on texture 

classification using different-aged cheeses at 0.2 Tesla (T). 
Mayerhoefer et al. (22) studied the influence of varying TE, 
TR, number-of-average, and receiver bandwidth (RBW) 
on a number of texture features and pattern discrimination 
between two phantoms consisting of polystyrene spheres 
and an agar gel solution using a 2D multi-echo spin-echo 
sequence at 3T. In the era of radiomics, to the best of our 
knowledge, Buch et al. (23) was the only one to evaluate 
the influence of MRI scanning parameters on radiomics 
feature values. Based on publicly available phantom 
data, they retrospectively evaluated the effects of magnet 
strength, flip‐angle, number of excitations (NEX), and 
scanner platform in a gradient echo pulse sequence, on 
texture radiomics features. All these studies utilized non-
anatomical phantoms and investigated a limited number of 
texture features and imaging parameters. Meanwhile, the 
utilization of post-acquisition image processing, such as 
grayscale normalization and spatial-resolution resampling, 
might obscure the effects of image acquisition on radiomics 
features. 

This study aims to prospectively and quantitatively 
investigate the impact of various MRI imaging parameters 
on Imaging Biomarkers Standardization Initiative 
(IBSI) (24,25) compliant radiomics features using an 
anthropomorphic phantom. In addition, this study is 
particularly aiming for MRI radiomics in MR-guided 
radiotherapy (MRgRT) applications (26-31). Thus, a 3D 
T2-weighted (T2W) turbo-spin-echo (TSE) sequence 
standardized on a product 1.5 Tesla MRI-integrated linear 
accelerator (MR-LINAC) platform (32-34) is utilized 
to demonstrate the variation of radiomics feature values 
influenced by acquisition imaging parameters.

Methods

Phantom and MRI acquisition

No ethical approval or written informed consent was 
required for this phantom study. Imaging was conducted on 
a 70 cm-bored 1.5 T clinical MRI scanner (Ingenia MR-RT, 
Philips Healthcare, Best, Netherlands) with the maximum 
gradient strength of 45 mT/m and the switching rate of 200 
T/m/s. A CIRS triple-modality (CT, MRI, and ultrasound) 
3D Abdominal Phantom (model 057A, CIRS, Norfolk, 
Virginia, USA) with the size of 26 cm (LR) × 19 cm (AP)  
× 12.5 cm (SI) was used (https://www.cirsinc.com/
products/ultrasound/zerdine-hydrogel/triple-modality-
3d-abdominal-phantom/). The phantom consisted of 

https://www.cirsinc.com/products/ultrasound/zerdine-hydrogel/triple-modality-3d-abdominal-phantom/
https://www.cirsinc.com/products/ultrasound/zerdine-hydrogel/triple-modality-3d-abdominal-phantom/
https://www.cirsinc.com/products/ultrasound/zerdine-hydrogel/triple-modality-3d-abdominal-phantom/
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several anatomical structures, including the liver with six 
lesions inside, the portal vein, two kidneys, partial lung, the 
abdominal aorta, the vena cava, a vertebra, and six ribs, to 
mimic human abdomen. 

The phantom was aligned on the MRI flat couch-
top using an external 3D laser (DORADOnova MR3T, 
LAP GmbH Laser Applikationen, Luneburg, Germany). 

A 16-channel FlexCoverage Anterior Coil held on a coil 
frame with a fixed distance to the phantom was used for 
MRI signal reception, along with the posterior 12-channel 
TotalSpine coil. The scanner integrated quadrature body 
coil (QBC) was used for signal excitation. 

T1 and T2 relaxation times of the phantom were first 
measured using the vendor-provided T1 and T2 mapping 
protocols in the clinical sequence library. T1 mapping 
protocol was based on a dual flip angle (DFA) method 
using a 3D spoiled gradient echo sequence (FOV =30 cm; 
matrix size =256×256×40; voxel size =1.17×1.17×3 mm3;  
TE/TR =1.46/15 ms; flip angles =5°/26°; receiver bandwidth 
=434 Hz/pixel) (35,36). T2 mapping protocol was based 
on the conventional exponential decay model fitting 
using a 2D multi-echo spin-echo sequence (FOV =30 cm;  
matrix size =256×256; slices =40; slice thickness =3 mm;  
TEs =13.8/27.6/41.4/55.2/69.0 ms; flip angle =90°; 
refocusing angle =180° receiver bandwidth =227 Hz/pixel) 
(37,38). Voxel-wise T1 and T2 maps were automatically 
generated on the MRI console after imaging acquisition. 

A 3D-T2W-TSE sequence was used for image 
acquisition for radiomics analysis. The baseline imaging 
protocol was adopted from the abdominal T2W scan 
protocol on a hybrid 1.5T MR-LINAC (Elekta Unity, 
Elekta Instrument AB, Stockholm, Sweden) (32-34). The 
imaging parameters, as listed in Table 1, were identical 
to that were standardized and clinically used on Elekta 
Unity for daily MRI scan of abdominal MRgRT for on-
line treatment adaptation. But the major difference was 
the different hardware configuration, such as gradient coil 
and RF coils, between the Ingenia MR-RT and the Elekta 
Unity. A number of acquisition imaging parameters that 
could theoretically affect image intensity and contrast were 
adjusted on the basis of the baseline imaging protocol 
within a reasonably large range to assess their quantitative 
influence on radiomics feature values. These imaging 
parameters included echo time (TE), repetition time (TR), 
echo train length (ETL, or turbo factor), phase encoding 
(PE) direction, turbo direction, number of startup RF 
pulse, driven equilibrium, RF train flip angle pattern, and 
partial Fourier factor. They were generally independent 
of each other. Only one parameter was adjusted each time 
while other parameters were kept identical unless specified, 
such that the influence of each parameter on the radiomics 
features could be individually evaluated. Signal-to-noise 
ratio (SNR) normalization by increasing the number of 
signal average (NSA) was conducted to compensate for the 
SNR reduction introduced by partial Fourier acquisition, 

Table 1 Image acquisition parameters of the 3D T2-weighted  
turbo-spin-echo (3D-T2W-TSE) sequence

Imaging acquisition parameters Values

Scanning sequence T2-weighted (T2W)  
turbo-spin-echo (TSE) 

Acquisition type 3D

Acquisition orientation Axial

TE/TR (ms) 206/2,100

Excitation flip angle (degree) 90

RF pulse train flip angle pattern T2 brain view

Oversample factor 1.2

FOV (mm2) AP×RL×FH 320×448×300

Acquisition voxel size (mm3) 2×2×2.4

Reconstruction voxel size (mm3) 0.56×0.56×1.2

Number of signal averages NSA 2

Number of Slice 250

Reconstruction method Sensitivity Encoding (SENSE)

Acceleration factor Phase (RL) 3.4, Slice (FH) 1.2

Partial Fourier (Y/Z) NO

Echo Train Length ETL 134

Number of startup RF pulse 6

Turbo direction Y

Profile order linear

Driven equilibrium Yes

Pixel Bandwidth (Hz/pixel) 1,220.7

3D Distortion Correction ON

Image inhomogeneity correction Constant LEvel AppeaRance 
(CLEAR)

Navigator OFF

Scan time 03:20

TE, echo time; TR, repetition time; ms, millisecond; RF,  
radiofrequency; AP, anterior-posterior; RL, right-left; FH,  
foot-head; Hz, Hertz.
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according to the well-known proportional relationship 
of image SNR with the square root of NSA, and with the 
square root of partial Fourier factor. The main purpose 
of SNR normalization was to ensure that the change 
of radiomics feature value was resulted from the image 
intensity or contrast change, instead of the varying noise 
level. The information on image parameters and their 
adjustment ranges were summarized in Table 2.

Feature extraction, image analysis, and statistical analysis

The DICOM-formatted MRI images were imported and 
converted into NRRD (nearly raw raster data) format in the 
3D Slicer v 4.10.2 (39) without any other post-acquisition 
image processing. Ten volumes-of-interest (VOIs), 
including the liver, three liver lesions, left and right kidneys, 
vena cava, aorta, spinal cord and muscle, were segmented 
by an MRI physicist on the baseline MRI dataset (Figure 1),  
using the semi-automated “level tracing” function in the 
3D slicer “Segment Editor”, or placing a spherical VOI 
within the tissue (including the liver and muscle VOIs). The 

segmented VOIs were straightforwardly propagated to all 
image datasets without needing image co-registration. 

Radiomics features were extracted using PyRadiomics 
(v.2.2.0) (40), in which most original radiomics features 
were compliant with the standardized IBSI definition 
(24,25). A fixed bin size of 25 was used for image intensity 
discretization. Since shape radiomics features were not 
changed by imaging parameters, so were excluded for 
analysis. 93 first-order and texture radiomics features in 
six categories (first-order n=18; texture_GLCM n=24; 
texture_GLDM n=14; texture_GLRLM n=16; texture_
GLSZM n=16; texture_NGTDM n=5) were extracted in 
the original images. In addition, the extended first-order 
and texture radiomics features were extracted in the images 
transformed from the original images. These transformed 
images were Laplacian-of-Gaussian filtering (LoG) with 
the sigma levels of 1 [LoG(1)] and 3 [LoG(3)], 1 level of 
wavelet decompositions yielding 8 derived images (HHH, 
HHL, HLH, HLL, LHH, LHL, LLH, LLL) and the 
images derived using Square, Square Root, Logarithm 
and Exponential filters. In total, 1,395 (93×15) radiomics 

Table 2 The setting of varying image acquisition parameters and their theoretical effects on MR images 

Image acquisition parameters Theoretical effects Values

Echo time TE (ms) To affect the decay of transverse magnetization and 
thus the T2-weighting of MR image

190, 206 (baseline), 220, 240, 260, 280, 300, 320, 
340

Repetition time TR (ms) To affect the recovery of longitudinal magnetization 
and thus the T2-weighting of MR image

2,100 (baseline), 600–3,000 with an increment of 
200

Echo Train Length ETL To accelerate scan by acquiring multiple spin 
echoes in a single TR; it also affects image artifacts 
such as blurring

50, 60, 70, 80, 90, 100, 110, 120, 134  
(baseline), 140, 150

Number of startup RF pulse To saturate short T2 structures in the MR image 4, 6 (baseline), 8, 10

Phase encoding direction To affect scan efficiency and artifact appearance 
direction like motion ghosting

RL (baseline), AP

Turbo direction To control the K-space trajectory during echo train 
acquisition.

phase encoding (baseline), radial

RF pulse train flip angle 
pattern (TE=186ms except for 
baseline and T2 Spine View) 

To modulate MRI signal evolution during the echo 
train so as to optimize image T2-weighing for  
specific organs

T2 Brain View (baseline, TE =206 ms), T2 Brain 
view, T2 Spine View (TE =309 ms), T2 MSK View, 
T2FS MSK View, T2 Female Pelvis View, T2 Gen-
eral Pelvis View, T2 Prostate View

Driven equilibrium To accelerate the recovery of longitudinal  
magnetization

Yes (baseline), No

Partial Fourier YZ  
(Y: phase-encoding direction; 
Z: slice-encoding direction)

To accelerate scan by collecting less K-space data 
but may introduce additional artifact and reduce 
SNR

NO (baseline, Y1Z1, NSA =2), Y0.6Z0.7  
(NSA =6), Y0.8Z0.8 (NSA =5), Y0.8Z1 (NSA =3), 
Y1Z0.6 (NSA =5), Y1Z0.8 (NSA =3)

ms, millisecond; RF, radiofrequency; RL, right-left; AP, anterior-posterior; SNR, signal-to-noise ratio.
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features in the original images and 14 transformed images 
were included. The complete list and definition of these 
radiomics features could be referred to (https://pyradiomics.
readthedocs.io/en/latest/features.html).

For each VOI, the radiomics feature values associated with 
each imaging parameter adjustment were compared with the 
baseline values. The feature value difference was then divided 
by the baseline value to calculate the percent deviation 
(d%) of the feature. Under a certain imaging parameter 
adjustment, if the average d% of a feature in all VOIs was < 
5%, the feature consistency with the baseline was considered 
excellent. The consistency was good if 5%≤d%<10%, 
moderate if 10%≤d%<15%, and poor if d%≥15%.

The intra-class correlation coefficient (ICC, 2-way 
mixed-effects model, single rater, absolute agreement) 
was calculated to evaluate the agreement of the radiomics 
feature values in all 10 VOIs to the baseline (poor: ICC 
<0.50; moderate: 0.50≤ ICC <0.75; good: 0.75≤ ICC <0.90; 
excellent: ICC ≥0.90) (41). 

If a radiomics feature was in the excellent agreement with 
the baseline based on both d% and ICC criteria, which was 
averaged for all imaging parameter settings in all VOIs, it 
was determined as a robust feature to imaging parameters. 

All statistical tests were conducted in R v.1.2.5042 

(RStudio, Boston, MA, USA). T-test was conducted to 
compare the radiomics feature deviation d% due to imaging 
parameter adjustment. ANOVA with Bonferroni correction 
as the post-hoc test was conducted to compare the d% 
among different imaging parameter settings and different 
feature categories. A P value of less than 0.05 indicated 
statistical significance. 

Results

T1 and T2 relaxation time mapping of the phantom

The measured mean T1 and T2 relaxation times in the 10 
VOIs of the phantom were summarized in Table 3.

Deviation of radiomics feature values from the baseline 
due to imaging parameter change

The variation of original radiomics features with 
different imaging parameters in all VOIs 
The percent deviation d% of the radiomics feature values 
in the original images averaged in all ten VOIs under each 
imaging parameter setting from the corresponding baseline 
feature values is shown in Figure 2. The deviation d% 

Figure 1 The CIRS triple-modality (CT, MRI and ultrasound) 3D Abdominal Phantom and the ten volumes-of-interest (VOIs) segmented 
on the baseline 3D-T2W-TSE images acquired with the default imaging parameter setting.
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from the baseline values ranged from 0.02% to 321.3%, 
with a mean of 12.5% averaged for all features in all ten 
VOIs. The boxplots in Figure 3 illustrate the influences of 
different types of imaging parameters on the variation of 
original radiomics feature values. With the adjustment of 
TE, TR, and ETL, it was found that the larger difference 
from the default parameter value (defaults: TE/TR  
=206 ms/2,100 ms; ETL =134), the larger feature deviation 
d%. The radiomics feature values changed significantly with 
the varying TE, TR, and ETL (ANOVA, all P<0.001). The 
number of startup RF pulses notably affected the radiomics 
features, and the deviation d% was significantly different 
within the range from 4 to 10 (ANOVA P<0.001). The RF 
pulse train flip angle pattern also significantly (ANOVA, 
P<0.001) changed the radiomics feature values. The largest 
d% occurred (the median d%=18.4%, P<0.001) when the 

Table 3 The mean T1 and T2 relaxation times in the 10  
regions-of-interest (VOIs) 

Mean T1 (ms) Mean T2 (ms)

Liver lesion 1 1,868.7 982.5

Liver lesion 2 1,880.9 861.4

Liver lesion 3 2,136.7 1,022.6

Aorta 1,296.2 164.8

Vena cava 1,317.1 237.5

Liver 1,322.8 157.1

Left Kidney 1,464.3 181.0

Right Kidney 1,407.5 178.4

Spinal cord 1,529.3 227.6

Muscle 1,873.6 203.2

Figure 2 The heatmap illustrating the percent deviation d% of the radiomics feature values in the original images averaged in all ten 
volumes-of-interest (VOIs) under each imaging parameter setting from the corresponding baseline feature values 
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T2 spine view pattern (the longest TE=309ms) was applied, 
which supposed to have the strongest image T2 weighting 
among all flip angle patterns. As comparison, the smallest 
d% was associated with the T2 general pelvis view (median 
d%=3.5%, T-test P=1) and the T2 female pelvis view 
(median d%=3.3%, T-test P=1), both insignificant. The use 
of partial Fourier acquisition also significantly (ANOVA, 
P<0.001) influenced the radiomics feature values. Since the 

image SNR had been mostly normalized for partial Fourier 
acquisitions, the radiomics feature value change might 
be attributed to the subtle image appearance (or artifact) 
change rather than the SNR reduction. The absence of 
driven equilibrium notably but insignificantly changed the 
feature values with a median d% of 16.4% (T-test P=0.95), 
which might make the residual transversal magnetization 
larger at the end of each echo train than in the presence of 

Figure 3 The boxplots illustrating the influences of different types of imaging parameters [(A): echo time TE; (B): repetition time TR; (C): 
echo train length ETL; (D): RF pulse train flip angle pattern; (E): number of startup RF pulse; (F) Partial Fourier; (G): miscellaneous] on 
the variation of original radiomics feature values.
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driven equilibrium. The radial K-space trajectory did not 
remarkably change the radiomics feature values (the median 
d%=5.9%, T-test P=0.90) from the default Cartesian (Y) 
K-space trajectory. The switch of phase encoding direction 
from RL to AP resulted in a significant median radiomics 
feature deviation d% of 12.9% (T-test P<0.001).

The influences of imaging parameters on different 
types of original radiomics features in all VOIs 
Different types of radiomics features in the original images 

subjected to the varying imaging parameters to largely 
different extents, as also demonstrated in the heatmap of 
Figure 2. Figure 4 selectively illustrates the mean and the 
standard deviation of the d% associated with each category 
of radiomics features dependent on the varying TE, TR and 
ETL, respectively. 

In terms of mean d%, GLSZM features subjected most 
(mean d%=19.6%) while first-order features subjected 
least (mean d%=8.0%) to all imaging parameter variations, 
with NGTDM (mean d%=15.1%),  GLDM (mean 
d%=13.1%), GLRLM (mean d%=10.9%) and GLCM 
(mean d%=10.1%) in-between in a decreasing order. There 
were significantly different d% (ANOVA P<0.001) among 
these six types of radiomics features. The largest to the 
smallest standard deviation (SD) of d% was associated with 
GLSZM (SD d%=13.3%), NGTDM (SD d%=10.4%), 
GLDM (SD d%=8.4%), GLRLM (SD d%=7.9%), GLCM 
(SD d%=7.0%) and first-order (SD d%=5.0%) features, 
respectively. 

The comparison of original radiomics feature variation 
with different imaging parameters in different VOIs 
Due to the different T1 and T2 values in different VOIs, 
they subjected to the imaging parameter changes to 
different degrees. The boxplots in Figure 5 demonstrate 
the d% in each VOI under the influences of imaging 
parameter adjustments. The three liver lesions showed 
similar patterns of d% (ANOVA, P=0.838) with imaging 
parameter changes, due mainly to their similar T1 and T2 
relaxation times. Because of their longer T2 relaxation 
times than other VOIs, the three lesions subjected more 
to driven equilibrium and thus induced larger radiomics 
feature value changes than other VOIs (T-test, P<0.01). A 
significant correlation between the longer T2 relaxation 
times and the higher d% of radiomics feature values in 
each VOI without driven equilibrium was also observed 
(Pearson correlation coefficient r=0.9; P<0.001). Similarly, 
left and right kidneys also showed similar patterns of 
d% (T-test, P=0.47) due to their similar relaxation 
times. The muscle VOI exhibited quite different and 
significantly larger (T-test, P<0.001) feature deviation 
from other VOIs in many imaging parameter changes, 
mainly attributing to its unique characteristics of long 
T1 but short T2 relaxation times among the ten VOIs. 
The percent deviation d% of the radiomics feature values 
in the original images in each individual VOIs under 
each imaging parameter setting from the corresponding 
baseline could be found in the Figure S1. 

Figure 4 The mean and the standard deviation of the percent 
deviation d% associated with each category of radiomics features 
dependent on the varying echo time TE (A), repetition time TR (B) 
and echo train length ETL (C).

Echo Times TE (ms)

Repetition Time TR (ms)

Echo Train Length (ETL)

d%
d%

d%

600    800    1000   1200  1400   1600   1800   2000  2200   2400  2600   2800  3000

200        220        240        260        280       300        320        340

50      60      70      80      90     100    110    120    130    140    150

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

A

B

C

https://cdn.amegroups.cn/static/public/QIMS-20-865-supplementary.pdf


1878 Jing et al. Impact of 3D-T2W-TSE imaging parameters on MRgRT radiomics 

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(5):1870-1887 | http://dx.doi.org/10.21037/qims-20-865

The comparison of feature value variation between the 
original image and transformed image due to imaging 
parameter change 
Compared to the radiomics features in the original images, 
the features in the transformed images showed substantial 
different d% from the baseline values. The boxplots in 
Figure 6 illustrate the different feature d% patterns of 
each transformation under all imaging parameter settings 
averaged in all VOIs for the radiomics features. In general, 
there were significantly different feature values (ANOVA, 
P<0.001) between the original and the transformed 

images. After the transformations, some radiomics features 
became much more or less sensitive to imaging parameter 
adjustments. For example, most GLDM and GLRLM 
features exhibited much smaller d% from the baseline 
values in the wavelet transformed HHH images than in the 
original images. On the contrary, many first-order features 
showed much larger d% in the wavelet transformed HHH 
images than in the original images. The feature percent 
deviation d% in the transformed images averaged in all 
VOIs under each imaging parameter setting from the 
baseline values found be found in Figure S2. 

Figure 5 The boxplots demonstrating the percent deviation d% in each volume-of-interest VOI under the influences of different types of 
imaging parameter adjustment. 
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Figure 6 The boxplots illustrating the different feature d% patterns of each transformation under all imaging parameter settings averaged in 
all VOIs for the six categories of radiomics features.
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Robust radiomics features to imaging parameter changes

Figure 7 illustrate the agreement of the radiomics features 
with the baseline values under different imaging parameter 
settings in all VOIs of the original images on the basis of 
d% and ICC, respectively. Using the criterion of mean 
d% averaged for all imaging parameter settings, there 
were 23 out of 93 radiomics features were in the excellent 
agreement with the baseline; 25, 10, and 35 features were in 
the good, moderate and poor agreement with the baseline 
respectively. If the criterion of mean ICC averaged for all 

imaging parameter settings was used, there were 85, 7, 
1, and 0 features were in the excellent, good, moderate, 
and poor agreement with the baseline, respectively. The 
criterion of mean d% seemed to be a much more stringent 
criterion than mean ICC for feature value robustness 
evaluation (42). 

Figure 8 summarizes all robust features in the original 
and transformed images when both mean d% and mean 
ICC were taken into account. There were 16.1% (15/93) 
robust features in the original images. In the transformed 
images, the wavelet_HHH images presented the most 
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Figure 7 The agreement of radiomics feature values in the original images with the corresponding baseline values based on (A) percent 
deviation d% (d%<5% excellent; 5%≤d%<10% good; 10%≤d%<15% moderate; d%≥15% poor); and (B) intra-class correlation coefficient 
(ICC) (ICC >0.90 excellent; 0.75< ICC ≤0.90 good; 0.50< ICC ≤0.75 moderate; ICC ≤0.50 poor). 
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robust features (40.9%, 38/93), while the exponential images 
had the least robust features (5.4%, 5/93). There were in 
total 330 out of 1395 features (23.7%) that were robust to 
imaging parameters in the original and transformed images. 
In terms of feature types, GLCM features had the largest 
number of robust features [42.5%, 153/(24×15)], while the 
GLSZM features had the least number of robust features 
[3.8%, 9/(16×15)]. 

Discussion

MRgRT offers a new platform and great opportunity to 
extend the use of MRI radiomics in a conventional off-line 
diagnostic setting to an on-line therapeutic setting (43-45). 
MRgRT is able to acquire daily MRI data to longitudinally 
and closely monitoring the changes of target tumors 
and organs-at-risk (OARs) at each treatment fraction. 
If MRI radiomics were able to truly reveal the changes 
of tumors and OARs, more sensitively and earlier than 
the conventional geometric surrogate changes, MRgRT 
treatment adaptation might be conducted based on the 
longitudinal MRI radiomics feature changes, named delta-
radiomics (45,46). As such, the current MRgRT treatment 
adaptation practice based on position or shape change 
might be transformed to the adaptation on radiomics 
biomarkers in the future, better fulfilling personalized 
precision radiation oncology (4,47).

This study prospectively and rigorously investigated the 
quantitative variation of radiomics features, and examined 
their feature value robustness with respect to the change 
of imaging parameters in an anthropomorphic phantom, 
in particular aiming for the use of radiomics in MRgRT by 
using a standardized 3D-T2W-TSE pulse sequence on a 
commercial MR-LINAC platform as the baseline. 

For MRgRT applications, 3D-T2W-TSE is one of the 
most important MRI pulse sequences. First, radiotherapy 
requires continuous volume information of the imaged 
anatomies without slice gaps and prefers isotropic voxel 
size for anatomy delineation and dose planning purposes. 
Moreover, image geometric fidelity is crucial for dose 
planning. Thus, 3D pulse sequences are advantageous over 
2D sequences. In MRgRT, daily MR images are acquired 
in each treatment fraction for on-line treatment adaptation 
purposes, based on either patient position change or 
geometric change of anatomies (33). T2-weighted image 
contrast becomes preferable to T1-weighted contrast since 
the use of MRI contrast agent is avoided in this daily MRI 
acquisition scenario. Meanwhile, gradient echo sequences 

normally could not produce purely T2-weighted image 
contrast like spin-echo sequences. In addition, spin echo 
sequences are much less sensitive to tissue susceptibility 
and local magnetic field inhomogeneities induced by 
metal implants, hence, presenting less susceptibility or 
metal artifacts. Therefore, 3D-T2W-TSE is currently the 
dominant pulse sequence on the 1.5 T Eleckta Unity to 
obtain T2-weighted images for most anatomical regions. 

The robustness of radiomics features to MRI acquisition 
imaging parameters is crucial for the reliable use of 
radiomics in clinics. Therefore, the quantitative variation 
of radiomics feature values with respect to acquisition pulse 
sequence and imaging parameters has to be carefully and 
rigorously gauged. However, this issue has been mostly 
overlooked in the past. The results of this study showed 
that acquisition imaging parameters in a 3D-T2W-TSE 
sequence substantially and significantly impacted many 
radiomics feature values. Only a fraction of features were 
robust to imaging parameter changes. The impact of 
imaging parameters on MRI radiomics features found in 
this study has some indications for clinical applications. 
Radiomics feature changes are anticipated to reveal the 
responses of tumors and organs-at-risk (OARs) to treatment 
more sensitively and earlier than the conventional geometric 
surrogates, such as volume and 1D dimension. But, such 
radiomics feature changes have to be true-positive, in 
other words, cannot be resulted from or mixed with other 
influencing factors like imaging parameters and image post-
processing. Therefore, the finding in this study underscores 
the importance of using standardized and consistent 
imaging parameters in the MRI acquisition protocol for 
MRgRT radiomics studies. Meanwhile, imaging parameter 
heterogeneity should be considered as a significant factor 
and source of MRI radiomics variability and uncertainty, 
and has to be carefully addressed, well-compensated or 
harmonized, in particular for cross-vendor multi-center 
radiomics studies. Furthermore, the results in this study 
also underpin the necessity of selecting robust features to 
MR imaging parameters in radiomics modeling. Otherwise, 
the reliability of radiomics could be greatly compromised, 
which might even lead to false discovery and wrong decision 
making (14,48). 

This current study complemented and advanced the 
prior studies (21-23) in several aspects. Our study explored 
a much larger number of imaging parameters and radiomics 
features, in which most original features are IBSI-compliant, 
than other studies. Compared to the study by Buch  
et al. (23), our study prospectively investigated the impact 
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of imaging parameters on radiomics features in multiple 
VOIs with the measured T1 and T2 relaxation times in an 
anthropomorphic phantom, rather than the retrospective 
analysis on a single large VOI in a non-structural phantom. 
Better control was conducted in our study to avoid the 
mixed effect of other factors, like various post-acquisition 
image processing on the radiomics feature values. Moreover, 
this study attempted to explore the quantitative dependence 
of radiomics features on different imaging parameters, 
but not just to simply exhibit the significant difference of 
radiomics feature values in the presence of heterogeneous 
imaging parameters. Finally, robust radiomics features to 
imaging parameter changes were identified, and an explicit 
list of such robust features was given. 

It should be definitely helpful to exactly figure out how 
imaging parameters affect radiomics feature values in an 
explicit and quantitative expression by linking underlying 
MRI physics and mathematical definition of radiomics 
features. However, this task could be extremely difficult for 
some reasons. First, MRI signal convolution in a 3D TSE 
sequence is much more complicated than in a 2D TSE 
sequence. In a 3D TSE sequence, specific design strategies 
and optimization, including but not limited to short non–
spatially-selective RF pulses for echo spacing shortening, 
variable refocusing flip angles for blurring suppression, and 
optimal K-space trajectory acquisition and undersampling, 
are conducted to permit single-slab volumetric imaging 
in clinically acceptable duration (49,50). So its MRI signal 
cannot be theoretically calculated based on the tissue 
relaxation times and imaging parameters by using classical 
MRI physics theory as done in a 2D TSE sequence. On 
the other hand, the ground truth of the radiomics feature 
value in the phantom is unknown and cannot be accurately 
determined simply by imaging itself. Therefore, the impact 
of imaging parameters on radiomics feature could only be 
revealed in a comparative manner to the baseline. Radiomics 
accuracy and its dependence on imaging parameters cannot 
be assessed in this phantom, but have to rely on dedicatedly 
designed digital or physical radiomics phantoms (51,52). 

Despite these difficulties, this study is still useful to 
better understand the dependence of radiomics features on 
different imaging parameters and intrinsic tissue properties, 
such as relaxation times and tissue heterogeneity. The 
responses of the MRI signals to the changing imaging 
parameters could behave so differently that the MR 
images could exhibit substantially different image intensity 
changes in different tissues. For example, the long T1 and 
T2 relaxation time of the lesions in the phantom made 

their voxel intensity, which is almost hyper-intensive, less 
sensitive to the change of TE and TR values. In contrast, 
the intensity change in the muscle of the phantom was 
much larger than that in the lesions with the same imaging 
parameter adjustment. The variability of radiomics features 
in the muscle was thus much larger than in the lesions. 
Different categories of radiomics features represent 
different texture characteristics in an image. For example, 
the GLCM features mainly characterize the texture of 
an image by calculating the probability of pairs of voxel 
with specific values and in a specified spatial relationship 
occur in an image. GLSZM features describe the amount 
of homogeneous connected areas within the volume, of a 
certain size and intensity. The results in this study showed 
GLCM features were more robust than GLSZM features 
to imaging parameters, indicating that the co-occurrence 
of voxels with specific intensities might maintain, although 
the regional intensity homogeneity is much affected in the 
image induced by the changing imaging parameters. The 
results also showed that image transformation might be 
helpful to reduce the sensitivity of some radiomics features 
to imaging parameters, e.g., wavelet_HHH transformation 
to many GLDM features, but might make other features 
more subject to imaging parameters, on the other hand, e.g., 
wavelet_HHH transformation to many GLSZM features. 

There are some limitations in this study. First, it is 
impractical to exhaustively test all imaging parameters and 
all possible adjustments even in a single pulse sequence 
of 3D-T2W-TSE. We only selected some representative 
imaging parameters that could substantially affect image 
intensity and contrast. They were adjusted in a reasonably 
large range for possible clinical use. It is worth noting that 
other types of imaging parameters in a pulse sequence, 
such as those that mainly manipulate image geometry and 
image reconstruction, could also substantially affect MR 
image characteristics and thus radiomics feature values. 
They are to be individually and thoroughly investigated 
to complement this study. Meanwhile, only a subset of 
first-order and texture radiomics features in the original 
images and in a limited number of transformed images 
were included in this study for the same reason. Second, 
the repeatability of radiomics values under a fixed imaging 
protocol was not examined in this study. It is postulated 
that radiomics feature value change by adjusting imaging 
parameters should be larger than the fluctuation of the 
radiomics feature value between two repetitive acquisitions 
with the identical imaging parameters. It is plausible that 
this postulation might occasionally be violated in certain 
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situations, for instance, in the situation of a very low 
image signal-to-noise ratio. Such a violation could make 
acquisition repeatability a greater uncertainty source of 
radiomics features than imaging parameter adjustment. 
Test-retest studies are needed for validation in the future. 
Third, this study was conducted on an MRI-simulator 
instead of an MR-LINAC. This arrangement had pros 
and cons. On the MRI-simulator platform, it had larger 
flexibility in the selection of imaging parameters and their 
adjustable ranges. On the other hand, due to the modified 
hardware configurations, such as magnet, gradients, and RF 
coils, for accommodating MRgRT applications, the MR 
images acquired on an MR-LINAC might be different from 
that on an MR-simulator, even with the identical sequence 
and imaging parameters. As such, further validation on 
MR-LINAC platform is desirable. Furthermore, cross-
vendor inter-scanner reproducibility study is desired in the 
future to accommodate multi-center radiomics studies (53). 
Last but not least, this study is inevitably restricted by its 
phantom nature. The materials in the phantom differed, 
notably from in vivo tissues in the relaxation times. The 
structure in the phantom was also much less heterogeneous 
than in vivo tissues. There was no motion presented in the 
phantom. To this end, further studies in human subjects and 
real patients are warranted. 

Conclusions

This study rigorously investigated the comprehensive 
influences of various acquisition imaging parameters 
on a large number of MRI radiomics features in an 
anthropomorphic phantom using a standardized 3D-T2W-
TSE pulse sequence for MRgRT. It helped to better 
understand the quantitative dependence of radiomics feature 
values on different types of acquisition imaging parameters 
and intrinsic relaxation times. Radiomics features could 
be substantially affected by imaging parameter changes 
to different extents, so imaging parameter heterogeneity 
should be considered as a significant source of radiomics 
variability and uncertainty, which must be well harmonized 
to guarantee the radiomics reliability for clinical use. The 
robust features to imaging parameters identified in this 
study should be helpful for the pre-selection of radiomics 
features for reliable radiomics modeling. 
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Supplementary

Figure S1 The heatmaps showing the percent deviation d% of the radiomics feature values in the original images in each individual VOIs 
under each imaging parameter setting from the corresponding baseline feature values.
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Figure S2 The heatmaps showing the percent deviation d% of the radiomics feature values in the transformed images averaged in all ten 
VOIs under each imaging parameter setting from the corresponding baseline feature values.

(a)

(b)



© Quantitative Imaging in Medicine and Surgery. All rights reserved. http://dx.doi.org/10.21037/qims-20-865

(c)

(d)



© Quantitative Imaging in Medicine and Surgery. All rights reserved. http://dx.doi.org/10.21037/qims-20-865

(e)

(f)



© Quantitative Imaging in Medicine and Surgery. All rights reserved. http://dx.doi.org/10.21037/qims-20-865

(g)

(h)



© Quantitative Imaging in Medicine and Surgery. All rights reserved. http://dx.doi.org/10.21037/qims-20-865

(i)

(j)



© Quantitative Imaging in Medicine and Surgery. All rights reserved. http://dx.doi.org/10.21037/qims-20-865

(k)

(l)



© Quantitative Imaging in Medicine and Surgery. All rights reserved. http://dx.doi.org/10.21037/qims-20-865

(m)

(n)


