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Introduction

Susceptibility-weighted imaging (SWI) is a relatively 
recently developed magnetic resonance imaging (MRI) 
technique where the image contrast is mainly based on 
‘magnetic susceptibility effects’—a natural property of 
tissues. This property reflects the magnetic response of a 
substance to an external magnetic field. The difference in 
susceptibility between substances leads to local magnetic 
field inhomogeneities, which results in faster T2* relaxation 
(Box 1), leading to signal loss on MR sequences sensitive 
to T2* effects (1). Substances that exhibit a strong 
susceptibility effect are more easily detected using SWI. 
Examples of substances that have a strong susceptibility 
effect include ferromagnetic substances such as iron, 
paramagnetic substances including blood products and 
gadolinium (MR contrast agent) and diamagnetic substances 
such as calcium.

The SWI technique (Box 2)

SWI employs a high resolution 3D gradient-recalled echo 
sequence with a long echo time and flow compensation, 

utilising both magnitude and phase information (1), 
which allows for increased sensitivity in the detection of 
susceptibility effects. 
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Box 1 The T2* effect

Protons in the body exhibit a property known as spin—

which can be pictured as a nucleus spinning around its axis—

and have an associated magnetic field. In the presence of 

an external static magnetic field, these spinning nuclei align 

themselves in the direction of that static magnetic field, with 

the net magnetisation oriented in a longitudinal direction. 

The application of a 90 degree radiofrequency pulse flips net 

magnetisation into the transverse plane. However, this state 

is unstable and the spinning nuclei seek to realign themselves 

with the static magnetic field. These nuclei, which are in phase 

with each other after the application of the radiofrequency 

pulse, immediately start to dephase from each other because 

of variations in molecular interactions between neighbouring 

nuclei and inhomogeneities in the local magnetic field. This 

decay in transverse magnetisation leads to a loss of signal and 

is described by the time constant T2*
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Box 2 The generation of the susceptibility-weighted image (Figure 1)

The MR signal is a complex signal, which results in the formation of real and imaginary images. The combination of these real and 

imaginary parts is used to form magnitude images, which give information about the magnitude of the MR signal. This is given by the 

equation:

M = (R2 + I2)½ 

Phase images, which contain information about differences in magnetic field strength of a voxel compared to the static magnetic field, are 

also derived from these real and imaginary components and are given by the equation:

P = tan−1(I/R)

Magnitude images are used in conventional MR images, but the phase images traditionally have been discarded as they are sensitive 

to both local field inhomogeneities as well as unwanted magnetic field inhomogeneities such as magnet effects and air-tissue interface 

effects (18). The use of high pass filtering techniques allows large scale inhomogeneities to be removed, thereby increasing the utility of 

the phase images (19)

The combination of both phase and magnitude images allows a single susceptibility-weighted image to be derived. In addition, thick 

slice minimum intensity projection images can be generated from the post processed susceptibility-weighted image, which allow better 

visualization of venous structures, which contain paramagnetic deoxyhaemoglobin

SWI can also differentiate blood products and calcium. Blood products are paramagnetic and increase the local magnetic field, whereas 

calcium is diamagnetic and reduces the magnetic field, thus appearing different on phase images

Figure 1 A normal susceptibility-weighted image. The combination of (A) magnitude and (B) phase images generates a (D) susceptibility-
weighted image. The generation of (C) minimum intensity projection images allow for better visualisation of venous structures.
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The phase information contains important information 
about differences in magnetic field strength in a particular 
MR voxel. As such the combination of both the phase and 
magnitude images into a single susceptibility-weighted 
image are of greater utility than magnitude images alone, 
for example in identifying blood products (2).

An added advantage of SWI over the current gradient 
echo sequences is the ability to differentiate between blood 
products and calcification or mineralization (3) (Figure 2). 

Clinical applications of SWI

The applications of SWI are rapidly increasing, with much 
work being carried out to determine the usefulness of the 
technique in multiple disease states. 

Cerebral microbleeds (CMBs)

The most common application of SWI currently is in the 
detection of CMBs. These are small rounded homogeneous 
foci of low signal on gradient echo sequences (4), which 
correlate histopathologically with blood-breakdown 
products (5). CMBs are commonly seen in the elderly 
population and tend to increase with age, affecting more 
than 40% of people over 80 (6). 

CMBs are mainly associated with two forms of small 
vessel disease: hypertensive arteriopathy and cerebral 
amyloid angiopathy (CAA), the latter which is found 
commonly in Alzheimer’s disease, dementia and ageing. SWI 
can be used to differentiate between these two forms based 
on the topographical distribution of CMBs. In hypertensive 
arteriopathy, the CMB distribution tends to be in the basal 

ganglia, thalamus and brainstem (Figure 3). In contrast, the 
CMBs in CAA tend to occur in a lobar distribution and at 
the grey-white matter interface (7) (Figure 4). SWI may 
further assist in identifying the presence of haemosiderin 
deposition and convexity subarachnoid hemorrhage (SAH), 
which are further identifying features of CAA (Figure 4).

The identification of CMBs in specific treatment settings 
is also of value in determining future risk of intracerebral 
hemorrhage (ICH). The presence of CMBs in patients 
treated with warfarin or antithrombotic drugs are at 
increased risk of ICH (8).

Neurodegeneration

The sensitivity of SWI to ferromagnetic substances makes it 
an appropriate tool to assess brain iron content (9). Elevated 
iron content is demonstrated in many neurodegenerative 
disorders including Parkinson’s disease, Alzheimer’s disease 
and Huntington’s disease. In addition, iron accumulation 
in the basal ganglia is also seen in neurodegeneration with 
brain iron accumulation, a heterogeneous group of genetic 
extrapyramidal motor disorders that typically present at an 
early age. 

Stroke

The use of SWI in the imaging of acute stroke may serve 
several purposes. By identifying underlying CMBs, it may 
be possible to predict the risk of developing an ICH after 
thrombolysis (10), as well as identifying areas of hemorrhage 
within an infarct (11). In addition, SWI may be useful in 
identifying intravascular thrombus during the acute event (12). 

Figure 2 Phase images can be used to differentiate between (A) hemorrhage and (B) calcification (arrowed).
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Figure 3 Cerebral microbleeds are demonstrated in an elderly 
patient with hypertension affecting predominantly the deep grey 
structures.

Figure 4 In a patient with cerebral amyloid angiopathy, the 
distribution of cerebral microbleeds is lobar. Haemosiderin 
staining of cortical sulci can also be seen (white arrows).

Figure 5 In a patient presenting with reduced GCS an initial CT is negative for SAH which was subsequently diagnosed by CSF 
photospectrometry. (A) Intraventricular blood is not evident on CT; (B) barely visible on T2* images; (C) clearly seen in both occipital horns 
on SWI. GCS, glasgow coma scale; SAH, subarachnoid hemorrhage; CSF, cerebrospinal fluid; SWI, susceptibility-weighted imaging.
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Intracerebral tumours

SWI may be used to better characterize brain tumors, 
particularly in relation to the internal architecture and 
areas of calcification and/or intratumoral hemorrhage. This 
can provide additional information about the grading of a 
particular tumor (9). 

Subarachnoid hemorrhage (SAH)

SWI has been utilized in the diagnosis of spontaneous 
cortical SAH (13,14) and as a diagnostic aid to localize 
the source of bleeding in patients with multiple cerebral 

aneurysms (15). SWI also appears to provide enhanced 
detection of traumatic SAH compared to CT (16). Our 
experience also indicates that SWI can identify spontaneous 
SAH in cases where the initial CT is negative (see Figure 5) 
supporting the findings of Verma et al., 2013 (17). Further 
study is warranted to evaluate the effectiveness of the 
technique in this setting. 

Conclusions

SWI has been shown to be useful in the investigation of 
multiple disease states, particularly in neurovascular and 
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neurodegenerative disorders. As such, this technique has 
becoming increasingly incorporated into routine MR 
neuroimaging protocols.

Disclosure: The authors declare no conflict of interest.
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