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Introduction

Arterial Spin Labeling (ASL) is a non-invasive magnetic 
resonance imaging (MRI) method to quantify tissue perfusion. 
Perfusion gives a measure of the effectiveness of the blood 
circulation to provide oxygen and nutrients to the tissue and 
the ability to remove waste products. Unlike in positron 
emission tomography (PET) or contrast-enhanced MRI, ASL 
uses endogenous blood water tagged with radio frequency 
(RF) pulses as tracers. The method is attractive because no 
externally injected contrast agent is required. As a result, it can 
be performed repeatedly without additional side effects and 
costs. ASL has been used to study a variety of cerebrovascular 
diseases, neurodegenerative disorders, multiple sclerosis, 
as well as functional activation in healthy and pathological 
subjects. Measurement of perfusion is also useful for studying 
pathological conditions in heart, lung and bone marrow (1-14).

A major component in ASL MRI is to obtain quantitative 
perfusion values based on the measured MRI data. Perfusion 
is typically quantified by cerebral blood flow (CBF), which 
can be derived from the ratio of cerebral blood volume 
(CBV) and the mean transit time (MTT) (15-18). Another 
parameter, bolus arrival time (BAT), which characterizes the 

exact time when the labeled blood reaches the imaging slice, 
is also important because it is also an important parameter 
for study aging and certain neurological disorders (3,5,19).

Many algorithms have been published for extracting these 
parameters from ASL MRI time series data. This study will 
focus on two algorithms. The first algorithm is the Four Phase 
Single Capillary Stepwise (FPSCS) model (16). This model 
takes into account the transit effects and restricted permeability 
of capillaries to blood water. It divides the time duration of 
the tagged blood in the region of interest (ROI) and takes into 
account the arrival time of labeled blood water at the ROI, 
transit time through the arteries of the region, and the duration 
of the bolus of labeled spins. This sophisticated algorithm can 
yield estimate with less errors in the least-squares sense than 
the conventional model. The second algorithm estimates brain 
perfusion parameters by utilizing Fourier Transform (20). 
This algorithm uses a classical Buxton model (15) and applies a 
Fourier transform to extract the BAT and CBF. The algorithm 
was compared with a non-linear least square fitting algorithm, 
which shows that it provides similar accuracy on the BAT and 
CBF estimates.

The purpose of this research is to compare the FPSCS model 
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and the FTB method on the same sets of ASL brain images. 
Specifically we will investigate how much the two algorithms 
deviate in their estimates of BAT and CBF. In addition, the 
computational efficiency of the two algorithms is also evaluated. 
Comparisons are expected to help identify appropriate algorithms 
for different application scenarios. This work is developed based 
on a preliminary report in a conference proceeding in (21) .

Theory

In ASL, two sets of images are acquired: the tagged image, 
Mtag, is acquired after the arterial blood water in a labeling 
region (typically on the neck and below the brain image 
slices) is inverted by a radio-frequency pulse. The tagged 
water will travel up to the brain image slices. After a preset 
delay after tagging, the brain region will be imaged using 
an echo-planar or fast gradient echo sequence; the other 
image, Mctrl, is a control image acquired similarly as the 
tagged image but without the RF tagging or with a “dummy” 
tagging. The difference between the tagged image and the 
controlled image, in principle, comes from the perfusion 
of the labeled blood water. In practice, a time series of 
images are acquired, which correspond to different time 
delays, or inversion time. The time series provides the 
time-dependent dynamic information which is the basis for 
perfusion kinetic modeling and parameter estimation.

Next we briefly review the two ASL parameter 
estimation algorithms that will be examined in this paper.

Four phase single capillary stepwise (FPSCS) mothod

In this model, the time duration of the ASL signal is divided 

into four phases with respect to the arrival time of labeled blood 
water at the region of interest (tA or BAT), transit time through 
the arteries of the region (tex), and the duration of the bolus of 
labeled spins (τ). The four phases are illustrated in Figure 1.

The FPSCS model also incorporates the capillary 
permeability. Therefore, the signal difference of the tagged 
and controlled ASL time series can be presented as 

                       [1]                                     
                                                       

 
   

where t is time, f  is the CBF,  and PS represents the 
capillary permeability.

Phase 1: Transit Phase

                                                                  [2]
                                                              
The tagged blood has not reached the arteries yet in this 

phase. Since the tagged blood is not present in the ROI, the 
signal difference is zero.

Phase 2: Arterial Phase (tA<t≤tA + tex)
   
                          [3]
                                                                                                     

where M0 denotes the equilibrium magnetization, α is the 
labeling efficiency, and R1b is the longitudinal relaxation 
rate of water in blood. During this phase, the tagged blood 
is still in the arteries. So the signal depends on the portion 
of the labeled blood in the voxel. 

Phase 3:  Arterial-Capil lary Transit ional  Phase 
(Tex<t≤Tex+τ, where Tex= tA+tex)
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Figure 1 The four phases (time periods) that are used in the FPSCS model. A. the transit phase before the tagged blood reaches the ROI; 
B. the arterial phase when the tagged blood reaches the ROI but is still in the arteries; C. the arterial-capillary transitional phase when the 
tagged blood is partially in the capillaries; D. the capillary phase when all the tagged blood is in the capillaries
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During this phase, the labeled blood partially entered 
the capillary bed for exchange. The ASL signal in this 
phase comes from three parts: the blood in the arterial 
space, rMa(t), the contribution from intra-capillary 
space, rMc(t), and the contribution from the extra-
capillary space, rMe(t). The total signal is therefore 

                        [4]
                                                                                                         
Models for each of the components are given in the 

reference (16).

Phase 4: capillary Phase (t>Tex+τ)
In this phase, all of the labeled blood water has entered 

the capillary bed for exchange. The contribution from 
arterial space vanishes. Therefore, only the last two 
components in Eq. [4] are left and 

                                       
[5]

                                                                                                                                     
The parameters are determined by a nonlinear least-

squares fitting between the model and the acquired 
experimental data, i.e., rM(tn).

The Buxton model and Fourier transformation (FTB)

According to the Buxton model, the signal difference 
between the control and tagged image is modeled as

  
                                                                                   

[6]                                       
  

  
where u(t) is the Heaviside unit step function, R1b is the  
longitudinal relaxation rate of water in blood, and R1e is the  
longitudinal relaxation rate of perfused tissue. Generally, 
M0, R1e, and R1b either have to be measured, or are assumed 
to take typical values from literature. Therefore, the two 
parameters of interest, bolus arrival time (tA) and blood flow 
(f), are to be estimated from the measured signal differences. 
To do so, a Fourier transform is applied to Eq. [6] to yield 

   
                                                                                             [7]                                       

 
where w is the time frequency variable. It is clear from Eq. 
[7] that the DC component 

                                               
[8]                                                                                         

and the phase of the spectrum in Eq. [7] 
                                                           

[9]

Therefore the slope of the phase change with respect to 

the frequency is determined by tA. Collectively, Eq. [8] and 
[9] provide a mean to estimate BAT (tA) and blood flow(f) 
after M0, R1app, and R1b are known or assumed. Unlike the 
FPSCS model, this method is analytical because no iterative 
model fitting is required. 

Methodology

To compare the two algorithms, both were implemented 
in MATLAB (Mathworks, Natick, MA, USA) to extract 
BAT and CBF parameters. In-vivo brain ASL data were 
acquired from healthy volunteers. Two types of perfusion 
analysis were conducted on the acquired images. The first 
was to analyze the brain image voxel by voxel in a ROI and 
generate a BAT map and a CBF map. Comparisons were 
then performed on the corresponding maps. The second 
was to analyze the average parameters in an ROI from a 
“super” voxel generated by spatially averaging the voxel 
signal intensities within the ROI. 

Data acquisition

Volunteers were scanned at a 4T MR unit (Bruker Medical 
Systems, Best, Erlangen) using an 8-channel head array coil. 
Interleaved tagged and control images were acquired using a 
fast 3D-GRASE sequence. Three-dimensional images were 
collected with a repetition time TR=3000 ms and an echo time 
TE=23.28 ms. For comparison, two sets of data were acquired: 
the first at 6 different inflow times (TI=400, 600, 1000, 1600, 
2000, and 2600 ms) in the time series (dataset 1); the second at 
13 different inflow times (TI=70, 200, 500, 800, 1000, 1200, 
1400, 1600, 1800, 2000, 2200, 2400, and 2600 ms) in the time 
series (dataset 2). The k-space data matrix was 128×34, with a field 
of view of 300×150 mm (in plane resolution, 2.34×8.82 mm), and a 
slab thickness of 100 mm (slice thickness 4.7 mm). The number 
of signal average (NSA) in all acquisitions was 8. Twenty two 
axial slices were acquired to cover the entire hemispheric 
areas of brain. These raw control and labeled images were 
reconstructed at 128×128 points before the subtraction were 
taken to generate the ASL image. No registration of any kind 
was applied to the time series. 

Data analysis

Parameter estimating using the FPSCS model
The model fitting was based on a Simplex algorithm (22). 
This program requires the following parameters to be 
inputted to start the processing: image size, image frame 
acquisition time in the time series (tn), the time series of 
ASL images as defined in Eq. [1], and a mask to define the 
ROI. In the first step, the program calculated and extracted 
parameters such as signal intensity for each voxel at 
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different time samples, estimated arrival time, and estimated 
bolus duration. In the second step, these initial parameters 
were used in the model fitting to extract other parameters. 
The output of the model fitting includes: BAT, CBF, 
permeability (PSv), and a theoretical signal intensity curve 
according to the model and fitting parameters.

Parameter estimating using the FTB method
As in the FPSCS method, the analysis using the FTB method 
was first performed on a voxel-by-voxel basis. To start, the 
acquired ASL time series, rMa(tn), was interpolated to N 
data points using a cubic spline model. The interpolation 
is necessary since the original time series normally contains 
less than 15 data points which makes Discrete Fourier 
Transform (DFT) less reliable. The interpolated time series 
were then inputted to an M-point DFT. After proper shift, 
the M spectrum points rM^  (m) were uniformly sampled in 
the frequency range of [-π, π). To use Eq. [9], it is useful to 
recognize that for the continuous-time frequency, 

  
                          [10]                    
                                   

where T is the total duration of the time series. One potential 
problem in using Eq. [10] is the phase wrapping, since in 
computers all phase must be wrapped to [-π, π). For large 
BAT, the phase term is Eq. [10] could be potentially larger 
than π and therefore be wrapped to a negative phase. In this 
study, the problem was addressed by using a judicial choice 
of N and M for a given T. To improve the estimate, several 
lower frequency data points were used to estimate BAT 
and an average is taken. This is because lower-frequency 
spectrum points normally have higher signal-to-noise (SNR) 
ratio. For a ROI, the twenty voxels with the highest BATs 
were taken to determine the average BAT. 

Another problem in using FTB method is the value of the 
equilibrium magnetization, M0. Without a given value for 
M0, the exact value for the CBF cannot be determined based 
on Eq. [8]. Measuring M0 in vivo is not straightforward due 
to flow contributions and relaxations. In the current study, it 
was assumed that M0 is uniform within an ROI, which is a 
reasonable assumption for brain tissues. The perfusion maps 
obtained under this assumption were therefore only relative. 
To facilitate comparison, a global scaling was applied to the 
map obtained from the FTB method so that the average 
difference in the two CBF maps is minimized. In addition, 
in both the FTB method and the FPSCS method, R1b and 
R1e took the same values measured by a conventional slice-
selective inversion recovery acquisition. 

Comparison between the FPSCS method and the FTB 
method
For both time series, the BAT and CBF maps for an ROI 

were generated and compared. The average values for 
the ROI were also list and compared. In addition, the 
theoretical dynamic ASL signals according to each model 
with the fitted parameters were drawn and compared. The 
total time taken to process the data by each method was 
recorded in MATLAB. The processing efficiencies of the 
two algorithms were compared based on the time spent.

Results

 

Figure 2 shows a representative brain image slice (difference 
image) from dataset 1, with an ROI highlighted on the 
left image. On the right graph, the average ROI signal 
intensity, i.e., that of the "super"-voxel, is shown in the 
solid red curve. The dashed blue curve represents the 
theoretical concentration curve generated by the FPSCS 
model according to the fitted model parameters. The 
two vertical lines mark the estimated BAT by the FTB 
method (solid red vertical line) and by the FPSCS method 
(dashed blue vertical line). As shown, there were noticeable 
differences in the estimated BATs in this case: 0.53 second 
and 0.36 second, respectively. This was possibly due to the 
insufficient time samples in the first dataset. However, the 
estimated CBFs by the two methods were very close: 248.8 
and 247.6 (mL blood/min/100 mL tissue) by the FTB 
method and the FPSCS method, respectively.

The estimated BAT maps and the CBF perfusion maps 
by the two methods are shown in Figure 3. Note that in the 
FTB method, the background region was masked out to save 
processing time. Therefore the two BAT maps on top showed 
different background contrast. Similar to the result from 
the ROI analysis, the two BAT maps contained difference. 
However, it did not seem to significantly impact the perfusion 
parameter estimation. As indicated by the bottom row, these 
two CBF maps agreed well with each other. 

A quantitative comparison in terms of the average BAT, 
average CBF, and the processing time for an ROI is listed 
in Table 1. As shown, the FTB method was faster than the 
FPSCS method in this example.

Next we present the analysis result of a representative 
slice from the ASL time series with 13 time samples (dataset 
2). Figure 4 shows the brain image slice with the highlighted 
rectangular ROI, and the associated BAT analysis result, 
similar to the one shown in Figure 2. Note that in this 
example, the model curve and the measured time variation 
were matched to a higher degree, and the two BAT 
estimates were very close to each other. 

A quantitative comparison of the two methods in terms 
of the average parameters for dataset 2 is shown in Table 2. 
The result showed that average perfusion estimates by the 
two methods were within 5% with each other. However, 
processing time of the FPSCS method in this test was 
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significantly longer, partially due to the slower convergence 
in model fitting with more time samples. 

Discussion

The results showed that excellent accordance has been found 
between the 3D perfusion parametric maps from ASL-MRI 
with the use of FTB and FPSCS methods.  In contrast to 
the FPSCS, implementation of FTB is much simpler. With 
shorter processing time, 3D flow and BAT maps of human 
brain can be obtained immediately after the data acquisition 
to enable a real time display. However, the FPSCS method 
could generate additional parameters in addition to the BAT 
and CBF shown in this study. These parameters provide 
valuable information about permeability of the capillaries. 

A general observation in the study was that the FTB 
tended to overestimate the BAT while the FPSCS may 
underestimate the BAT. However, there did not seem to be 
systematic bias in the estimate of the relative CBF by either 
method. The estimated BAT and CBF maps often contained 
many noisy spikes. This is primarily due to the fact that the 
difference images are noisy, an inherent characteristic of the 
ASL signals with relatively low SNRs. In addition, closer 
check of the time course of individual voxels revealed that 
many did not show the inflow of the tagged blood water. 
Spatial filtering could improve the robustness against the 
noise, but may come at a cost of loss of fine features in the 
perfusion map. The current study was limited in that no 
ground truth was available to evaluate the accuracy of the 

methods. Moreover, statistical comparisons of various kinds 
may yield more insights about the methods.
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