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Introduction

Integrated positron emission tomography/computed 
tomography (PET/CT) is becoming an important tool for 
clinical investigation with increase clinical utilization. The 
utilisation of this integrated imaging modality in cancer 
diagnosis has been well documented (1) as it offers several 

advantages over conventional scintigraphic techniques 
in terms of functional and morphological interpretation 
in a single imaging session, faster examination, greater 
topographic resolution and more accurate lesion localization 
(2-5). Both systems complement each other in improving 
diagnostic capabilities by enabling accurate lesion localization 
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unlike standing alone for PET or CT system.
The radiotracer most frequently used in PET for 

oncology application is fluorine-18 fluoro-2-deoxy-D-
glucose (18F-FDG). 18F-FDG PET is a functional imaging 
modality which reflects cellular glucose metabolism (6,7). 
In clinical practice, 18F-FDG PET images are analysed 
either qualitatively using visual comparison of the glucose 
metabolism in lesions in relative to normal tissues, or 
semiquantitatively using standardized uptake values  
(SUV) (8). Accumulation and trapping of fluorodeoxyglucose 
(FDG) allow the visualization of increased uptake in 
most malignant cells compared to normal cells. However, 
increased FDG uptake is not limited to malignant tissue 
alone (9-13) but in inflammatory lesions as well (14,15).

The FDG uptake as manifested by SUV could be affected 
by multiple factors such as weight, plasma glucose level, 
length of uptake period, partial volume effects and recovery 
coefficient (16,17). In PET/CT imaging, liver FDG uptake 
is commonly used as the reference standard for diagnosis 
(18,19), therapy assessment (20), prognosis (21) and quality 
control (22). It has been reported that age (23), blood 
glucose level (24), body mass index (BMI) (25), incubation 
time (26) and hepatic steatosis (27) influence the liver FDG 
uptake. The association between states of overweight and 
obesity with non-alcoholic fatty liver has been reported  
(28-30) in which alteration in normal glucose metabolism 
was found in metabolic syndrome. The intensity of 
physiological FDG uptake in the liver varies. It is important 
to be familiar with the varying degree of FDG accumulation 
that represents normal distribution and physiological 
changes, before attempting to interpret whole-body PET 
imaging for abnormality detection.

The aim of this study was to evaluate the impacts of 
biological and procedural-related factors that influence 
the semiquantification value of liver involving patients 
undergoing whole body 18F-FDG PET/CT for oncological 
disease using maximum SUV (SUVmax). Then the study was 
extended to determine the difference of liver SUVmax among 
four BMI groups of patients.

Materials and methods

Patients

This study includes the analysis of 18F-FDG PET/CT 
images from 51 patients who referred for 18F-FDG PET/
CT whole body imaging in our centre from January 2012 to 
September 2013. Patients presenting metabolically FDG-

avid in the liver in the context of primary or metastatic 
involvement were excluded from the study. Demographic 
data and biological parameters including age (years), weight 
(kg), height (cm), fasting blood glucose (mmol/L) and 
injected dose of FDG (millicurie), were collected from 
patient records. Patient consents were acquired as they were 
undergoing the PET/CT scan. Ethics approval was obtained 
from our local Medical Research Ethics Committee.

The BMI was calculated according to the formula: 
weight/height squared, and the nutritional status of the 
patients was classified according to the classification of 
World Health Organization (31). According to the value 
of BMI obtained, the patients were grouped into four 
categories of nutritional status; patients were considered 
to have underweight with a BMI less than 18.5, normal or 
adequate weight was considered in patients with BMI values 
between 18.5 to 25, overweight was considered with BMI 
values between 25 to 30, and patients with BMI more than 
30 was considered as obese. 

Patient preparation 

All patients were instructed to fast for at least 6 hours 
prior to scanning session and only oral hydration with 
glucose-free water was allowed. Fasting blood glucose was 
checked in all patients. Dilute gastrografin solution (sodium 
meglumine diatrizoate; BerliMed S.A., Madrid, Spain) was 
given orally to the patients in three divided doses before 
administration of the radiopharmaceutical agent. Mean of 
327.69±35.63 megabecquerel (MBq) of FDG was injected 
intravenously. All patients were put to rest in a special 
uptake room for an average of 84.05±59.57 (ranging from 
30-282) minutes and empty the bladder before underwent 
the PET/CT imaging session.

PET/CT imaging protocol

Image acquisition was performed using an integrated Siemens 
Biograph 64 TruePoint PET/CT system (Siemens Medical 
Solutions USA Inc.) consisting of a PET scanner with lutetium 
oxyorthosilicate (LSO) crystals detector and a 64-multi 
detector CT scanner (MDCT). A scout view was performed 
in cranio-caudal direction to plan the study and then followed 
by non-contrast enhanced CT (NECT) protocol in caudo-
cranial direction for the purpose of anatomical localisation and 
attenuation correction. Diagnostic protocol was then carried 
out with intravenous (IV) injection of non-ionic contrast, 
iohexol (omnipaque 350 mg/mL, GE Healthcare, Shanghai, 
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China) [84.07 (mean; ranging from 50-110) mL] using dual 
head automatic pressure injector (Mallinckrodt, MO, USA) 
with flow rate at 2.5 mL per second and followed by 20 mL 
saline flush. Subsequently the contrast-enhanced CT scan 
(CECT) acquisition started in caudo-cranial direction with  
80 seconds delay, ensuring optimal IV contrast in the circulation 
and tissue enhancement. Afterwards, a PET scan was acquired 
contemporaneously at 2 minutes per bed position using a three-
dimensional acquisition mode. The total duration of PET/
CT examination was about 23 minutes, with approximately  
8 minutes to complete two CT scans and about 15 minutes to 
acquire PET emission data. 

Image reconstruction 

NECT and CECT data were reconstructed with 5 mm slice 
thickness in the axial plane and increment of 3 mm. PET 
images were reconstructed by using TrueX reconstruction 
algorithm with three iterations and 21 subsets using 
Gaussian filter with full width at half maximum (FWHM) of 
4 mm. The CECT datasets were employed for attenuation 
correction with the same set of PET images. The NECT, 
CECT and attenuation corrected PET images dataset 
were copied into Apple Macbook Pro laptop (Apple Inc, 
California, USA) and displayed in transaxial, coronal and 
sagittal planes using OsiriX imaging software DICOM 
viewer 32-bit version (Pixmeo, Geneva, Switzerland) along 
with maximum intensity projection (MIP) images. 

Image analysis

Three oval regions of interests (ROIs) with diameter of 

1.00±0.010 cm2 were drawn over the right lobe of the liver 
at the segment VII to quantify the liver SUVmax (Figure 1). 
The intensity of FDG uptake in the tissues can be assessed 
visually using four points scale of intensity with reference 
to the liver uptake. This scale included grade 0= no uptake; 
grade 1= slight uptake (tissue uptake lower than liver uptake); 
grade 2= moderate uptake (tissue uptake similar to liver 
uptake); and grade 3= intense uptake (tissue uptake higher 
than liver uptake) (32). We have utilised the SUVmax values 
for quantification of FDG uptake because maximum pixel 
value is the most preference in PET/CT study (15). The 
average values from those three ROIs from each tissue were 
calculated.

Statistical analysis

The descriptive statistics were presented as mean ± standard 
deviation (SD) for continuous variables including age, BMI, 
blood glucose level, incubation period and FDG dose. The 
differences between mean of FDG uptake among the BMI 
groups were evaluated using analysis of variance (ANOVA). 
The association between the SUVmax of liver and those 
factors were analysed by Pearson coefficients of correlation. 
Multivariate regression models were established to 
determine the best predictors of liver SUVmax among those 
factors. Multicollinearity between covariates was tested 
and none was identified. Then ANOVA was performed to 
determine the significance difference of the mean SUVmax 
of liver among the four categories of BMI. All hypothesis 
tests were two sided with a significant level of 0.05. 
The Statistical Package for Social Sciences program for 
Windows 21.0 (SPSS 21) (IBM Corp, Somers, New York, 
USA) was used for the statistical analysis. 

Results

The analysis included 51 patients with 28 males and 23 
females. The demographic data of patients are shown 
in Table 1. A statistically significant positive association 
was found with the SUVmax of liver and BMI, however, 
statistically significant negative association was observed 
between the semiquantification value and incubation 
period (Table 2). After adjusting for all other covariates 
in the final model of multivariate regression analysis, it 
was demonstrated that BMI and incubation period were 
significantly associated with SUVmax of liver (Table 3). These 
covariates were accounted for 29.6% of the liver SUVmax 
variance. BMI had the strongest association as marked by 

Figure 1 Three oval regions of interests were drawn over the 
right lobe of the liver at the segment VII to quantify the maximum 
standardized uptake value of the liver normalised to body weight.
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higher value of adjusted standardised beta coefficient as 
compared to the incubation period (Table 3). The mean 
SUVmax of liver in four BMI groups are shown in Table 4 
and they were significantly different among those groups 
(P<0.05).

Discussion

Some physiological FDG uptake can cause misinterpretation 
of a PET scan; as a result it may lead to false-positive or 

false-negative interpretation, hence reducing the accuracy 
of the technique (33-36). Several factors contributing to 
physiological variation in FDG distribution have been 
reported (37-39). The variations in liver concentration of 
18F-FDG in relation to BMI (25) and age (23) have been 
documented previously. A correlation study between liver 
and different BMI groups was reported, but it was limited 
to fatty liver as study population and only involved three 
BMI groups (40).

Our invest igat ion demonstrated that  18F-FDG 
accumulation in liver was significantly higher in patients 
with increased BMI. This is likely due to very little fat 
accumulation in a fasting state and thus higher FDG uptake 
is characterized by non-fatty tissue (41). In the final model 
of regression analysis, BMI showed significant effect on 
the SUVmax of liver when adjusted for all other covariates. 
Moreover, the mean SUV of liver for each BMI group of 
patients was lower than those obtained by Batallés and 
his co-workers (42). This discrepancy might be due to 
variations in shape and size of the patients, method of ROI 
measurement and different type of scanner and workstation 
setting used. In contrast to the prior studies, we adjusted for 
age, blood glucose level, FDG dose and incubation period 

Table 1 Demographic data of subjects

Variable Mean ± SD 95% CI

Age 54.04±13.16 50.34-57.74

Body mass index 24.53±5.49 22.99-26.07

Blood glucose level (mmol/L) 5.26±1.68 4.74-5.65

FDG dose (MBq) 327.69±35.63 318.88-339.67

Incubation period (minutes) 80.05±55.57 64.94-96.20

SUVmax of liver 2.72±0.62 2.57-2.81

SD, standard deviation; CI, confidence interval; FDG,  

fluorodeoxyglucose; MBq, megabecquerel; SUVmax, maximum 

standardized uptake value.

Table 2 Association between SUVmax of liver and biological and 
procedural related factors

Factor Pearson correlation P value

Age 0.162 0.255

Body mass index 0.460 0.001

Blood glucose level (mmol/L) −0.163 0.253

FDG dose (MBq) 0.174 0.221

Incubation period (minutes) −0.371 0.007

SUVmax, maximum standardized uptake value; FDG,  

fluorodeoxyglucose; MBq, megabecquerel.

Table 3 Impact of biological and procedural related factors on SUVmax of liver in multivariate regression analysis

Variable Adjusted unstandardized beta coefficient Adjusted standardised beta coefficient P value

Age 0.008 0.248 0.039

Body mass index 0.033 0.421 0.001

Fasting blood glucose level −0.066 −0.252 0.035

FDG dose 0.002 0.164 0.168

Incubation period −0.002 −0.304 0.013

The final model demonstrates body mass index and incubation period are statistically significant (P<0.05). SUVmax, maximum  

standardized uptake value; FDG, fluorodeoxyglucose.

Table 4 Mean SUVmax of liver according to the different BMI 
groups of the patients

BMI
Liver SUVmax

Mean ± SD 95% CI

Underweight 2.38±0.39 1.98-2.79

Normal weight 2.58±0.33 2.44-2.72

Overweight 2.81±0.47 2.54-3.08

Obese 3.06±0.39 2.73-3.38

SUVmax, maximum standardized uptake value; BMI, body 

mass index; SD, standard deviation; CI, confidence interval.



704 Mahmud et al. Impacts of biological and procedural factors on the SUV of liver in 18F-FDG PET/CT

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2015;5(5):700-707www.amepc.org/qims

when we established the impact of BMI on the FDG uptake 
of liver. Other clinical and biological factors which were 
excluded from this study such as blood lipid profile (25), 
hepatic steatosis (43), diabetic status (44) and insulin (44) 
have been reported to have a significant effect on liver FDG 
uptake.

Obesity is associated with an increase in plasma levels 
of inflammatory cytokines such as tumour necrosis factor 
alpha (TNF-α) and interleukins-6 (IL-6) (45). Kupffer 
cells are residents macrophages distributed along the liver  
sinusoid (46). The similar cytokines including TNF-α and 
IL-6 are secreted by these Kupffer cells (47). Bioactive 
molecules generated by Kupffer cells and liver endothelial 
cells in response to varied stimuli have the capacity to 
contribute to the regulation of hepatic metabolism. Altered 
long-term expression of liver metabolic enzymes by TNF-α 
and IL-6 may be critical in the transition to the chronic 
inflammatory state (46). The sites of accumulation of 
18F-FDG in infectious lesions are considered as secretory 
macrophages of these proinflammatory substances (48,49). 
It is thought that the areas of greatest FDG-avid usually 
observed in obese patients are due to inflammatory response 
of this chronically altered parenchyma which results to 
increase in the hepatic SUV (43). This present findings 
might explain strong correlation of physiological FDG 
uptake of liver with BMI is likely due to inflammatory state 
of the liver present in obese patients.

Incubation or uptake period is another factor which 
significantly affects the physiological uptake of liver. 
Longer incubation period tends to reduce the physiological 
FDG uptake of liver as signified by negative correlation 
in the Pearson correlation analysis and negative value of 
standardized beta coefficient in the multilinear regression 
analysis. It is likely increased FDG uptake of tumour and 
decreased uptake of background with longer FDG uptake 
time in PET/CT study (41). Application of dual time point 
imaging has made use the benefits of comparison between 
two time points study for assessment of tumour uptake 
with relative uptake period (50,51). It has been reported 
by a recent study that FDG uptake period could affect the 
liver SUV corrected for lean body mass at dual-phase FDG 
PET/CT (52).

On the contrary, this study showed fasting blood 
glucose level had no significant impacts on the liver SUVmax 
when adjusted for all other covariates. Our findings are 
contradicted with previous studies on the impact of blood 
glucose factor (24,41). Contrary to the prior studies, we 
adjusted for age, BMI, FDG dose and incubation period 

when we established the effect of fasting blood glucose and 
liver FDG uptake. We noted that mean SUV normalised to 
lean body mass was utilized in the study by Malladi et al. (41),  
otherwise maximum SUV normalised to body weight 
was employed in this study. However, our findings are in 
accordance with a study by Büsing et al. (44) and Kuruva  
et al. (53). Busing and his co-workers reported a significant 
impact of blood glucose level on 18F-FDG uptake was only 
observed in the organ consuming high glucose metabolism 
such as brain, whereas organs less consuming glucose such 
as liver and spleen showed insignificant effect (44).

Furthermore, this study also found the liver FDG 
uptake was not affected by age and FDG dose as well 
when adjusted for all other covariates. These findings are 
contradicted with the study previously which reported 
significant effect of age on the liver FDG uptake (23,41). 
FDG dose can affect the FDG uptake of liver, but it has 
only minimal effect compared with the other covariates, as 
it was applied within the range of injected doses for clinical 
studies (41).

This study did have some limitations. Only a small 
number of patients were available in the underweight and 
obese groups as compared to the other two BMI groups. 
Additionally, we did not investigate all the possible factors 
that could affect the liver FDG uptake such as hepatic 
steatosis, diabetic status, abnormal lipid profile and liver 
function abnormalities which some were excluded and not 
available in this study.

Conclusions

BMI and incubation period significantly affect the 
physiological FDG uptake of liver which accounted 
for 29.6% of the liver SUVmax variance. These impacts 
demonstrated a progressive increase in the semiquantification 
value with increasing BMI but progressive decrease with 
increasing incubation period. Higher impact was observed 
in BMI as compared to incubation period after adjustment 
for all other covariates. As physiological FDG uptake of 
liver was significantly different among varied BMI groups, it 
would be recommended to use different cut-off value of liver 
SUVmax as a reference standard for different BMI of patients 
in interpretation of whole body PET imaging.
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