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Introduction

Visualization of transplanted cells in the body is very 
important for cell-based therapy. Currently, there are many 
modalities such as positron-emission tomography (PET), 
ultrasonography, computerized tomography (CT), and 
magnetic resonance imaging (MRI). Particularly, MRI is 
a good modality for cell tracking because it has the high-
resolution power to track the tiny cells in the body and is 
safe to patients (1). For operation with MRI, MR contrast 
agents are generally used to provide the regional contrast 
of transplanted cells. To this end, SPIO (superparamagnetic 
iron oxide) nanoparticles are typically utilized, which has 
various applications such as targeted drug or gene delivery, 
biosensor, tissue engineering and magnetic transfection (2-4).

For in vivo cell tracking, the typical method is that SPIO 
nanoparticles such as Feridex and Resovist are delivered 

into cytosol of cells. However, the cellular engulfment of 
Feridex and Resovist are randomly occurred because there 
is no driving force, thereby showing irregular engulfment 
efficacy. Therefore, recently many types of SPIO 
nanoparticles have been developed in experimental study 
stages (2,5). Here we highlight a new SPIO nanoparticles 
for cell trafficking.

Heparin-coated SPIO (HSPIO) as a new MRI 
contrast agent

As a T2 contrast agent, SPIOs can be divided into three 
categories according to their hydrodynamic diameter: Oral 
SPIO, 300 nm -3.5 μm; Standard SPIO, 50-150 nm; and 
Ultrasmall SPIO (USPIO), <50 nm (6). These SPIOs tend 
to be aggregated because of their surface-to-volume ratio 
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and dipole-dipole interaction, thereby reducing intrinsic 
superparamagnetic property that relatively low r2 relaxivity. 
To inhibit self-aggregation of SPIOs, the surface of SPIO 
nanoparticles is coated with polysaccharide or synthetic 
polymers. Surface modification of SPIOs can privilege 
several advantages such as prevention of agglomeration 
of the iron oxide core, colloidal stability, water solubility, 
biocompatibility and nonspecific adsorption to cells. 
Additionally, the coated materials can provide chemical 
handles for the conjugation of drug molecules, targeting 
ligands, and reporter moieties. Also, there are efforts to 
improve magnetic property and increase relaxivity by 
controlling the composition (7,8), aggregation (9), and 
oxidation state (10) of SPIO nanoparticles since r2 relaxivity 
is directly related to the magnetic properties of the 
nanoparticles.

Heparin, molecular weight between 3 and 30 kDa, 
is composed of sulfated glycosaminoglycan and widely 
used as an anticoagulant medication. Recently, heparin-
coated SPIO (HSPIO) has been developed due to specific 
function of heparin molecule (11-14). The HSPIOs are 
synthesized in alkaline co-precipitation process Fe(II) 
and Fe(III) precursors which is similar to dextran-coated 
SPIO, i.e., Feridex and Resovist (Figure 1). Diameter of 
the crystal core is ~10 nm and hydrodynamic nanoparticle 
diameter is 60-80 nm. Compared to Feridex and Resovist, 
HSPIOs have a narrow size distribution with their branch-
like structure, meaning that themselves are not aggregated 
in the solution (15). Its r1 and r2 relaxivities are 9.4 and 
170.7 mM-1·sec-1, respectively, and the r2/r1 ratio is 18.2, 
indicating that HSPIO can be strongly used as a T2 MRI 
contrast agent, compared to Feridex and Resovist. The 
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Figure 1 Scheme of preparing SPIO nanoparticles coated with various kinds of natural polysaccharides and synthetic polymers
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reasons are that higher r2/r1 ratio of HSPIO may be 
attributed to higher hydrodynamic size of heparin itself 
and more effective magnetic relaxation from the proton 
spins around HSPIO due to the interactions between water 
molecules and multiple sulfate/carboxylic groups of heparin 
polysaccharide. Table 1 summarize the properties of Feridex, 
Resovist and HSPIO.

In vivo MR imaging of human mesenchymal 
stem cells using HSPIO

Mesenchymal stem cells (MSCs) are multipotent stromal 
cells that can differentiate into a variety of cell types 
and have emerged as a promising cell source in tissue 
engineering due to their large capacity for self-renewal 
while maintain their multipotency (16-18). It is very 
important to evaluate their therapeutic roles in regeneration 
of damaged target tissue by in vivo MRI monitoring their 
survival, growth, and migration of transplanted stem 
cells. However, it is reported that stem cells rarely engulf 
SPIO nanoparticles due to their limited endocytosis and 
phagocytosis activities (19). When the HSPIOs were treated, 
MSCs could engulf ~4-fold larger amount of HSPIOs into 
cytosol, when compared to Feridex treatment (15). For the 
labelling of stem cells, Feridex was treated to stem cells 
with long treatment time (>24 h) and high concentration 
(>50 μg/mL). Although these conditions were applied to 
stem cells, the amount of the engulfed iron had wide range 
(1.47-17.9 pg Fe/cell) (20). On the other hand, HSPIOs 
can easily entered stem cells, although they were exposed 
to stem cells for 1 h incubation. Other previous studies 
demonstrated that hydrophilic heparin coated onto the 
surface of biomaterials could facilitate cell adhesion to 
the surface due to the enhanced hydrophilicity (21,22). 
HSPIOs consistently show the increased hydrophilicity and 
enhanced cellular uptake. Moreover, HSPIOs labeled into 
MSCs did not affect the viability and proliferation activity 

of MSCs. In addition, intracellular HSPIOs did not effect 
the osteogenic and adipogenic differentiation of MSCs 
when their differentiation was induced by the differentiation 
medium (15). These results demonstrated that HSPIOs did 
not adversely influence the native metabolic activities or 
phenotypes including their proliferation and differentiation 
capacities of stem cells. In addition, to confirm in vivo 
cellular tracking using HSPIOs, HSPIO-labeled MSCs 
were transplanted into the renal subcapsular membrane of 
mice and visualized with T2-weighted MRI. They could 
be visualized with strong negative intensity during more 
than one month. Interestingly, the MRI intensity was very 
sensitive although marginal cell mass of MSCs (2×105 cells/ 
mouse) was transplanted when compared with general 
essential stem cells (~100-fold difference). Therefore, these 
results indicated that HSPIOs could be used with high 
sensitivity to monitor a marginal cell mass of MSCs. 

In vivo imaging of surface-labeled pancreatic 
islets with HSPIOs

Type 1 diabetes mellitus is occurred by autoreactive T 
cells, which induce autoimmune destruction of insulin 
secreting pancreatic islets in the pancreas. Transplantation 
of pancreatic islets donated from human cadavers is a 
promising method to cure this disease (23,24). However, 
most transplanted islets are easily rejected because of graft 
immune reactions. In this circumstance, physicians use 
several kinds of immunosuppressive drugs for attenuating 
immune reactions after islet transplantation. However, the 
administration regimen of immunosuppressive drugs should 
be carefully regulated because of severe adverse effects of 
immunosuppressive drugs. Currently, many hospitals and 
institutes are following ‘Edmonton Protocol’ for surviving 
human islet transplants (23). However, this Edmonton 
protocol does not completely protect transplanted islets 
2 years after islet transplantation. Therefore, noninvasive 

Table 1 Comparison of MR contrast agents for cellular labeling

Feridex® Resovist® Heparin-SPIO

Coating polymer Dextran T-10 Carboxydextran Heparin

Core diameter (nm) 4.8-5.6 4-13 10

Hydrodynamic diameter (nm) 120-180 60 60-80

Central moiety Fe2+, Fe3+ Fe2+ Fe2+, Fe3+

MR relaxivity r1 =40.0, r2 =160 r1 =25.4, r2 =151 r1 =9.4, r2 =170.7

Surface charge Negative Negative Negative
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monitoring transplanted islets will help to control graft 
immune reaction. To this end, pancreatic islets have been 
labeled with Feridex via endocytosis pathway (1,25-28). 
For optimal SPIO uptake into islets, there needed several 
validation strategies: (I) the lack of toxicity toward the islets; (II) 
the appropriate iron uptake; (III) the rapid clearance of the 
agent from the environment after cell destruction; (IV) the 
correlation between the radiologic images and the reality (29). 

Feridex uptake into islets has many problems such 
as random labelling into islets and possibility of cellular 
toxicity in the cytoplasm when used with transfection 
agents. To overcome these limitations, the surface 
modification of islets using HSPIOs, chemically conjugated 
onto islet surface through polyethylene glycol (PEG) linker, 
can be one of the solutions (14) (Figure 2). This surface 
modification reaction is mediated with heterobifunctional 
PEG polymer, N-hydroxysuccinimide ester (NHS)-
PEG-maleimide, biocompatible polymer for anchoring 
HSPIOs. The active NHS of PEG polymer is able to react 
with amine group of collagen layer of islet surface, while 
maleimide of PEG polymer can react with sulfhydryl group 
of HSPIO. To this end, heparin polysaccharide should be 
chemically modified to give sulfhydryl group in advance. 
Compared to Feridex uptake islets, ‘all’ islets are covered 
with HSPIOs onto islet surface, and with no damage to 

the viability and functionality of insulin secretion of the 
islets. When the islets surface-labeled with HSPIOs were 
transplanted into mouse left renal subcapsular membrane, 
their hypointensity in MR image was strongly visualized 
and the MR signal was retained for more than 30 days. 
Furthermore, the MR signal intensity was proportional to 
the transplanted number of islets, indicating that surface-
labeling strategy to islets can be used for quantitative 
analysis of transplanted islets without noninvasive methods. 

Conclusions

MRI is an useful imaging modality for noninvasive cell 
tracking because of its high spatial resolution and excellent 
image quality. Practically, the cell mass to be transplanted 
is relatively very tiny in the body. Currently, there are 
developments of several kinds of MR contrast agents, 
i.e., Feridex, Resovist, and Heparin-coated SPIO, for 
noninvasive cell tracking in the body. These efforts must 
overcome the limitations of MRI and contribute to clinical 
trials of cell-based therapy. 
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