
© Translational Pediatrics. All rights reserved.   Transl Pediatr 2018;7(2):120-128tp.amegroups.com

Introduction

A unique challenge exists in the visualization and 
interpretation of the enormous quantities of patient 
specific data in the extensively monitored environment of 
a pediatric cardiac intensive care unit (PCICU). PCICUs 
are specialized units with an immense range of pathologic 
diversity and complexity resulting partly from innovations 
and advancements in pediatric cardiac surgery and 
cardiopulmonary bypass. As staffing models evolve to meet 
the demands of this heterogeneous patient population the 
importance of accurate and reliable monitoring modalities 
in the PICICU becomes even more essential. The amount 
of data collected and stored has increased exponentially 
as more sophisticated monitoring devices are developed, 
however the number of measurements as well the inability 
to detect subtle physiologic changes impairs one’s ability 
to identify patients in the early stages of hemodynamic or 
clinical deterioration. A benefit of electronically monitoring 
and storing large amounts of patient data is the ability to 

utilize that data to improve our understanding of pathologic 
processes and to develop predictive models to identify 
decompensating patients before devastating events occur. 
There is an opportunity to utilize big data to develop 
machine-learning algorithms that are predictive of certain 
clinical events. The development of statistical models 
and artificial intelligence (AI) to integrate physiologic, 
laboratory, and clinical data to predict patients who are 
progressing towards clinical decompensation has the 
potential to be transformative for cardiac intensive care 
medicine. 

Challenges of monitoring patients with 
congenital heart disease 

The physiology of patients with congenital or acquired heart 
disease presents challenges to conventional monitoring 
due to baseline abnormalities related to their underlying 
physiology, such as arterial hypoxemia, tachypnea, and 
tachycardia. Patients with systemic ventricular failure 
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may initially have preserved arterial blood pressure due 
to systemic vasoconstriction from the activation of neuro-
hormonal pathways that increase circulating catecholamines 
and aldosterone (1). Central venous pressure is affected by 
ventricular compliance and diastolic transmural pressure 
and is variable both following cardiac surgery and inherent 
to certain cardiac lesions (1). Oxygen consumption is 
frequently increased after congenital heart surgery, and 
patients may suffer from inadequate oxygen delivery despite 
relatively preserved cardiac output (2,3). Patients with single 
ventricle physiology who have undergone stage I Norwood 
surgical palliation are some of the most challenging and 
tenuous patients in the PCICU. With shunt-dependent 
physiology, pulmonary and systemic circulations are parallel 
rather than in series, and the relative amounts of blood flow 
to the pulmonary and systemic circulations depend on the 
resistance within the vascular beds (4). Increased pulmonary 
blood flow occurs at the expense of systemic blood flow, 
and compensatory circulatory mechanisms that increase 
systemic vascular resistance further reduce systemic oxygen 
delivery (1). Patients with this physiology are at high 
risk for clinical decompensation, cardiac arrest (CA), and 
mortality (5,6). Their unique physiology makes recognition 
of decompensation difficult to recognize with current 
monitoring modalities.

A state of decompensated shock occurs when oxygen 
delivery is inadequate to meet metabolic demands, 
resulting in anaerobic metabolism. Acidosis and end organ 
dysfunction begin to occur, and unless reversed, results 
in circulatory collapse. A core principle of intensive care 
medicine is the importance of monitoring patients to detect 
imbalances in the oxygen supply and demand relationship, 
and intervening prior to the development of decompensated 
shock (7). Interestingly, physician assessment of cardiac 
output based on physical exam findings poorly correlates 
with thermodilution calculated measurements (8,9), 
highlighting the importance of objective and reliable 
monitoring modalities for both the detection of early 
pre-shock states, and for gauging the effectiveness of 
interventions. Central venous saturation monitoring with 
venous oximetry provides objective assessment of the 
adequacy of the oxygen supply-demand relationship (10), 
and goal directed therapy with monitoring of central venous 
saturations improves mortality in patients with septic shock 
(11,12), and in stage I single ventricle patients (13,14). 
Importantly, central venous saturation monitoring requires 
an indwelling central line that carries with it the risk of 
central line associated bacterial infections, and this risk is 

increased with longer duration of the line (15). Near-infrared 
spectroscopy (NIRS) provides non-invasive estimation of 
regional venous oxygen saturations, and is also a measure of 
the adequacy of oxygen-transport balance. The use of NIRS 
has gained popularity in PCICUs and prior studies have 
found good correlation between cerebral NIRS and jugular 
venous saturations in infants with congenital heart disease 
(16-18), however, measurements are fairly imprecise, and 
validation of this technology remains limited by the absence 
of absolute values for certain patient populations (19).  
In addition, NIRS is affected by factors such as skin 
pigmentation, patient age, hemoglobin concentration, and 
location of the sensor (20,21). In all, current monitoring 
modalities for patients cared for in the PCICU are 
limited by the risks of obtaining and maintaining invasive 
monitoring devices and the lack of a true gold standard for 
some non-invasive modalities. 

The prevalence of CA in hospitalized children is 0.77 
per 1,000 admissions (22), and the relative incidence is 
higher in children with cardiac disease (23). Although 
these events are rare they consume a large proportion of 
medical costs, therapies, and morbidity (6,23-25). The rate 
of CA following pediatric cardiac surgery is variable among 
centers, but has been reported to occur in 2.6–6% of patient 
encounters, and is associated with significantly higher 
mortality regardless of complexity of surgery (6,25-27).  
Neonates, premature infants, and those undergoing 
the highest complexity surgeries, in particular stage I 
palliation for single ventricle lesions, represent some of 
the highest risk post-operative cohorts in the PCICU 
for CA (6). Patients with medical cardiac disease, such as 
acquired cardiomyopathies and myocarditis, also have a 
significant risk of CA and have worse survival compared 
to post-operative patients (5,6,28). The extent to which 
CA is preventable is unclear, but studies have identified 
that physiologic features and signs are present prior to 
clinical decompensation, although sometimes either not 
identified or inadequately communicated between nurses 
and physicians (29). This phenomenon also applies to 
hospitalized patients with congenital heart disease (30). 
Since the rate of CA across PCICUs is variable and not 
associated with center surgical volume (25), there are likely 
strategies that would be effective at reducing the overall 
incidence of CA in patients with cardiac heart disease (6). In 
addition to provider-influenced strategies, the development 
of intelligent monitoring systems that aggregate physiologic 
and laboratory data to detect subacute stages of clinical 
decompensation and CA would be immensely beneficial in 
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PCICUs. Monitoring systems that could not only identify 
current abnormalities of physiology, but could predict 
which patients are at risk for a clinical decompensation 
could revolutionize critical care medicine. 

Current monitoring and the trouble with false 
alarms 

Physicians and nurses working in intensive care units utilize 
continuous and intermittently monitored data to make high 
priority decisions. One study in an adult medical intensive 
care unit found that nurses, physicians, and other medical 
personal performed over 150 actions per patient per day, and 
that severe errors occurred on average two times per day (31).  
These findings highlight the importance of attention, focus, 
and experience for care providers practicing in critical care 
environments (32). Prior studies have demonstrated that 
a large percentage of alarms that occur in intensive care 
units are either inaccurate or clinically irrelevant (33-35). 
Clinically irrelevant alarms are technically correct, but are 
irrelevant in that they are reflective of a normal physiologic 
response, such as tachycardia during a stimulating 
intervention. A large percentage of false positive and 
irrelevant alarms lead to desensitization and alarm fatigue 
for providers, raising concern that an important alarm may 
be ignored (36). In a pediatric intensive care unit, one study 
found that nurse response time to potentially critical alarms 
increased significantly as the frequency of non-actionable 
alarms in the preceding 2 hours increased (35). Frequent 
alarms also place physiologic and emotional stress on care 
providers (37). 

Most alarms are designed to create an audible signal after 
a simple numeric threshold is crossed, but this method is 
insufficient to interpret typical variation and interactions 
between components that occurs in a complex biological 
system (38). Biological systems are non-linear, they are 
composed of multiple components which interact together, 
and their behavior cannot be understood by analyzing the 
components individually, nor as a simple sum or multiple 
of the inputs to the system (38-40). New approaches to 
improving the accuracy of alarms have identified features or 
transformations of raw data that help determine the clinical 
importance of the alarm (38). Some of these approaches 
are relatively simple algorithms that filter the data to 
remove transient variations unlikely to be clinically relevant 
(41,42). Other approaches use more than one signal 
source to evaluate a physiologic variable, such as using the 
electrocardiogram and the arterial pulse wave to determine 

the correct pulse rate (42). Furthermore, for even more 
complex processes, AI systems can utilize data sets to train 
an adaptive algorithm (38). There are also machine learning 
approaches aimed at developing intelligent alarms that 
utilize knowledge based approaches and rule based systems 
to develop explicit clinical decision trees (42). Decision 
tree induction can be used to integrate multiple different 
physiologic signals to distinguish true values from artifacts 
in monitored data (43). More sophisticated systems may 
move beyond improving alarm accuracy to actually identify 
statistical relationships within data sets for the prediction of 
various outcomes. 

Predicting risk

Predictive monitoring systems would attempt to identify 
changing physiology or patient decompensations prior 
to obvious signs. Pediatric early warning scores (PEWS) 
have been implemented by many hospitals to identify 
deteriorating patients on the inpatient ward in a timelier 
manner to prevent severe deterioration or an urgent 
transfer to a higher level of care (44). These scoring systems 
are estimates of acuity reflective of abnormalities in vital 
signs and physical exam findings; and have escalation 
algorithms or interventions based on cutoff scores (44). 
The cardiac children’s early warning score (C-CHEWS) 
was created specific to children with cardiac disease and is 
more sensitive and specific with for identification of patient 
who may experience an arrest or unplanned transfer to 
the ICU compared to PEWS (30). Published reports of 
the effectiveness of these score-based acuity models have 
shown variable sensitivity, specificity, and positive predictive 
value, which may be partially influenced by variability of 
implementation and cutoff values between hospitals (44). 
While PEWS and other early warning scores are fairly 
sensitive and specific in their identification of clinical 
decompensation or mortality, they often have relatively low 
positive predictive values, and thus over-identify patients, 
making their overall impact on resource utilization less 
clear (45). There are additional scoring indices that have 
also been developed to predict mortality for intensive care 
patients, such as the PRISM-IV for physiologic instability 
and mortality risk for patients in pediatric intensive care 
units (46), and the PICSIM score, a post-surgical mortality 
risk index tool for patients in the PCICU (47). Table 1 
summarizes many of these score-based acuity models and 
recent publications regarding their effectiveness. 

While these models can be useful as risk adjustment 
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tools for comparing clinical outcomes, they are based on 
population data rather than patient specific data, and they 
do not provide real time outcome predictions for individual 
patients. Therefore, there is a need for the development 
of data analytic technology to provide patient specific, real 
time prediction of outcomes. Data analytic technology can 
also be applied to detect potentially catastrophic illness in 
a subacute phase. Advanced technologies using statistical 
methods and AI can be used to develop predictive models 
by detecting patterns in electronically recorded data that 
are more significant than the raw data itself. While a 
multivariate regression analysis may identify single vital 
signs parameters that are predictors of decompensation, 
predictive models incorporate many physiologic vital 
signs to contrast normal physiology to physiology that is 
displayed prior to the event of interest, such as a clinical 
decompensation (52) or sepsis (53). 

In 2001 Griffin and colleagues showed that infants 
in neonatal intensive care units who developed sepsis 
demonstrated a loss of heart rate variability hours prior 
to other clinical signs of deterioration (53,54). This 
information led to the subsequent development of a 
predictive model that identified changes in heart rate 
characteristics suggestive of sepsis in infants prior to 
the development of obvious signs and symptoms (55). A 
randomized controlled trial demonstrated a significant 
reduction in mortality due to sepsis in low birthweight 
infants monitored with this predictive system (53,56). 
The use of predictive models to develop a risk index 
was applied to patients with congenital heart disease by 
Rusin and colleagues (52). High resolution continuous 
physiologic data from single ventricle patients with parallel 
circulations was utilized to build a classification model 
based on differences in physiology between patients nearing 

Table 1 Studies evaluating the performance of score based predictive models 

Score evaluated Population Study design Components 
Outcome 
predicted 

Statistical measures 
of effectiveness 

Bedside paediatric 
early warning score 
(PEWS) (48)

Hospitalized 
pediatric patients

Case control 7 item scoring system: HR, RR, 
respiratory effort, O2 therapy, 
temperature, SBP, CRT

Urgent 
admission to 
the PICU 

AUC: 0.91 (95% CI: 
0.86–0.96); PEWS 
≥8; sensitivity: 0.82; 
specificity: 0.93

Pediatric early 
warning score 
(PEWS) (49)

Hospitalized 
pediatric oncology 
and stem cell 
transplant 

Retrospective 
matched 
case-control

Nursing administered score: 
CNS, CV, respiratory status, 
family and nursing concern

Unplanned 
PICU transfer

AUC: 0.96 (95% CI: 
0.93–0.98); PEWS 
>3: sensitivity 0.94; 
specificity: 0.88

Cardiac children’s 
early warning score 
(C-CHEWS) (30)

Inpatient cardiac 
unit, patients who 
experienced arrest 
or unplanned 
PCICU transfer

Retrospective 
cohort study

Nursing administered score 
based on CNS, CV, respiratory 
status, family and nursing 
concern

Cardiac arrest 
or unplanned 
transfer to the 
PICU

Score >3, AUC 
0.858; sensitivity: 
0.953; specificity: 
0.762; PPV: 0.508; 
NPV: 0.984 

Updated pediatric 
risk of mortality 
(PRISM VI) (50)

PICU patients Prospective 
cohort study 

17 physiologic variables Mortality AUC: 0.9±0.18

Pediatric index 
cardiac surgical 
intensive care 
mortality (PICSM) 
(47)

Pediatric cardiac 
surgical patients 
admitted to the 
PICU or PCICU

Prospective 
cohort study

Multivariate logistic regression 
including physiologic, 
anatomic, and procedural 
variables 

Mortality AUC: 0.87

Score for neonatal 
acute physiology 
(SNAP-II) (51)

Extremely preterm 
infants 

Retrospective 
cohort study

6 components measured in 
first 12 hours of life, lowest BP, 
lowest pH, lowest temperature, 
seizures, UOP, PaO2/FiO2

Mortality and 
morbidity 

AUC: 0.69 (95% CI: 
0.68–0.70)

HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure; CRT, capillary refill time; CNS, central nervous system; CV, 
cardiovascular; PCICU, pediatric cardiac intensive care unit; PICU, pediatric intensive care unit; AUC, area under the receiver operating 
curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; UOP, urine output. 
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a clinical decompensation compared to stable patients. 
As the goal of this model was to detect deterioration 
before obvious clinical signs developed, the hour of data 
immediately preceding the deterioration was not used in the 
classification model, as it is generally expected that obvious 
clinical signs of deterioration were present at that time (52). 
A risk index was created that measures similarity between 
a patients’ current physiology and the physiology that 
was observed in infants who were approaching a clinical 
decompensation (52). This process is unique and beneficial 
in its ability to continuously and in real-time calculate the 
risk of deterioration for a certain patient. This study also 
indicates the ability of predictive models to discriminate 
the minor physiologic differences that are present in pre-
decompensation periods, such as alterations in ST segment 
variability, which is a variable that is not easily evaluated 
from most bedside monitoring equipment (52). Although 
data was collected prospectively, the model was created 
retrospectively, therefore it is difficult to determine when 
clinicians recognized deteriorating patients and responded 
with interventions, such as non-invasive positive pressure 
ventilation or escalation of inotropic support (52). Another 
novel aspect of this study was the development of a predictive 
index for a specific patient population and physiology, 
raising the possibility of creating various other prediction 
models applicable to other physiologic states. 

A new patient monitoring technology that incorporates 
high fidelity continuous data streaming into a model-based 
risk assessment to predict the development of inadequate 
oxygen delivery has the potential to improve clinicians’ 
ability to identify early stages of clinical deterioration (32).  
This  sys tem incorporates  many  cont inuous  and 
intermittently recorded hemodynamic variables and 
quantifies the likelihood that a patient is suffering from 
inadequate oxygen delivery, resulting in anaerobic 
metabolism (32). When the predictive index was compared 
to measured central venous saturations less than 40%, which 
indicate anaerobic metabolism, the area under the receiver 
operating curve was 0.79, supporting the correlation 
between continuously measured risk of inadequate oxygen 
delivery and intermittently measured values (32). Figure 1 is 
one example of a data aggregation and visualization software 
system that incorporates a predictive risk index to identify 
clinical deterioration earlier.

Large datasets are available from the electronically 
recorded continuously and intermittently monitored 
variables for patients in the intensive care unit, and while 
data driven analytic processes can be utilized to extract 

relevant knowledge and optimize clinical decisions, the 
unique properties of these data sets present significant 
chal lenges (57) .  Among these chal lenges are the 
heterogeneity of data, due to the large number and the 
variety of measured endpoints, heterogeneity of patients, 
and time asynchrony of measured values. Through the 
processes of data characterization, pre-processing, feature 
extraction, and feature selection, a predictive model for 
intensive care unit mortality was developed, and when 
applied to a post-surgical ICU data set, this predictive 
model outperformed transitional models of mortality 
risk prediction for ICU patients (57). This successful 
application of data driven analytics to outcome prediction 
is encouraging for the development of additional models 
that will aid physicians in extracting useful information for 
clinical decision making. 

Machine learning and AI techniques can also be 
developed for risk prediction in intensive care units. 
Neural networks are machine learning algorithms that 
have the ability to learn input and output relationships 
from training sets of data; such as patterns of vital signs 
and laboratory findings that indicate a stable patient versus 
a decompensating patient (42). A neural network model 
was built using vital signs and laboratory data of patients 
admitted to a medical ward with hematologic malignancies, 
and then used to predict clinical decompensations, with 
excellent sensitivity and improved positive predictive value 
compared to other commonly used predictive scores of 
decompensation (58). Decision tree classification is another 
AI method for predicting risk of certain events, utilizing 
logistic regression models to determine important variables, 
which are then used as inputs for a machine learning 
based patient specific algorithm to evaluate the risk that 
a specific event or outcome occurs (59). This has been 
shown to be successful in determining infants who develop 
periventricular leukomalacia following cardiovascular 
surgery (60,61). Jalali and colleagues developed a clinical 
decision support system for the prediction of mortality in 
an adult intensive care unit, creating a classification model 
from multiple physiologic, hemodynamic, and demographic 
variables that predicted in-hospital mortality more 
accurately than several acuity based scoring systems (59).  
Expert physiologic knowledge to group the various 
hemodynamic and laboratory data based on organ system 
was critical to the development and accuracy of this 
system, and highlights the importance of clinical expertise 
in the development of data-driven analytic models (59). 
While these studies, and others described in Table 2, are 
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Figure 1 An example of one software technology that records, integrates, and visually displays patient data from multiple different sources 
and also creates a risk index (IDO2 index) to predict the likelihood of inadequate oxygen delivery, which is a precursor of anaerobic 
metabolism. In this example, the risk index increased substantially in the 5 hours prior to cardiac arrest, without significant changes in other 
vital signs. 

Table 2 Studies of data-analytic models for prediction of outcomes 

Study Patient population Technology used Study design Endpoint predicted Validity 

Baronov  
et al. (32)

Pediatric intensive 
care unit

Model based risk 
assessment 

Retrospective 
cohort 

Probability of 
inadequate oxygen 
delivery 

AUC for SVO2 <40, 0.79 
(95% CI: 0.76–0.82)

Moorman  
et al. (56)

Neonatal intensive 
care unit 

Heart rate 
characteristic index

Randomized 
controlled trial 

Fold-increase in risk of 
sepsis 

HR 0.78 (95% CI: 
0.61–0.99) for neonates 
monitored with HRC

Rusin  
et al. (52)

Pediatric cardiac 
intensive care unit 

Classification 
algorithm 

Prospective 
observational 

Decompensation (CPR 
or intubation) 

AUC 0.91 (95% CI: 
0.88–0.94)

Hu  
et al. (58)

Adult patients 
with hematologic 
malignancies 

Advanced neural 
network 

Retrospective 
cohort

ICU transfer and cardiac 
arrest 

Sensitivity: 0.93; 
specificity: 0.97; PPV: 
0.78; NPV: 0.99

Chen  
et al. (57) 

Intensive care unit 
patients 

Data-analytic 
decision support 
system 

Retrospective 
cohort 

Risk of mortality AUC: 0.88; sensitivity: 
0.83; specificity 0.92; 
PPV: 0.62; NPV: 0.97

SVO2, central venous saturation; AUC, area under the receiver operating curve; CI, confidence interval; PPV, positive predictive value; NPV, 
negative predictive value; CPR, cardiopulmonary resuscitation. 
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encouraging for future developments, to date, there are 
no validated or operationalized AI or machine learning 
techniques deployed in the PCICU population.

Summary and conclusions

Patients in the PCICU are at risk for CA and clinical 
decompensation, and earlier intervention in their course 
is likely to improve outcomes and prevent end organ 
dysfunction. Current monitoring modalities are sometimes 
ineffective for early identification of patients who are 
beginning to decompensate. Several technological advances 
have the potential to improve our ability to detect abnormal 
physiology more accurately and expediently. Mathematical 
models that analyze continuously recorded physiologic 
parameters to discriminate patterns of data, as well as 
machine learning and AI methods, are all promising for 
the development of outcome prediction for patients in the 
PCICU. As this technology is advanced it is important 
to continue to determining appropriate endpoints, as 
predictive systems are only as good as the outcome they 
predict. These advanced monitoring systems will continue 
to require clinicians to provide biological plausibility and to 
incorporate risk indices with other clinical data to determine 
the appropriate treatment approach. Machine learning 
may be able to predict the likelihood that something will 
happen, but it will not replace the judgment of clinicians to 
provide the appropriate therapy in the context of the clinical 
scenario to avoid a clinical decompensation. 
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