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Introduction

Chronic low back pain is a widespread condition which 
affects a large portion of the population and is the 
predominant cause of disability, resulting in huge cost 
implications, economic outlay and health provisions (1). 
Causing approximately $50 billion of estimated expenditure 
in the USA alone and with 210,000 Australians developing 
chronic low back pain annually the costs are increasing, 
with the direct cost of $1.2 billion in Australia in 2001 (2,3).

Although the exact cause of back pain remains to be 
defined, degenerative disc disease is considered to be a 
predominant source of chronic low back pain (4). The 
intervertebral discs (IVD) act as shock absorbers during 
compressive loading of the spine. As the disc degenerates, 
the spinal column motion segment function decreases, with 
less load-bearing potential. The disc is an immuno-privileged 
avascular organ with a low cell density and abundant 
extracellular matrix (ECM). It is well known that a damaged 

disc has a very limited capacity for self-repair. At the cellular 
level, the degeneration process is characterized by cellular 
dysfunction accompanied by reduced synthesis of ECM (5). 

Disc degeneration is currently managed by non-surgical, 
conservative treatments or surgical interventions aimed at 
symptomatic relief and muscular stabilization with no clinical 
therapy targeting the reversal of disc degeneration (6). 
Recent advances in stem cell biology and tissue engineering 
provide an exciting potential approach to bio-regeneration 
focusing on the delivery of cells capable of restoring disc 
function.

Considering the limited regenerative capacity of the 
IVD, suitable sources of cells for regenerative therapies 
are highly sought after. Adult mesenchymal stem cells or 
stromal cells (MSCs) are multipotent (7), mainly residing 
in the bone marrow but also found in many other tissues. 
Bone marrow MSCs (BM-MSCs) and adipose tissue derived 
MSCs (AT-MSCs) are highly accessible, there are no ethical 
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dilemmas for their use, they have the ability to self-renew, 
proliferate and differentiate into multiple mature cell types, 
including chondrocytes (8,9) and have been shown to 
possess immunomodulatory properties (10). Further, they 
are able to secrete a variety of soluble mediators and to be 
recruited chemotactically to injured tissues (11). 

MCSs may participate in the repair of degenerative disc 
tissue in several ways: (I) supply the lost or damaged cells 
by direct differentiation into disc tissue-specific cells which 
promote the formation of ECM; (II) indirectly enhance 
tissue regeneration by the secretion of growth factors; and 
(III) immuno-modulate the inflammatory response (12). 
MSC based therapy is emerging as an extremely promising 
cell therapy for degenerative disc repair. This review aims to 
provide a better understanding of recent advances in MSC 
technologies for regenerative therapies in disc degeneration 
disease, their current challenges and future research directions.

 

Intervertebral disc degeneration (IDD)

Intervertebral disc (IVD) 

The IVD is located between the vertebral bodies of the 
spinal column (Figure 1). The properties of the disc allow 
for spinal mobility and its ability to resist compressive loads, 
as well as maintaining a uniform stress distribution in the 
area of the vertebral endplates (EP). 

The disc is made up of an inner gelatinous structure, 
the nucleus pulposus (NP, nucleus) surrounded by a fence-
like ring of fibrous laminated collagen, the annulus fibrosus 
(AF, annulus), sealed superiorly and inferiorly by the 
cartilaginous EP prior to the vertebral bodies. Each region 
of the disc has distinct functional structures and complex 
biological properties (13,14). 

The nucleus pulposus is a hydrated gelatinous structure 
composed of water, ECM, and cellular elements. In 

healthy discs, the water content of the nucleus is 80-
88% which progressively decreases with age. The NP 
is derived from the notochord during development. 
In humans, notochordal cells (Figure 2) disappear in 
early childhood and differentiate progressively into 
chondrocyte-like cells (15). The chondrocyte-like cells 
of the nucleus (Figure 3) are characterised by expression 
of major ECM components proteoglycans (PG), collagen 
II, a small amount of elastin fibres (16) and chondrogenic 
transcription factor SOX9 (17). The main PG within the 
NP is aggrecan, which contains approximately 30 chains 
of sulfated glycosaminoglycans (GAGs), contributing to a 
negative charge that fosters the hyper-hydrated state of the 
NP (18). NP cells are highly specialized and survive in a 
hypoxic environment with a high lactic acid concentration 
as well as relatively high hydrostatic pressure (19). 

The AF consists of 15-25 concentric rings of collagen 
fibrils arranged parallel to each other in a lamellar 
fashion (Figure 3). Each lamella layer consists of parallel 
bundles of collagen fibers orientated at about 60° from 
the vertical axis, with the orientation being reversed in 
successive lamellae (14,20). The lamellar structure of the 
AF enables the IVD to withstand the high tensile stresses 
(circumferential, longitudinal and torsional) the spinal 
segments are subjected to. The collagen content is at its 
highest in the outer annulus, comprising up to 70% of its 
dry weight, with collagen type-I the predominant species, 
decreasing in a gradient towards the centre of the disc (21). 
The annulus structure is normally delineated into “outer” 
and “inner” annulus regions. The inner annulus is less 
laminar and consists of a more poorly organized ECM that 
contains type II collagen, PG and water, thereafter a thin 
fibrous tissue between the inner annulus and the central 
nucleus has been defined as a transitional zone. Smaller 
quantities of Type III, V, VI, IX and X collagens are present 
in the outer AF (22,23). 

Figure 1 Diagram of the human intervertebral disc.
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The annulus contains roughly 9×103 cells/mm3 of 
fibroblast-like cells embedded in the outer annulus forming 
a parallel pattern. More chondrocyte-like cells which are 
present in the inner annulus (Figure 2) (24). 

The vertebral EP, composed of 0.6 mm thick avascular 
hyaline cartilage and fibrocartilage, partially calcified at 
the vertebral body interface (25), overlies the superior 
and inferior surface of the vertebral body and is strongly 
attached to the collagen fibers of the disc annulus. The 
cells of the EP are chondrocytic. In adulthood, the 
human EP has the typical structure of an epiphyseal 
growth plate, acting principally as a growth plate for the 
vertebral bodies (26). The biochemical components of the 
EP are similar to that of the disc: water, PG and collagen, 
but with less proteoglycan and water and higher collagen 
content than the adjacent regions of the disc. The EP 

serves as a semi-permeable membrane to facilitate 
diffusion of solutes from the vertebrae to the disc, which 
plays a vital role in disc nutrition by regulating the passive 
diffusion of nutrients into the avascular disc (25). 

Intervertebral disc degeneration (IDD)

Back pain and discal degeneration
The degeneration of the delicate structures comprising the 
IVD is a major cause of back pain. Particularly manifested 
in the nucleus, changes in disc water content can be 
visualized using magnetic resonance imaging (MRI), with 
increasing degeneration visible as increased darkness in the 
disc region (27). Increasing grade of degeneration has been 
shown to correlate with back pain (28,29) and the extent of 
degeneration can be estimated using MRI (27,30-32). 

Figure 2 Histological characteristics of healthy human nucleus pulposus. (Left panels) A tissue sample of a healthy human disc from a 
16-year-old individual shows sparse chondrocyte-like cells within the nucleus pulposus producing abundant collagen and proteoglycan. 
Staining with H&E shows morphology (top), Alcian blue (blue staining) identifies proteoglycan (middle) and safranin-O identifies collagen 
(orange staining, bottom), (magnification 40×). (Right panels) A sample of 14-week-old fetal spine tissue illustrates the NP as highly cellular, 
containing large vacuolated NC which produce a matrix rich in proteoglycan (magnification 10×, top and middle; 40×, bottom). H&E, 
haematoxylin & eosin; NC, notochordal cells.

NP, 16 years old NP, 14 weeks old
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A degree of degeneration is attributable to normal aging 
(28,33,34) and this, coupled with variability in sample 
sizes, definitions of degeneration and back pain and ethnic 
genetic diversity are attributed to inconsistent reports of 
back pain–disc degeneration correlations (35,36).

Certainly the costs related to back pain treatment and 
lost economic output are reaching the billions globally with 
the life time prevalence of back pain now approaching 
85% (37) and statistics showing it as the main cause of 
disability worldwide (38). 

The biology of IDD
IDD occurs as a consequence of the normal aging process (34) 
but can also be instigated by injury trauma (39). 

Undoubtedly the main issue in IDD is the deterioration 
of nucleus pulposus tissue architecture (40,41). Changes are 
characterised by the loss of gelatinous, hydrated ECM into 
a more fibrous tissue. PG become fragmented and are lost 

from the tissue (14), leading to reduced hydration (42) and a 
loss of pressure within the nucleus (43). Discal degenerative 
changes occur progressively as a result of an altered balance 
between anabolic and catabolic processes in the disc 
(24,42,44,45). The loss of complex protein and proteoglycan 
networks that hold water and contribute to the shock 
absorbing properties in the disc (46), weaken and destabilise 
the structure contributing to loss of biomechanical function 
(19,24,47). Ongoing degeneration can lead to herniation, 
stenosis, segmental instability, and degenerative scoliosis. 

Cellular changes: despite obvious tissue deterioration, 
viable cells isolated from degenerated discs have shown an 
ability to proliferate and differentiate in vitro (48), although 
with limited regeneration potential (49). Indeed, progenitor 
cells have been isolated from human degenerated discs (50), 
potentially derived from specific niche regions located near the 
cartilaginous end plate (51) and migrating into the disc (52).

Other studies have reported viable cells derived 

Figure 3 Histological characteristics of healthy human annulus fibrosus. (Left panels) A sample of a healthy human disc from a 16-year-old 
individual illustrates the cells in the AF embedded in collagen fibres. Morphology and proteoglycan are visible, (Magnification 40×). (Right 
panels) A sample of 14-week-old fetal spine tissue showing that the AF has already become well organized into a lamellar pattern (40×, top). 
Lamellar striations are visible at both low (10×, middle) and high (40×, bottom) magnification when stained with Alcian blue.

AF, 16 years old AF, 14 weeks old
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from degenerated discs with variable morphology but 
degenerated tissues had increased numbers of cells with the 
hallmarks of both necrosis and increased cell senescence 
and apoptosis (40,53,54). Cells were also found to form 
clusters in degenerated discs, in particular in the NP and 
inner AF (40,55) and many clustered cells showed increased 
production of matrix-degrading enzymes such as the matrix 
metalloproteinases (MMPs) (33,40).

Inflammatory mediators, cytokines & molecular 
dysregulation: the disc ECM is maintained by a balance 
of anabolic and catabolic molecular activities (19). In the 
degenerated disc, the catabolic activity of MMPs, disintegrins, 
metalloproteinases with thrombospondin motifs (ADAMTSs), 
and tissue inhibitors of metalloproteinases (TIMPs) is altered, 
compared to that of normal disc tissue (33,40,56-59), resulting in 
enhanced breakdown of ECM proteins. These proteins facilitate 
tissue remodeling in normal disc tissue and are regulated, at 
least in part, by biomechanical pressure stimuli (33,60,61). 
Conversely, expression of key ECM components aggrecan and 
collagen is reduced in degenerated disc tissues (59,62).

Inflammatory mediators, like metalloproteinases, have 
potential to act as normal growth signals in the normal disc 
as well as in pathology, but the regulation and expression of 
these molecules appears to be aberrant in disc degeneration. 
Increased expression of inflammatory cytokines such 
as IL-1, IL-6, IL-17 and TNFα have been detected in 
degenerated disc tissues (63-66) where expression was 
found in both invading inflammatory cells and resident 
cells of the NP (63). Degenerated tissues also displayed 
altered responses to inflammatory cytokines and changed 
receptor levels (44,62), with only chemokine CXCL8 
mRNA expression found to be significantly up-regulated in 
degenerate compared to non-degenerate samples (63).

The release of chemokines from degenerating discs 
promotes the infiltration and activation of immune cells, 
further amplifying the inflammatory cascade and potentially 
also involving neurogenic factors capable of inducing and 
enhancing pain effects in the dorsal root ganglion (67). 
Leukocyte migration into the IVD is accompanied by the 
appearance of microvasculature tissue and nerve fibres (67) 
but there is evidence that such invasion is less likely in 
DDD compared to herniation (40). 

Genetic variation in disc degeneration: there is increasing 
evidence that discal degeneration may be influenced by 
multiple inherited genetic factors which influence or 
predispose an individual to the development of this condition 
(68,69). Several allelic variations in genes coding for ECM 
proteins have been identified with linkage to degeneration: 

asporin, a small leucine-rich repeat proteoglycan (SLRP) 
family member implicated in several common bone and joint 
diseases (70,71) has also been identified as a susceptibility 
gene for discal degeneration (72). Immunohistochemical 
localization identified asporin in the OAF and less strongly 
the IAF and showed higher mRNA expression in degenerated 
discs (73). The ECM protein, cartilage intermediate layer 
protein (CILP) also showed significant allelic linkage with 
disc degeneration in a Japanese population (74). CILP 
is expressed in the disc ECM and levels are elevated in 
degeneration, increasing as degeneration grade progresses 
(74,75). Recently an isoform of fibronectin produced by 
alternative slicing has been linked with degeneration (76) as 
well as a genetic variant of the sulfotransferase gene (77). 

Degenerative disc therapies

Current therapeutic options

There are no currently available treatments that target disc 
degeneration itself. Therapeutic interventions are for chronic 
or acute back pain and are determined by the degree, severity 
and persistence of pain. A variety of conservative treatment 
options form initial therapies generally involving rest, pain 
medication, specialist physiotherapy and/or specific back 
strengthening which aim to help the spine to heal naturally 
and in many cases such therapies are successful. However, 
pain will become chronic (present for more than three 
months) in approximately 20% of patients and about 5% of 
chronic back pain sufferers progress to surgical options for 
further treatment.

Surgical disc treatment mostly involves spinal fusion of 
two or more disc levels, but technological advancements 
include more minimally invasive disc replacement 
therapies that aim to preserve the natural motion of the 
vertebral segment. Motion preserving devices aimed at 
supporting the vertebrae by mimicking a normal disc are 
in limited use and under further development (47,78). The 
long term success of such devices in preserving existing 
spinal segments and maintaining full function is not yet 
known. Biodevices restore some function to the motion 
segment, however, contrary to expectations the risk of 
adjacent-level degeneration does not appear to have been 
reduced (79). 

Future therapies

The cascade of degeneration being well known and well 
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documented (24,80), it is attractive to envision the early 
intervention in discal deterioration by supporting and 
repairing existing disc tissues biologically, potentially an 
ideal solution to back pain caused by a loss of disc integrity 
and function. 

Growth factors
One approach is the application of naturally occurring 
growth factors capable of stimulating appropriate protein 
synthesis directly into the disc, restoring tissue integrity and 
normal pain-free spinal function (81). Candidate proteins 
for therapeutic discal regeneration have been focused on the 
bone morphogenetic protein (BMP) family, several of which 
have shown promise (81-83). BMP13 is one member of this 
family that appears to play a role in the normal development 
of the spinal disc in vertebrates (84) and as a result, may have 
the potential to be a “best in class” molecule for therapeutic 
application to IDD. BMP13 has shown promise in early 
large animal studies of annular injury and disc repair (85). 
The BMP14 molecule is also being trialed as a potential 
disc regeneration therapeutic (86,87) and investigations 
into the potential of BMP7 have shown promise (88,89). 
Clinical grade proteins are proposed to be delivered 
directly into the disc space. Retention in the disc following 
injection may depend on many factors, not the least of 
which is the degree of degeneration and the integrity of 
the annular ring, data from animal studies is encouraging 
(85,88). Indeed purified BMP14 protein is currently under 
phase I/II clinical investigation for the treatment of early 
stage lumbar disc degeneration in Australia. These studies 
will provide important validation for the potential of BMP 
family members as future therapies. 

Resident stem cells
Several studies have identified progenitor cell populations 
in the IVD which may provide a source of cells to 
repopulate a degenerated nucleus, data from animal 
studies is encouraging the correct stimuli (50,51,90,91). 
BMP13, following direct injection into the disc in a 
large animal study, showed evidence of having mobilized 
cells from the EP region, compared to controls (85) and 
indeed growth factor therapies rely on endogenous cell 
populations for their success. Some BMPs can function as 
chemoattractants (92-94) but involvement of BMP13 in 
inducing cell migration is still under study. Certainly cell 
migration into the nucleus pulposus has been reported and 
may be a valid mechanism for inducing the regeneration of 
this complex tissue (52,90,95).

MSCs and their regeneration potential 

MSC phenotypes

MSCs are adult stem cells that possess self-renewal ability, 
multilineage differentiation potential and immunomodulatory 
properties (7,85,96,97). The term MSCs refers to similar 
cell populations from multiple tissues that share the basic 
characteristics of stem cells, but remain heterogeneous cells 
with variations among individual donors and among different 
clones from the same donor. 

Currently BM-MSCs, followed a close second by AT-
MSCs, are major commercial sources of adult MSCs 
undergoing extensive studies and clinical trials as cell 
therapies (98-100). MSCs are characterized by the expression 
of CD73, CD90 and CD105 but lack expression of major 
lineage markers CD45, CD34, CD14, CD11b, CD79α, 
CD19 and HLA-DR. They are able to differentiate into 
multi-lineage specialized cells including osteoblasts, 
chondrocytes and adipocytes, functions required for a 
minimal criteria defining these cells (101). Although 
controversy exists regarding stem cell plasticity (102-104), 
under appropriate conditions MSCs are not only capable of 
differentiating into cells of mesenchymal origin (7) but can 
also trans-differentiate into cells of non-mesodermal lineages 
such as neuronal cells (104,105) and insulin-producing β-cells 
(106,107). This has led to the exploration of the therapeutic 
potential of MSCs for tissue repair in regenerative medicine 
and as therapeutic tools in immune-mediated diseases (97). 

MSC therapeutic strategies

MSC based therapy aiming to restore damaged tissues relies 
on not only the ability of MSCs to give rise to specialized 
lineages, but also on their immunomodulatory and 
trophic effects. Generally, there are two strategies for the 
application of MSCs in tissue repair. Firstly, MSCs are used 
in an undifferentiated state, allowing the cells to undergo 
differentiation in vivo under the stimulation of local factors. 
Secondly, MSC differentiation occurs in vitro, prior to 
transplantation. The disadvantage of the former approach 
is that unwanted differentiation may occur at the injury site, 
but prior chondrogenic differentiation can render MSCs 
phenotypically stable and resistant to trans-differentiation 
in non-chondrogenic conditions (108). While prior in vitro 
differentiation ensures MSCs undergo lineage-directed 
commitment, increasing specificity of the administered 
cells, the process may affect their immunosuppressive 
potential (109). In addition, the prolonged cell manipulation 
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procedure may involve increased risks and costs. 
The IVD contains ECM derived from chondrocyte-like 

cells, but with unique properties, particularly in the central 
nucleus pulposus (24). Initial attempts at cell implantation 
using NP cells produced favourable results (110) however, 
given the limited number of disc cells available and the 
technical difficulties in their harvest, alternate sources such 
as MSCs are being pursued. Stem cell therapy involves MSC 
isolation from an appropriate tissue, in vitro expansion, 
potentially enhanced by additional growth factors or gene 
transfer to produce chondrocytic differentiation of the 
MSCs (111,112). Chondrogenic differentiation of MSCs 
for seven days produced cells that closely resembled the 
phenotype of native hyaline cartilage when combined 
with osteogenic cells in a bilayered oligo [poly (ethylene 
glycol) fumarate] hydrogel composite (113). Further, the 
respective chondrogenic and osteogenic phenotypes could 
be maintained in vitro for 28 days. 

Effective MSC differentiation

Differentiation of MSCs into disc-like chondrocytic 
cells requires up-regulation of lineage-specific genes and 
suppression of genes associated with stem cell plasticity. 
There is a large body of research focused on the efficient 
induction of MSCs to differentiate into osteo-chondrocyte 
lineages. Methods of chondrogenic differentiation can be 
adopted and modified for differentiation of disc-like cells, 
with various in vitro differentiation conditions established 
that favour development of this phenotype along with a 
specific gene/protein expression profile to monitor the 
differentiation (114), characterised by up-regulation of SOX9 
expression followed by chondrogenic specific matrix gene/
protein expression. A three dimensional (3D) culture system 
and serum-free medium containing transforming growth 
factor β (TGF-β) and dexamethasone are fundamental 
conditions for chondrogenic differentiation, with TGF-β3 
the most effective compared to other TGF-βs. Some BMPs 
can enhance TGF-β3-mediated chondrogenic differentiation, 
but are not effective when used alone (112,115).

MSCs from different individual donors may show 
various levels of differentiation, even under identical in vitro 
induction conditions. Epigenetic modification, the process 
of adding and removing chemical tags such as methyl or 
acetyl groups on DNA or histones which result in specific 
gene activation or suppression, is one explanation. Genomic 
regions that contain a high number of methylated cytosine 
are usually transcriptionally inactive; the absence of DNA 

methylation is a prerequisite for transcriptionally active 
genes (116). Whilst a limited number of studies have been 
performed, epigenetic regulation mechanisms have been 
identified in MSC chondrogenesis (117). DNA methylation 
of CpG-rich promoters associated with chondrocyte-
specific genes were largely kept at low levels in human 
synovium-derived MSCs during in vitro chondrogenic 
differentiation. Further understanding of epigenetic 
complexities may provide solutions to donor variability, but 
at present it represents a known source of inconsistency.

MSC application to IVD repair 

Chondrogenic differentiation of MSCs in vitro

MSCs can be induced to differentiate into chondrocytes 
or disc-like cells in vitro using several strategies: utilising 
co-culturing techniques, cytokine regulation, gene 
introduction, and 3D culture.

Co-culture
MSCs have been co-cultured with disc cells or tissues in 
vitro either in micromass culture or indirectly, to investigate 
the compatibility of MSCs in the IVD. Our own studies 
have demonstrated that rat BM-MSCs can differentiate into 
NP-like cells after co-culture with intact IVD tissue in a 
transwell membrane system (118), where although MSCs 
were separated from disc tissues by an insert membrane they 
showed morphological cell-cell/cell-tissue interactions via 
the pores of the membrane, through cytoplasmic processes 
(Figure 4). The presence of the disc tissue was sufficient to 
influence the MSCs differentiation pathway and cells from 
the disc may have provided soluble signalling molecules that 
influenced MSCs differentiation. Several other studies have 
co-cultured MSCs and NP cells under different conditions 
and reported similar observations (119-122). Direct cell-to-
cell contact in specific ratios was essential for BM-MSC or 
AT-MSC (123) in monolayer to differentiate into an NP-
like phenotype, with enhanced SOX9, aggrecan, collagen 
II and VI gene expression (111,124). The AT-MSCs may 
be more capable of differentiating into NP like cells than 
BM-MSCs (123). Effective chondrogenic differentiation of 
either umbilical cord blood derived mesenchymal stem cells 
(hUCB-MSCs) or olfactory stem cells was also achieved 
by injecting the MSCs into disc tissue in an in vitro culture 
system (125). Interestingly, even degenerated NP cells in 
co-culture with BM-MSCs induced increased production of 
collagen and PG (126). 

The underlying mechanisms of cell interactions in 
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co-culture systems remain unclear, but overall the data 
suggest that co-culture systems are a powerful tool for 
the investigation of MSC potential in IVD regeneration. 
Evidence of  bi-directional  transfer of  membrane 
components between the cell types, spontaneous cell fusion 
and gap-junctional communication have been reported, all 
potentially viable mechanisms (127,128).

Growth factors
A range of growth factors have been employed to induce 
chondrogenic differentiation of MSCs including TGF-
βs, insulin-like growth factor-1 (IGF-1), fibroblast growth 
factor-2 (FGF-2), and BMPs (129). Of these, TGF-β1 
has been most extensively investigated for inducing 
chondrogenesis in stem cells. An early study first reported 
that MSCs differentiated towards the chondrogenic lineage 
upon stimulation with TGF-β1 (130) and several studies 

have shown TGF-β3 to stimulate MSC to differentiate 
into chondrocytes (112,129,131) including under hypoxic 
conditions (131). 

Apart from TGF-βs the BMPs, in particular BMP13 
(GDF6)  and  BMP14 (GDF5) ,  have  shown MSC 
chondrogenic differentiation potential. BMP13 stimulation 
of MSCs in culture induced down-regulation of osteogenic 
expression markers and promoted higher levels of 
proteoglycan production (132). Further, undifferentiated 
MSCs, when treated with BMP13 in vitro, induced cellular 
proliferation and morphological changes resembling 
chondrocytes at 120 and 168 hours of culture (133). BMP14 
possessed a greater ability to induce differentiation of BM-
MSCs into NP-like cells than TGF-β under conditions 
of hypoxia (134). These data suggest that BMP13, unlike 
BMP2, may not induce the terminal differentiation of stem 
cells into bone, an attractive characteristic when considering 

Figure 4 Coculture system and ultrastructural appearance of MSCs following coculture with disc tissue. (A) Schematic diagram of the 
experimental co-culture process; (B) Ultrastructural appearance of MSCs in co-culture with intact disc tissue, day 14 visualised by scanning 
electron microscopy. Representative SEM images revealed that most of the co-cultured rMSCs appeared to be spherical or irregular in 
shape. Some cells have long membrane processes extending from the co-cultured rMSCs through the pores of the transwell-membrane 
toward the neighbouring disc cells on the underside.

A

B
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disc regeneration therapy.
The combination of other growth factors with TGF-β 

has been examined for potential ability to induce MSCs 
towards a chondrogenic phenotype for use in IVD repair. 
BMP2 and TGF-β3 induced chondrogenic differentiation of 
human BM-MSC when cultured in alginate beads (112), and 
BM-MSC stimulation with BMP7 and TGF-β3 produced 
superior chondrocytic proteoglycan accumulation, collagen-
II, and SOX9 protein expression in alginate and pellet cultures 
compared to either factor alone (135). Similarly a combination 
of TGF-β2 and BMP7 was shown to be the most effective 
combination in inducing AT-MSCs towards chondrogenic 
differentiation when compared to other factors (136). 

Genetic manipulation
Directing the differentiation of MSCs into specific NP like 
cells can be achieved by genetic manipulation. SOX9, as an 
essential transcription factor for the differentiation of the 
chondrocytic lineage, is required for notochord maintenance 
and normal vertebral column formation during embryonic 
development (137). Enhanced chondrogenesis of BM-MSCs 
was reported both in vitro and in vivo in a mouse model (138) 
and in human BM-MSCs (139) through over-expression of 
adenovirus-mediated SOX9. Similarly adenoviral-mediated 
SOX9 expression induced differentiation into NP-like 
cells, evident in the expression of chondrogenic genes 
and proteins (111). More recently BM-MSCs genetically 
modified with lentiviral-mediated anti-apoptotic GFP-
Bcl-2 gene expression showed chondrogenic differentiation 
in nanofibrous scaffold cultures with TGF-β1 stimulation 
in hypoxia culture (140). Such studies provide valuable 
information regarding the appropriate genetic markers and 
gene regulation required to produce disc cells. However, 
studies related to disc regeneration are somewhat limited 
as there are still significant safety concerns regarding the 
in vivo use of gene therapy (141). 

Scaffolds
The application of scaffolds in MSC therapy for disc 
regeneration will be discussed in section Scaffolds for MSC 
therapy in disc regeneration. 

MSC therapy for disc repair in vivo 

The regenerative potential of MSCs in vivo for disc 
regeneration has been studied with a variety of animal models 
by using allogeneic, autologous or xenogenic transplantation 
(118,142-146). MSCs alone, together with biomaterials or 

combined with cytokines have been introduced into the disc 
to attempt both repopulation and repair of damaged cells for 
the production of new disc matrix. 

Survival of transplanted cells is a crucial step to ensure 
disc repair. Early studies have shown the survival of 
translocated MSCs in the special microenvironment of a 
healthy disc for up to six months, as well as their ability to 
differentiate into NP-like cells (147,148). Multiple in vivo 
studies in a wide array of animal models showed that BM-
MSCs can survive and proliferate in the damaged disc post-
transplantation. Surviving cells also differentiated towards a 
disc-like phenotype and produced disc matrix, with partial 
disc height restoration and hydration when compared 
to control groups (142,149-156). The use of AT-MSCs 
with a hyaluronic acid (HA) carrier was also successful, 
with increased disc matrix protein, restoration of disc 
hydration and MRI T2 signal intensity eight weeks post 
transplantation compared to controls (157). 

Interestingly, several xenogeneic transplantation studies 
of human MSCs into murine, porcine or rabbit discs have 
demonstrated MSC survival without immunosuppressant 
administration (118,154,158,159). We have demonstrated 
that transplanted human BM CD34– cells survived in rat 
discs for up six weeks, expressing collagen II and aggrecan 
after three weeks transplantation (118). The implanted 
cells had a broad differentiation potential and an ability 
to develop into disc-like cells, suggesting that CD34– 
BM-MSCs are a potential source of cells for restoring 
degenerated discs (118). Notably, surviving xenogeneic cells 
expressed a high level of Fas-L protein, suggested to be an 
immunosuppressive factor (118). 

Successful xenogeneic transplantation also reflects 
the immune-privileged nature of the disc and the 
immunosuppressive nature of MSCs (160). The immune 
privileged nature of the disc is attributed to the anatomically 
structured blood-tissue barrier of the NP, and also to the 
constitutive expression of Fas ligand on disc cells (161). In 
vivo studies are encouraging and the data consistent with 
the potential for the future clinical use for MSCs in IVD 
regeneration. This data is summarised in Table 1.

Scaffolds for MSC therapy in disc regeneration

Biomaterial scaffolds and hydrogels are three-dimensional 
matrices. Incorporation of MSCs into a biomaterial scaffold 
can enhance cell survival after transplantation. The scaffold 
acts as a carrier protecting MSCs from leaking into other 
tissues and concomitantly to support the transduction of 
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mechanical loads. They also provide a framework to fertilise 
proliferation and differentiation of implanted MSCs. To 
improve the survival of transplanted MSCs, scaffolds need 
to be non-immunogenic, biodegradable, biocompatible and 
to withstand the mechanically loaded microenvironment in 
the IVD (162).

A range of scaffolds have been structured as ideal 
biomaterials for cell therapy in disc regeneration, including 
a variety of natural gels and hydrogels based on collagen, 
HA, GAGs, agarose, gelatine and alginate (163). Hydrogels 
based on collagen and HA have been the most widely 

employed in tissue engineering applications since they are 
hydrophilic polymers that readily allow for incorporation 
of biological signals and cells to derive into the native 
matrix (149,152,155,162). HA is the most abundant water 
absorption molecule in the natural disc, able to dehydrate 
and rehydrate under a range of mechanical loading 
parameters. Such scaffolds also ideally degrade slowly to 
permit the seeded MSCs to differentiate and produce new 
matrix (135,162). More recently it was demonstrated that 
AT-MSCs seeded in chitosan-alginate-gel scaffolds are 
capable of differentiating into NP-like cells under hypoxic 

Table 1 Overview of recent in vivo animal experimental studies on MSC transplantation for regeneration of the disc

Source of MSC Animal model & application Scaffolds Outcome Authors and reference 

BM-MSC Rabbit, Autologous Alelocollagen 

gel

MSC survived and differentiated 

disc like cells

Sakai et al.  

2003 (149)

Rabbit (nucleus puncture)

Autologous

Pure Fibrinous 

Gelatin 

MSC slowed the rate of disc height 

index

Yang et al. 

2010 (143)

Porcine, Autologous Hydrogel Regenerate NP and protect the EP 

function

Bendtsen et al. 

2011 (144)

Porcine, Allogenic HyStem 

hydrogel

SPIO labelled MSC present NP by 

MR monitoring

Barczewska  

et al. 2013 (156)

Rabbit, (nucleotomy), 

Allogenic

Collagen 

microspheres

MSC survival and matrix production Yuan et al.  

2013 (122)

Expanded  

MSCs

Rabbit (nucleus 

aspiration) Autologous 

Alelocollagen 

gel

MSC proliferation and differentiated 

disc like cells

Sakai et al.  

2006 (155)

Expanded  

BM MSC

Canine, (nucleotomy) 

Autologous

No Suspension disc degeneration Hiyama et al.  

2008 (150)

BM-MSC  

from EGFP 

transgenic mice

Mouse, allogenic (annular 

puncture)

No MSC differentiated chondrocyte and 

induce notochondral cells

Yang et al.  

2009 (146)

Human  

BM-MSC 

Mini-pigs (nucleus 

puncture) xenogeneic

Puramatrix 

Hydrogel

hMSCs survive and express 

chondrocyte markers for 6 months 

Henriksson et al. 

2009 (154)

Rat, xenogeneic No hMSCs survive in the disc and 

express chondrocyte markers

Wei et al.  

2009 (118)

Olfactory 

neurosphere-

derived stem cells

Rat, (nucleus puncture), 

Allogenic

No Observed increased type II collagen Murrell et al.  

2009 (125)

BM-MSC/or 

Chondrocyte

 Porcine (nucleotomy) 

Allogenic

Fibrin MSC not found but chondrocyte 

survived and produce CEM

Acosta et al.  

2011 (145)

Human ADSC Rabbit (nucleus puncture)

xenogeneic

Hyaluronate Elevated extracellular matrix and 

little ossification 

Chun et al. 

2012 (159)

ADSC Rat (nucleus puncture)

Allogenic 

PLGA 

microspheres

Partly improve disc height and 

increase ECM of disc after 24 wk

Liang et al. 

2013 (152)

BM-MSC, bone marrow derived stem cell; ADSC, adipose-derived stem cell; SPIO, superparamagnetic iron oxide nanoparticle.
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conditions (164). Similarly, MSC seeded in an injectable 
hydrogel differentiated along a chondrogenic lineage under 
physiological loading conditions (165) or when combined 
with pentosan polysulphate (166,167).

Several hydrogels constructed from natural components 
of the ECM including fibrin (168), hyaluronan (169), and 
collagen (170) and natural biopolymers such as chitosan (171) 
have been investigated as carriers for cell delivery to the 
disc. Thermoreversible chitosan-glycerophosphate (C/Gp) 
hydrogels alone are capable of inducing MSC differentiation 
in cultures (172), and the PEG-LM111 hydrogel in explant 
cultures showed significantly higher cell retention properties 
over two weeks, compared to cells in liquid suspension (173). 

The therapeutic potential of injectable scaffolds as cell 
carriers for disc regeneration has been investigated in 
vivo in animal models (149,174,175). Thermoreversible 
Atelocollagen is composed of 0.3% collagen and, like 
C/Gp gels, is liquid at room temperature and gelatinizes 
at body temperature. Transplantation of autologous MSCs 
encapsulated in Atelocollagen gel into the degenerated 
disc of a rabbit produced deceleration of the degeneration 
process (149). Similarly, autologous BM-MSCs embedded 
in HA-derived biodegradable polymers, Hyaff®-120 and 
Hyadd®-3 and injected into damaged, nucleotomized 
porcine discs maintained the normal biconvex structure 
of the NP and contained viable cells forming a matrix 
at six weeks, compared to the control group undergoing 
nucleotomy alone (175). 

Human clinical trials

MSC transplantation for the treatment of disc degeneration 
disease in human clinical trials has shown encouraging 
outcomes. Autologous BM-MSCs have been reported for 
the first time to treat disc degeneration in two patients with 
back and leg pain (176), with a collagen sponge containing 
MSCs transplanted into the degenerated IVD. At two years 
post-transplantation, pain was reduced and an intradiscal 
water content increase was observed in both patients. No 
improvement of disc height was reported. 

A pilot phase-1 study in 10 patients (age 35±7 years) 
with chronic low back pain and lumbar disc degeneration 
was conducted using autologous BM-MSCs expanded in 
vitro and injected into the NP of degenerated discs, without 
major surgery (177). After one year of transplantation, 
pain relief and an improvement in disc hydration (by T2-
weighted sagittal images) were observed in nine patients 
(9/10). The author concluded that MSC therapy may 

be a valid alternative treatment for back pain caused by 
degenerative disc disease. However, disc height was not 
improved, control groups were not included and evidence 
of survival of injected cells was also not provided in the trial. 

More recently, a multi-centre FDA-approved clinical 
trial was performed in the United States [2012], including 
100 participants with IDD who received a single injection 
of BM-MSCs encapsulated in a HA carrier, followed for a 
period of three years. 

The outcome of these phase-1 clinical trails is encouraging, 
suggesting that MSC based therapy is clinically safe and 
produced relatively effective relief of back pain. However, 
studies to determine the long term safety and survival of 
MSCs in the degenerated disc are still needed in order to 
determine its full potential.

Current challenges in MSC therapy 

Although MSCs show great potential in regenerative 
medicine, issues are emerging regarding quality control and 
standardization of cells for clinical application. To answer 
the following questions will be critically important for 
future safety and efficacy of MSC based therapies. 

Obtaining sufficient cell numbers whilst maintaining 
MSC characteristics

Adult MSCs exist at extremely low frequency. Although 
human bone marrow is considered one of richest sources, 
MSCs only account for 0.001-0.01% of total bone marrow 
mononuclear cells upon isolation. There is no doubt that 
therapeutic MSCs must be expanded in vitro to provide 
sufficient cell numbers (>1×106/kg) without losing stem 
cell characteristics, which can be judged by examining 
morphology, cell surface marker phenotypes, multiple 
differentiation potential, cytogenetic stability and their 
immunosuppressive property. Recent research suggests that 
human BM-MSCs in culture maintain their morphology 
and a stable phenotype until passages 6-8, with some 
individual donor variation (178). With low propensity 
for spontaneous transformation, they could be safely 
expanded in vitro without immortalization or development 
of chromosomal abnormalities (179,180). However, other 
studies have suggested a risk of cells accumulating genetic 
and epigenetic abnormalities beyond passage 4 (181). To 
date, this issue remains a major challenge for stem cell 
expansion on a clinical scale. 

The use of growth factors or cytokines in addition 
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to foetal bovine serum (FBS), such as epidermal growth 
factor (EGF) (182), basic fibroblast growth factor (bFGF), 
platelet-derived growth factor (PDGF) or ascorbic acid, 
may boost MSC proliferation and suppress spontaneous 
differentiation during in vitro expansion (183). Importantly, 
such treatment does not appear to bias future differentiation 
and immunosuppressive properties of the cells. Our own 
unpublished data suggests that supplementation of growth 
factors or cytokines can increase MSC proliferation yielding 
more than 10-fold higher cell numbers than basic cultures. 
However, overloading of factors aimed at promoting MSC 
proliferation may alter cell characteristics. 

Most laboratories culture MSCs under normoxia (20% 
O2) conditions. Hypoxic (2-9% O2) environments can 
greatly improve growth kinetics of MSC, multi-lineage 
differentiation capacity, genetic stability and chemokines 
receptor expression during in vitro expansion (184,185). 
Optimal formulation of culture medium and conditions for 
in vitro MSC expansion will require further study to ensure 
optimal yields. 

Standardization of methods for MSC isolation, expansion 
and characterization

The huge potential of MSC therapy in regenerative 
medicine has attracted tremendous interest for MSC 
research. Study methodology, however, lacks coherence in 
methods of isolation, expansion and characterization making 
outcomes comparisons difficult, despite the publication of 
minimal criteria to define human MSCs (101). Variability is 
largely derived from the following factors. 
(I) Donor variation. Huge variability in proliferative capacity 

and life span has been noted among donors (179), which 
is associated with individual genetic and epigenetic 
variations, age, gender, and health status. 

(II) Tissue variation. MSCs derived from bone marrow, 
adipose or other tissues are similar, but not identical. 

(III) Isolation methods. Ficoll-Paque gradient centrifugation 
(1.077 g/mL) is included in most MSC isolation 
methods to obtain mononuclear cells, followed by 
further enrichment by plastic adherence for three days. 
In addition to this basic procedure extra purification 
steps may be added, such as immune-depletion or 
positive selection using monoclonal antibodies. 

(IV) Cell culture media. Basic MSC culture medium contains 
10% FBS but can be up to 20%. In addition, the source 
and lot number of FBS provides increased variability 
in cell growth, reflecting considerable variations in 

composition of growth factors and other trophic factors 
in the serum. 

(V) Oxygen pressure. MSCs are mostly cultured in ambient 
normoxia conditions. Currently though, more and 
more laboratories are realising the advantages of 
culturing MSCs under hypoxia (2-5% O2), conditions 
which influence cellular aging and composition leading 
to altered MSC functions. 

Donor variation in MSCs is unavoidable but variability 
can perhaps be minimised by determining standard 
selection criteria and MSC expansion methodology. Such 
measures are extremely necessary in order to ensure 
reproducibility of MSC preparations and a high level of 
therapeutic efficacy. 

How pure should the MSC population be?

No matter which method is applied to isolate MSCs, they 
are by nature a heterogeneous cell population containing a 
small percentage of stem cells and many other differently 
committed progenitors. These cells present heterogeneity 
in morphology, phenotype and multipotentiality. It remains 
unclear whether heterogeneous MSC populations are good 
enough or whether pure stem cells are required for clinical 
use. It is conceivable that heterogeneity contributes to their 
various therapeutic effects (186), However, clonogenic MSC 
subpopulations have been studied, showing that a CD73+/
CD39+ human synovial MSCs subset displayed greater 
chondro-osteogenic potency (187). 

Low engraftment rate, disadvantage or advantage?

Although the fate of MSCs after clinical infusion is not 
fully understood, MSCs have a relatively short life in 
the recipient and engraftment rates are low. To improve 
therapeutic efficacy, should we focus on increasing 
engraftment rates or improving MSC quality? In wound 
repair studies, although MSC differentiation occurred at 
injury sites, most of the therapeutic effects were attributed 
to soluble factors released by the administered cells which 
regulate local cellular responses to cutaneous injury (188). 
It was also observed in a clinical study that there was no 
correlation between MSC engraftment and treatment 
response, with MSCs appearing to mediate their function 
through a “hit and run” mechanism. Fortunately, the lack 
of sustained engraftment limits the long-term risks of 
malignant transformation and ectopic tissue formation 
during MSC therapy (189). 
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It remains to be established whether MSCs can 
differentiate into disc NP cells, with their precise phenotype 
and chondrocytic markers. Current evidence regarding 
MSC therapy for IVD repair is from small animal studies 
which may not resemble human disc degeneration. 

Summary 

MSC therapy for disc repair has made significant 
progress over the last several years with regards to further 
understanding of stem cell biology and the different 
applications of MSCs for the treatment of low back pain. 
MSCs have been reported to be effective in vitro for 
the differentiation of disc like cells. In addition, in vivo 
transplantation of MSCs has been shown to have regenerative 
potential in several animal models for disc degeneration. 
Overall, the recent advances in MSC therapies suggest a 
promising future for such therapies in disc repair.

Notably it has been suggested that injection of 
chondrocytes into the NP resulted in the formation 
of hyaline cartilage but not a gelatinous matrix (190), 
emphasizing that the direction of the MSCs towards NP 
cell fates is essential for effective disc repair. Moreover, the 
disc has unique anatomical characteristics and biological 
properties and much remains unknown about the molecular 
mechanisms and interactions in the degenerated disc, as 
well as the mechanisms of action behind the therapeutic 
effects of MSCs. In this regard, it may be beneficial for 
more efforts to focus on further investigating the survival 
of transplanted cells in the damaged disc niche, the 
molecular regulators and signalling pathways controlling 
proliferation and cell fates following transplantation, and 
the appropriate integration of the transplanted cells within 
their surrounding microenvironment

Although the current clinical literature involves only 
small sample sizes, phase-1 clinical trails of MSC therapy 
for low pack pain have provided certain positive outcomes 
for disc repair. These cases are valuable studies for creating 
a foundation to direct future experimental and clinical 
investigations. Importantly, safety remains one of the 
main concerns, particularly in view of the necessary 
in vitro manipulation of MSCs, such as for cell expansion. 
Thus, before any clinical application can be recommended, 
improved knowledge from basic studies and large scale 
randomized trials with controlled implementation will be 
necessary to determine the true safety and efficacy of cell 
therapies in IVD regeneration.
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