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Introduction

Cancer in children is rare with an incidence of 140-155 per 
million per year (age <15 years) (1,2) (Table 1). This translates 
to ~1 in 7,000 children is diagnosed with cancer each year. 
For the 15 to 19 years age group, the incidence is 210 per 
million with a different distribution of cancer diagnosis. 
Despite the rarity of cancer, malignant neoplasm is the most 
common cause of death after accidents in children aged 5 to 
14 years, accounting for 23% of mortality (7).

The introduction of chemotherapy in the 1960s has 
allowed the use of multi-modality approach, i.e., in 
conjunction with surgery and radiation, in the treatment of 
cancer. As a result, survival from childhood cancers, many of 
which was fatal in the pre-chemotherapy era, has increased 
dramatically from 20-30% in the 1960s (8) to 62% in the 
1970s (mortality of 4.5/100,000) (3,9) (Tables 1 and 2). 
The current mortality is 2.6/100,000 and survival is 83%, 
meaning modern medicine can cure four out of five children 
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with cancer. This is the end result of the tremendous effort 
dedicated to pediatric cancer research in the last 50 years.

One of the challenges of pediatric cancer research is the 
small disease population, comparing with adult cancer that 

is 40 times more frequent. To overcome this obstacle, multi-
center clinical trials are essential to generate statistically 
meaningful results. For example, the Children Oncology 
Group (COG) represents the world’s largest organization 

Table 1 Frequency, incidence, and survival of childhood cancer

Diagnosisa 
Frequencyb  

(% of all cancer)

Incidencec  

per million

Peak age 

(incidence  

per million)

5-year survival (%)d

Year of diagnosis

1975-1979 1992-1996 2002-2006

Age 0-14 years

All cancers 100 155 62 79 83

Acute lymphoblastic leukemia (Ib) 25.8 40.0 2-3 (95.3) 63 86 90

Acute myeloid leukemia (IIb) 5.1 7.8 0-1 (19.4) 24 50 69

Non-Hodgkin lymphoma (IIb/c) 5.8 9.0 12-14 (10.5) 50 82 89

Hodgkin lymphoma (IIa) 3.7 5.8 13-14 (16.7) 84 94 97

Central nervous system (III) 21.0 32.8 1-4 (41.8) 60 71 73

Medulloblastoma (IIIc.1) 2.8 4.5 1-7 (5.9) 50 63 70

Low grade gliomae ~8.4 ~13.1 87 92 94

Neuroblastoma (IVa) 6.7 10.2 0-1 (42.7) 50 70 76

<1 year 2.2 86 90 91

1-14 years 4.4 37 57 69

Ewings’ sarcoma (VIIIc, IXd.1/d.2) 2.0 3.1 12-14 (5.5) 53 74 76

Osteosarcoma (VIIIa) 2.6 4.0 13-14 (9.3) 42 71 72

Rhabdomyosarcoma (IXa) 3.4 5.3 1-5 (7.6) 55 73 68

Wilm’s tumor (VIa.1) 4.6 7.2 1-3 (19.1) 77 93 91

Age 15-19 years

All cancers 100 211 – 70 79 83

Acute lymphoblastic leukemia (Ib) 8.3 17.5 – 34 57 70

Acute myeloid leukemia (IIb) 4.6 9.6 – 23 40 52

Non-Hodgkin lymphoma (IIb/c) 8.2 17.4 – 47 77 80

Hodgkin lymphoma (IIa) 14.4 30.3 – 91 95 96

Central nervous system (III) 9.6 20.3 – 61 76 77

Medulloblastoma (IIIc.1) 0.8 1.6 – na na 71

Low grade gliomae ~3.8 ~8.1 – 73 88 97

Neuroblastoma (IVa) 0.2 0.4 – na na na

Ewings’ sarcoma (VIIIc, IXd.1/d.2) 2.7 5.7 – 24 51 61

Osteosarcoma (VIIIa) 4.0 8.4 – 54 64 62

Rhabdomyosarcoma (IXa) 1.6 3.4 – na 46 48

Wilm’s tumor (VIa.1) 0.1 0.3 – na na na
a, the Roman numerals in parentheses represent the International Classification of Childhood Cancer (ICCC) site recode extended 

ICD-0-3/WHO 2008; b, frequency: SEER 18 registry (3); year of diagnosis: 2001-2010; % of all cancer within the age group; c, age-

adjusted incidence: SEER 18 Registry (1); d, survival: SEER 18 Registry (3); na, not applicable as cohort too small (n<40); e, low grade 

glioma: frequency/incidence based on 40% of all CNS tumor (4-6); survival estimated from astrocytoma (IIIb) and other gliomas (IIId) 

of WHO grade I or II.
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devoted exclusively to childhood cancer research and 
comprises >200 member institutions, majority of which are 
based in the US. However, even with multi-center set up, 
it often takes five years to complete a phase III randomized 
controlled trial (RCT). Furthermore, it takes another six 
years to formally publish mature 5-year survival data (10-12). 
The CCG-1991 study enrolled 3,054 acute lymphoblastic 
leukemia (ALL) patients from 109 institutions between 2000 
and 2005 and detected a <5% difference in survival. Results 
were published in 2011 (10). The HIT-SIOP PNET 4 Trial 
enrolled 340 children with medulloblastoma (MB) from 122 
European centers between 2001 and 2006 and published 
the result in 2012 (12). It often takes over a decade for any 
progress established from clinical trials to become standard 
of care, and this has not taken into consideration the 
preceding ten years expended in preclinical and phase I/II 
studies.

We reviewed eight pediatric malignancies, in which 
significant advances in treatment were made in the last ten 
years, and most importantly are leading to improved standard 
of care. This included four hematologic malignancies and 
four solid tumors, comprising 60% of childhood cancer. 
The progresses were disseminated in published literature in 
the last decade and reflect clinical trials conducted between 
mid-1990 and mid-2000. We also explored ongoing studies 
with attention to trials conducted by COG, which have been 
developed based on knowledge gained in preclinical and 
early clinical studies in the last decade and discussed some of 
the more promising molecular targets for each of the eight 

cancers. Finally, we reviewed seven novel agents that have 
been most frequently pursued in childhood cancers.

Acute lymphoblastic leukemia (ALL)

Childhood leukemia has an incidence of 490 per million, of 
which 80% are ALL making it the commonest childhood 
cancer, peaking at 2 to 3 years old (1). With contemporary 
chemotherapy protocols, 5-year survival approaches 
90% (Table 1). However, infant ALL with MLL/11q23 
rearrangement have s ignif icantly  worse outcome  
(EFS <30%) (13). The following is an overview of the 
recent advances in ALL treatment.

Minimal residual disease (MRD)

The rapidity of clearance of leukemic cells from the bone 
marrow is a strong prognostic factor (14,15) and is best 
evaluated by MRD using quantitative flow cytometry or 
polymerase chain reaction (PCR) assay of immunoglobulin 
and T-cell receptor rearrangements. These techniques are 
sensitive to 1×10–5. After two decades of research, MRD is 
now widely used in risk stratification and provides a validated 
early measure of treatment response. MRD response to 
induction is best measured at day 15 and day 33 for pre-B 
ALL and at day 79 for T-cell ALL (16). Clinical trials 
currently evaluating treatment modifications based on MRD 
include the St Jude TOT XVI, AIEOP-BFM ALL 2009, 
DFCI-05001, COG-ALL0331, ALL-REZ BFM 2002.

Table 2 Cancer deaths by age group

Diagnosisa
0-14 years 15-19 years

Cancer deaths per 100,000b % Cancer deaths per 100,000 %

All cancers 2.6 100 3.5 100

Acute lymphoblastic leukemia (Ia) 0.44 16.9 0.55 15.8

Acute myeloid leukemia (Ib) 0.26 10.1 0.40 11.4

Non-Hodgkin lymphoma (IIb/c) 0.09 3.6 0.28 7.9

Hodgkin lymphoma (IIa) 0.01 0.6 0.08 2.2

Medulloblastoma (IIIc.1) 0.15 5.7 0.05 1.5

Low grade gliomac 0.02 0.8 0.02 0.7

Neuroblastoma (IVa) 0.25 9.7 0.02 0.6

Ewings’ sarcoma (VIIIc, IXd.1/d.2) 0.05 2.1 0.24 6.7
a, the Roman numerals in parentheses represent the International Classification of Childhood Cancer (ICCC) site recode extended 

ICD-0-3/WHO 2008; b, SEER 18 Registry (9); year of death: 2005-2009; c, LGG: astrocytoma (IIIb) and other gliomas (IIId) of WHO 

grade I or II.
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Genome-wide analysis and targeted therapy

The collaborative TARGET research program has 
identified several key aberrations associated with high-risk 
ALL phenotypes, including BCR/ABL1, JAK, MLL, CRLF2 
and IKZF1 (17). JAK kinases activation is present in 10% of 
BCR/ABL1-negative high-risk cases (18). 

One of the best examples of targeted therapy is the 
use of tyrosine kinase inhibitors (TKI) to complement 
chemotherapy in BCR/ABL-positive ALL, which accounts 
for 3% of childhood ALL. Continuous exposure to imatinib 
in an intensive chemotherapy regimen yielded 3-year 
event-free survival (EFS) of 80%, more than twice that of 
historical controls (19). Second generation TKIs (dasatinib 
and nilotinib) with more potent BCR/ABL signaling 
suppression can overcome imatinib-resistance (20) and 
are being studied in a number of pediatric ALL studies. A 
COG phase III RCT of FLT inhibition with lestaurtinib 
(TKI) with chemotherapy is currently underway for 
MLL-rearranged infant ALL, which has been shown to 
express high levels of FLT3 mRNA (21) (NCT00557193). 
Lestaurtinib, which has also been shown to inhibit JAK2 
(22,23), may potentially be active in JAK-mutated ALL.

Novel therapies

New formulations of the old armamentarium have been 
developed to improve delivery and reduce toxicities and can 
potentially be used in ALL therapy (Table 3). Continuous 
asparagine depletion has been associated with better EFS 
than intermittent depletion and a lower incidence of CNS 
relapse (28). Pegylated (PEG) asparaginase, approved for 
ALL treatment, has a long half-life and lowers the risk of 
allergic reactions and anti-asparginase antibody formation 
while maintaining efficacy similar to conventional E. coli 

asparaginase (24).
Second generation nucleoside analogues are part of a 

new repertoire of drugs against ALL. Nelarabine shows 
specific anti-leukemic effect in T-cell ALL (29) and is 
currently being evaluated in newly diagnosed (phase III: 
NCT00408005) and refractory T-cell ALL (phase IV: 
NCT00866671). Clofarabine is being studied in both de novo 
and recurrent disease (NCT00372619, NCT01228331). 
Furthermore, the Interfant-06 Study Group is conducting 
a RCT (NCT00550992) investigating the novel addition 
of AML-type therapy during intensification for MLL-
rearranged infant ALL.

CNS-directed treatment

Intensification of systemic and intrathecal chemotherapy 
abrogates the need for prophylactic cranial irradiation 
without compromising survival (30,31). This removes the 
long-term side effects of radiotherapy-induced secondary 
malignancies and neurocognitive harm. The isolated CNS 
relapse rates were <3%. Risk factors for CNS relapse 
included t(1;19)/TCF3-PBX1, CNS involvement at 
diagnosis and T-cell immunophenotype.

Immunotherapy

Monoclonal antibodies are designed to potentiate chemotherapy, 
particularly in the setting of relapsed leukemia (32,33). 
This includes rituximab (anti-CD20), alemtuzumab (anti-
CD52), epratuzumab (anti-CD22), inotuzumab ozogamicin 
(anti-CD22) for B-cell ALL. Blinatumomab (CD19/CD3-
bispecific antibody) are particularly promising for T-cell 
ALL (34). Chimeric antigen receptor T cell (CAR-T cell) 
is an investigational novel approach to relapsed/refractory 
leukemia. Autologous T cells, which are genetically 
modified ex vivo to express a chimeric receptor that 
recognizes a surface antigen on the patient’s own tumor 
cells, home to the disease sites and persist with time (35). 
CD19-specific CAR-T cell therapy has been used with 
success in adult relapsed CLL (36) and has recently been 
used in two children with refractory ALL, albeit with 
toxicities (37). Killer-cell immunoglobulin-like receptor 
(KIR)—mismatch natural killer cell therapy is also another 
novel approach (38,39).

Acute myeloid leukemia (AML)

AML represents 5% of childhood malignancy and 20% of 

Table 3 New drug formulations for ALL therapy

Drug Benefits

Pegylated asparaginase Long half-life, reduced 

immunogenicity (24)

Liposomal daunorubicin Decreased cardiotoxicity (25)

Liposomal annamycin Decreased cardiotoxicity 

(NCT00430443)

Sphingosomal 

vincristine

Decreased neuropathy, high tissue 

concentration, non-vesicant (26)

Liposomal cytarabine Long half-life (27) (NCT00002704, 

NCT00991744)
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childhood leukemia. While cure of childhood AML has 
tripled since the 1970’s, current survival of 70% makes it 
one of the less curable cancers in children. Chemotherapy 
intensification, response-directed therapy and better 
supportive care including routine anti-fungal prophylaxis 
have improved survival by 15% in the last decade, a 
substantial progress compared to other childhood cancers 
(Table 1).

AML can be categorized into three genetically defined 
prognostic groups (40). Favorable risk comprises acute 
promyelocytic leukemia (APL), myeloid leukemias of Down 
Syndrome (MLDS), core binding factor (CBF) AML with 
t(8;21) and inv (16), and AML with NPM1 and CEBPA 
mutations. APL is characterized by t(15;17)/PML-RARA 
and its unique sensitivity to all-trans-retinoic acid (ATRA) 
and arsenic trioxide, both of which target the PML-RARA 
fusion protein (41). Children with Down syndrome (DS) 
(Trisomy 21) have a 20-times increased risk of developing 
leukemia and are particularly susceptible to chemotherapy 
and treatment-related complications (42). High risk 
aberrations include monosomy 5 and 7, some 11q23/MLL 
rearrangements and FLT3/ITD. Intermediate risk is neither 
favorable nor high risk. CBF, APL and MLL represent 50% 
of pediatric AML.

MLL-rearranged pediatric AML generally has an unfavourable 
outcome [overall 5-year EFS 44%; overall survival (OS) 
56%] (43). However, it is a heterogeneous disease with the 
MLL gene having over 60 different translocation partners 
(44) and 5-year EFS ranging from 11% to 92% for different 
translocation partners (43). t(9;11)(p22;q23)/MLL-AF9 is 
the most common rearrangement (50%) and has a 5-year 
EFS of 50%. The 3% of patients with t(1;11)(q21;q23)/
MLL-AF1q have the best outcome (5-year EFS 93%). In 
contrast, t(6;11)(q27;q23)/MLL-AF6 (5% of cases) has the 
lowest survival (5-year EFS 11%) (43,45).

Internal tandem duplication (ITD) of the receptor 
tyrosine kinase FLT3 results in activating mutations. 
FLT3-ITD-positive patients have significantly inferior 
progression-free survival (PFS) than FLT wild-type 
patients (4-year PFS 31% vs. 55%; P<0.001) (46). However, 
prognosis is influenced by ITD allelic ratio (AR) (mutant 
to wild-type ratio) and NPM1 status. Patients with high 
ITD-AR (>0.4) were reported to have significantly worse 
outcome than those with low AR (PFS 16% vs. 72%) (46). 
In contrast, NPM1 mutations were found to improve 
survival of patients with FLT-ITD. In the UK MRC AML 
10 and 12 trials, young adults who were FLT-ITD-positive 

had significantly better outcome when concurrent NMP1 
mutations were present (5-year DFS 31% vs. 15%) (47).

Advances in AML treatment in the last decade include:
• In APL, addit ion of  ATRA to anthracycl ine 

monotherapy or multi-agent chemotherapy containing 
idarubicin and high-dose cytarabine increased survival 
to 85-90% (48,49). Arsenic trioxide has been shown 
to be very effective when incorporated into adult 
APL therapy (50,51). COG is currently conducting a 
phase III trial of introducing arsenic to a multi-agent 
regimen containing ATRA, idarubicin, and cytarabine 
in newly diagnosed APL (NCT00866918) (52);

• Reducing chemotherapy intensity did not compromise 
outcome in MLDS with EFS ranging from 79 to 83% 
and OS 84 to 91% in three different studies (53-55);

• Risk-adapted therapy utilizing cytogenetic risk 
stratification improved outcome, yielding EFS from 
56 to 61% and OS from 66 to 75% in a number of 
large studies (56-59);

• MRD-positivity by flow cytometry after first course of 
chemotherapy predicts survival. Relapse-free survival 
(RFS) was found to be significantly worse in MRD-
positive (RFS 14-43%) than in MRD-negative patients 
(RFS 65-85%) in three large studies (57,60,61). AML 
trials evaluating response-guided therapy based on 
MRD include NOPHO-DBH AML 2012 (NCT 
1828489) and COG-AAML-1031 (NCT01371981).

Molecular target

FLT3-ITD reported in 10% of pediatric AML (40) is a 
candidate for targeted therapy with TKI. In a phase I study, 
sorafenib (multikinase inhibitor) in combination with 
clofarabine and cytarabine induced complete remission 
in relapsed AML patients with FLT3-ITD (62). In a 
current COG phase III trial for newly diagnosed AML 
(NCT01371981), FLT3-ITD-positive patients receive 
sorafenib.

Targeting CD33 using gemtuzumab ozogamicin (GO) 
(Mylotarg®), a calicheamicin-conjugated CD33 antibody, 
has promising activity in AML. In pediatric AML, GO 
induced complete remission in 35% of refractory disease 
(63,64) and was safe in de novo AML when combined with 
chemotherapy (65). In adults, GO improved survival in 
newly diagnosed AML in some but not all large studies 
(65-70). Pediatric trials of GO in de novo AML are ongoing 
(NCT00372593, NCT00476541).
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Non-Hodgkin lymphoma (NHL)

NHL constitutes 6% of childhood cancer and is most 
common in the second decade of life. NHL can be 
classified according to phenotype (B-cell vs. T-cell) and 
differentiation (71). Unlike adults NHL that is generally 
low/intermediate grade, pediatric NHL is frequently high 
grade. It falls into three categories: (I) mature B-cell NHL 
including Burkitt/Burkitt-like lymphoma and diffuse large 
B-cell lymphoma (DLBCL); (II) lymphoblastic lymphoma 
(LL) (mostly precursor T-cell); and (III) anaplastic large 
cell lymphoma (ALCL) (mature T-cell or null-cell). Burkitt 
lymphoma (BL) is most common, accounting for one-third 
of pediatric NHL.

Currently, cure from childhood NHL is 90%. The steady 
increase in survival over the last 40 years was due to the initial 
recognition that LL was best treated with two years of ALL 
therapy (72,73) and later on due to increasingly effective risk-
stratified therapies evolving from large multi-centre clinical 
trials including BFM-NHL90 (74), NHL-BFM95 (75) and 
FAB/LMB96 (76-78). Survival is excellent for low-stage LL 
(>90%) (74), BL (>85%) and DLBCL (90%) (79). However, 
survival is inferior for BL with CNS involvement (75%) (76), 
primary mediastinal B-cell lymphoma in DLBCL (73%) (80) 
and ALCL (70-85%) (81,82).

Advances in the treatment of childhood NHL include:
• Reducing multi-agent chemotherapy to only two 

courses and omitting intrathecal chemotherapy 
while maintaining an excellent cure rate of 99% in 
completely resected localized BL (75,77);

• Reducing treatment in early responding patients with 
intermediate-risk B-NHL (78);

• Use of multi-agent chemotherapy tailored to disease 
burden and initial response in B-NHL (79);

• Substituting cranial irradiation with high-dose 
methotrexate for CNS prophylaxis that is essential for 
T-cell LL, thus avoiding the long-term side-effects of 
cranial irradiation (83-85).

Molecular therapy

BL and DLBCL, both mature B-cell phenotype, express 
high levels of CD20. Rituximab (CD20 antibody) in 
combination with chemotherapy improved survival in 
adult DLBCL (86). It is an approved drug for the 
treatment of DLBCL. In pediatric BL, rituximab has 
activity as a single agent (87) and can be safely combined 
with chemotherapy (88). Based on these studies, an 

international collaborative study INT-B-NHL ritux 2010 
(NCT01516580) is currently evaluating rituximab with 
chemotherapy for high-risk BL and DLBCL in children.

Rituximab may also be useful as a second-line therapy 
in post-transplant lymphoproliferative disorder (PTLD) 
or BL secondary to Epstein-Barr virus reactivation 
with immunosuppression after solid organ or stem cell 
transplantation. The benefit of rituximab with low dose 
chemotherapy has been described in a small number of 
pediatric refractory PTLD (89,90).

Advanced-stage disease is common in ALCL and has 
less favourable outcome. ALCL expresses CD30 and 
frequently harbors the t(2;5)/NPM-ALK aberration. 
Brentuximab vedotin (Bv) (SGN-35, Adcetris®), an 
antibody-drug conjugate of chimeric CD30 antibody and 
monomethylauristatin E, resulted in an objective response 
of 86% and complete remission of 57% in an adult phase 
II trial of relapsed systemic ALCL (91). Crizotinib (ALK 
inhibitor) elicited response in eight of nine ALCL in a phase 
I pediatric study (92). COG is currently conducting a phase 
I study of crizotinib in combination with chemotherapy for 
relapsed ALCL (NCT01606878) and a phase II trial where 
newly diagnosed ALCL patients are randomized to either 
crizotinib or Bv with chemotherapy (NCT01979536).

Hodgkin lymphoma (HL)

HL is the most common cancer in the 15 to 19 years age 
group and is four to five times more frequent than in 
the <15 years age group. It is characterized by the Reed-
Sternberg multinucleated giant cell or its variants and 
histologic subtypes are defined by the number of Reed-
Sternberg cells, characteristic inflammatory milieu and 
degree of fibrosis. HL is categorized into classical and 
nodular lymphocyte predominant HL. 

HL was fatal until the 1960s when the MOPP nitrogen 
mustard containing chemotherapy regimen was introduced (93). 
The cure rate of HL in children has been >90% in the 
last two decades and is one of the most curable childhood 
cancers. Unfortunately, survivors of childhood HL are at 
significant risk of long-term treatment-related morbidity 
and mortality. In a study of ~2,700 childhood HL survivor, 
23% of deaths were from secondary malignant neoplasms 
and 14% from cerebrovascular and heart disease. The 
30-year cumulative incidence of secondary malignant 
neoplasms was significantly higher in females than in males 
(26% vs. 11%) due to the high incidence of invasive breast 
cancer in female survivors treated with radiation (94). 
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Hence, to reduce long-term side effects while maintaining 
excellent survival, pediatric oncologists have adopted a 
risk-adapted approach for HL and attempted to reduce or 
omit radiation. However, risk assignment and definition 
of response has not been uniform in clinical trials and has 
made comparison of outcomes across trials challenging. 
Study results should therefore be interpreted in the context 
of risk stratification strategy and chemotherapy regimen, as 
well as response criteria and timing.

Advances in the treatment of pediatric HL in the last 
decade include (Table 4):

• Reduction in chemotherapy exposure in patients who 
are in complete response (CR) after two cycles of 
chemotherapy, referred to as rapid early responder 
(RER) (95,96);

• Omission of involved-field radiation therapy (IFRT) 
in low-risk RER (97-99);

• modification of chemotherapy in RER according to 

gender, based on the principle that less gonadal toxic 
alkylating therapy in males would reduce the risk of 
infertility and avoiding IFRT in female would reduce 
the risk of breast cancer (99,100).

The rapidity of early response is prognostic in HL 
(96,97,99). Positron emission tomography (PET) has been 
evaluated as an interim imaging modality in adult HL and 
was more superior than other response assessments (101). 
COG has recently completed four HL trials treating ~2,400 
patients of different risks while addressing the utility of 
PET. Mature results are yet to be published. There are 
also ongoing clinical trials in North America and Europe 
addressing the utility of PET for rapid early response 
and the omission of IFRT in RER [NCT01858922, 
NCT00846742, 2006-000995-33 (102)]. All these trials 
should provide valuable data on the value of PET to 
predict outcome and whether EFS can be maintained after 
adjusting therapy based on early PET response.

Table 4 Clinical trials in Hodgkin lymphoma using risk-adapted and response approach

Study Risk Chemotherapy Intervention IFRT Outcome

Reducing chemotherapy in RER maintained survival

P9426 (95) Low ABVE RER: 2 cycles; non-RER: 

4 cycles

Yes RER (n=112) vs. non-RER (n=135); 

8-year EFS 87% vs. 85%

P9425 (96) Intermediate 

& high

ABVE-PC RER: 3 cycles; non-RER: 

5 cycles

Yes RER (n=132) vs. non-RER (n=84); 

8-year EFS 86% vs. 83%

Omitting IFRT in RER did not compromise survival

HOD99 (97) Low VAMP ×4 RER—no IFRT;  

non-RER—IFRT

+/– RER (n=47) vs. non-RER (n=41);

2-year EFS 89% vs. 92%

GPOH-HD95 

(98)

Low OPPA ×2 (F); OEPA ×2 

(M)

RER—no IFRT;  

non-RER—IFRT

+/– RER (n=273) vs. non-RER (n=56);  

10-year PFS 97% vs. 92%

GPOH-

HD2002 (99)

Low OPPA ×2 (F); OEPA ×2 

(M)

RER—no IFRT;  

non-RER—IFRT

+/– RER (n=62) vs. non-RER (n=126);  

5-year EFS 93% vs. 92%

Modification based on gender and response

GPOH-

HD2002 (99)

Intermediate 

& high

OPPA-COPP (F); OEPA-

COPDAC (M)

Procarbazine replaced 

with dacarbazine & 

etopside in male

Yes Male (n=183) vs. female (n=195); 

5-year EFS 90% vs. 85%

C5942 (100) High RER (F): BEACOPP-COP/ABV (8 cycles); RER 

(M): BEACOPP-ABVD (6 cycles)/IFRT; non-RER: 

BEACOPP ×8/IFRT 

F: +/–; 

M: +

5-year EFS 94% (n=98)

RER, rapid early responder after two cycles of chemotherapy; F, female; M, male; IFRT, involved field radiation therapy; ABVE 

(doxorubicin, bleomycin, vincristine, etoposide); ABVE-PC (prednisone and cyclophosphamide); VAMP (vinblastine, doxorubicin, 

methotrexate, prednisone); OPPA (vincristine, procarbazine, prednisone, doxorubicin); OEPA (vincristine, etoposide, prednisone, 

doxorubicin); OEPA-COPDAC (cyclophosphamide, vincristine, prednisone, dacarbazine); OPPA-COPP (cyclophosphamide, 

vincristine, prednisone, procarbazine); BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, 

procarbazine, prednisone).
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Molecular therapy targeting CD30 expressed by the 
Hodgkin/Reed-Sternberg cells may be effective in classical 
HL. In addition to ALCL, Bv is currently being studied 
in a number of phase I and II trials for pediatric relapsed 
HL (NCT01780662, NCT01393717, NCT01492088, 
NCT01508312) and in newly diagnosed unfavourable risk 
HL patients (NCT01920932).

Medulloblastoma (MB)

MB is a malignant embryonal neuroectodermal tumor in 
the cerebellum and comprises 15% of childhood brain 
tumors. Clinical staging stratified MB into standard (60%) 
and high-risk (40%) (metastases, residual volume ≥1.5 cm2, 
large cell/anaplastic histology) (103). Current survival is 
80% in standard-risk (104,105), 70% in high-risk (106-108) 
and 50% in children <3 years with MB (109). Contemporary 
MB therapy includes maximal surgery, adjuvant radiation 
[cranial spinal irradiation (CSI) with posterior fossa boost] 
and chemotherapy. Therapeutic approach in young children 
focuses on delaying or avoiding radiation to minimize the 
detrimental effects on the immature CNS through the use 
of multi-agent chemotherapy.

Advances in the last decade and current clinical trials 
include:

(I) Standard-risk MB and age >3 years:
• Post-radiation adjuvant chemotherapy allowed 

lowering CSI dose from 36 to 23.4 Gy while 
maintaining 5-year EFS at 83% (n=86) (104) and 81% 
(n=379) (105);

• Current COG phase III RCT (NCT00085735) asks 
whether EFS can be maintained with 18 Gy CSI and 
conformal tumor site radiation with concomitant 
chemotherapy.

(II) High-risk MB and age >3 years treated with CSI  
(36-39.6 Gy):

• Chemoradiotherapy using carboplatin and vincristine  
(CV) followed by maintenance chemotherapy in a phase 
I study resulted in 5-year PFS of 71% (n=55) (107);

• Post-operative chemotherapy for eight weeks followed 
by hyperfractionated accelerated radiotherapy +/– 
consolidation with myeloablative chemotherapy 
produced 5-year EFS of 70% (n=33) (106);

• Four courses of post-radiation intensive chemotherapy 
with hemapoietic stem cell support in SJ-MB-96 study 
achieved 5-year EFS of 70% (n=48) (108);

• Current COG phase III RCT (NCT00392327) evaluates 
the addition of carboplatin to chemoradiotherapy and 
isotretinoin to maintenance chemotherapy.

(III) MB in young children:
• Histology is an important prognostic factor. In a 

systematic review of five studies, desmoplastic/nodular 
(DN) or MB with extensive nodularity (n=108) have 
significantly better outcome (8-year EFS 55%; OS 
76%) than classical MB (n=145; 8-year EFS 27%; OS 
42%) in children <5 years (110);

• Thiotepa-based myeloablative therapy eliminated the 
need of CSI in 50% of young children (<3 years) with 
non-metastatic MB. 5-year EFS and OS were 52% 
and 70% (n=21) (111);

• Current COG phase III RCT (NCT00336024) assesses 
the addition of high-dose methotrexate to thiotepa-
based myeloablative therapy in high-risk MB.

(IV) Molecular profiling performed over the last decade 
has allowed segregation of MB into four distinct 
groups: WNT, sonic hedgehog (SHH), Group 3 and 
Group 4 (112-115) (Table 5):

• The WNT tumors, of which only 5% to 10% are 

Table 5 Four distinct molecular/genetic subgroups in medulloblastoma

WNT SHH Group 3 Group 4

Frequency (%) 10 30 25 35

Age (years) >3 <3 and >16 <16 all

Male:female 1:1 1:1 2:1 2:1

Metastatic (%) 5-10 15-20 45 35

Histology Classical Classical; DN (50%) Classical; LCA (35%) Classical

Survival (%) >90 60-80 50 75

Distinct genetic aberrations CTNNB1 PTCH1 MYC amplification

Chromosomal abnormality 6- (~100%) i17q (65%); X- (80% female)

SHH, sonic hedgehog; DN, desmoplastic/nodular; LCA, large cell/anaplasia; WNT, wingless/integrated.
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metastatic, are found in children >3 years with classical 
MB, and have the best prognosis (OS 90%) (116). 
Patients may be candidate for reduced intensity 
therapy;

• The SHH tumors are bimodal in age distribution  
(<3 years and adult) and have intermediate 
prognosis (OS 60-80%). DN MB is exclusive to this 
group (115). Smoothened (SMO) receptor is a target 
for SHH (117) and vismodegib (GDC-0449), a SMO 
inhibitor, is a potential therapeutic (118,119). Phase II 
trials of vismodegib in refractory (NCT01239316) and 
newly diagnosed MB (NCT01878617) are ongoing;

• Group 3 comprises non-WNT and non-SHH tumors 
that are MYC-driven. It has the highest incidence of 
large cell/anaplasia (LCA) histology and metastases 
and the worst survival (50%);

• Group 4 tumors, of which 35% are metastatic, are 
largely classical MB with intermediate outcome (OS 
75%).

Low grade glioma (LGG)

Glioma is a CNS tumor of glial cell origin and can arise 
anywhere within the CNS. It consists of astrocytomas, 
oligodendroglioma and mixed gliomas, and can be classified 
into low grade (WHO grade I and II) and high grade 
(WHO III and IV). LGG, most frequently located in the 
cerebellum, is the most common type of brain tumor (30-
50%) (4-6). Pilocytic (WHO grade 1) and diffuse fibrillary 
astrocytoma (WHO grade 2) are the predominant histology 
in childhood LGG. Children with neurofibromatosis type 1 
(NF1) have a high incidence (20%) of optic pathway LGG 
(OPG) (120) and contributes to 60% of OPG (121). The 
natural history of LGG is not always predictable.

Surgery remains the first-line treatment for LGG and 
is considered curative in areas of the brain amenable to 
complete resection. The 8-year PFS and OS are 90% and 
99% following gross total resection (122). Incomplete 
resection and young age are both poor prognostic factors. 
Partially resected LGG has a10-year EFS of 18% and OS 
of 87% (123). Infants with diencephalic syndrome from 
hypothalamic lesion have the worst outcome (5-year PFS 
11%; 10-year OS 43%) (124). Patients <1 year old have 
EFS of 19%, compared with patients aged >5 years with 
EFS of 64% (123,125). Radiotherapy can provide long-
term control of LGG (123,126), but with significant late 
cognitive and endocrine sequelae (126,127), especially in 
young children who are more prone to the late effects of 

radiation (128). In NF1-associated OPG, the risk of second 
tumor was found to be three times higher in those who 
received radiation (129).

In the last decade, the growing trend to manage unresectable, 
progressive, or recurrent LGG with chemotherapy has 
successfully deferred or avoided radiation in young children. 
The two most widely used chemotherapy regimen are CV 
(130,131) or thioguanine, procarbazine, lomustine and 
vincristine (TPCV) (132,133). In the German study of CV 
(n=213), 32% experienced partial response (PR) and 75% 
did not require subsequent radiation. 10-year PSF and OS 
was 44% and 88%, respectively (123). However, it remains 
unclear whether chemotherapy improves visual outcome in 
OPG (134).

COG conducted a phase III RCT of CV versus TPCV (125). 
Initial response was similar for both groups (1/3 PR, 1/3 
stable disease (SD), 1/3 progressive disease). While 2-year 
EFS was similar at 60% for both regimens, there were 
increasingly more events in the CV group after two years, 
resulting in 5-year EFS of 39% for CV and 52% for TPCV. 
Due to non-proportionality, log rank test for EFS was 
not significant (P=0.1); however, by cure model analysis, 
TPCV was more superior to CV (P=0.007). 5-year OS was 
equivalent (87% vs. 86%). Toxicity profile was different 
with more CNS toxicity for TPCV. Allergic reaction was 
only reported in CV due to carboplatin allergy. CV is 
the regimen of choice for NF1 patients due to potential 
increased risk of second malignancy from alkylating 
agents in TPCV. Other agents that has been tested in 
phase I/II studies for LGG include vinblastine (135,136), 
temozolomide (137) and bevacizumab and irinotecan (138).

Neuroblastoma (NB)

NB, an embryonal tumor of the sympathetic nervous 
system, is the most common extracranial solid tumor in 
children. Majority of NB is found in children younger than 
five years. It is well known for its heterogeneity ranging 
from spontaneous regression, differentiation to benign 
ganglioneuroma to aggressive metastatic disease (139).

NB is risk-stratified based on age, disease stage and 
biologic features (140), with survival >90% for low and 
intermediate risk (141,142) and 50% for high-risk NB (143). 
MYCN amplification is a well-established molecular 
prognostic factor and places patients into the high-risk 
category irrespective of age and stage. A pre-treatment 
risk stratification system (International Neuroblastoma 
Risk Group classification system) was developed in 2008 
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using 13 potential prognostic factors in a cohort of 8,800 
children diagnosed with NB worldwide with an aim to 
facilitate comparison of clinical trials and development of 
international collaborative studies (140). Standard therapy 
for high-risk NB includes intensive chemotherapy, surgery, 
myeloablative chemotherapy with stem cells rescue, 
radiation and biological therapy. Low or intermediate NB is 
managed with surgery with or without chemotherapy, with 
an aim to appropriately minimize therapy.

The following is an overview of advances in NB 
treatment in the last decade (Table 6).

Low and intermediate-risk NB

Surgery alone was found to be adequate in localized resectable 
(stage 1 and 2) NB (142,144). In infants <12 months old with 
resectable tumor (145) or in young infants <6 months old 

with small adrenal mass (146), observation approach at 
diagnosis did not compromise survival while upfront low 
dose chemotherapy without anthracyclines maintained 
excellent outcome in infants with localized unresectable 
tumor (147) .  In  intermediate-r i sk  NB,  reducing 
chemotherapy to four cycles in tumors with favorable 
biologic features did not adversely affect survival (141). 
Furthermore, chromosome 11q loss of heterozygosity 
(LOH) was found to be a poor prognostic factor (140).

High-risk NB

Immunotherapy has provided the best outcome in the 
setting of MRD. GD2 is a disialoganglioside highly 
expressed by NB. Immunotherapy with ch14.18 (chimeric 
antibody against GD2) in conjunction with cytokines and 
isotretinoin was evaluated in a phase III RCT (n=226). In 

Table 6 Progress in neuroblastoma

Discovery Outcome Ref.

Localized NB with normal MYCN

For resectable stage 1 and 2 NB, surgery without 

adjuvant chemotherapy is adequate

Stage 1: 5-yr EFS 93%, OS 99%;  

Stage 2: 5-yr EFS 85%, OS 95%

(142,144)

Infant localized NB with normal MYCN

Observation does not compromise survival in those 

with resectable NB

Infant <12 months old: 3-yr OS 99% (n=93); subsequent 

local or metastatic progression in 30% & 11%. Infant 

<12 months old & small adrenal mass: 3-yr OS 100% 

(n=87); 19% required subsequent surgical intervention

(145,146)

Omission of anthracyclines in upfront chemotherapy does 

not compromise survival in those with unresectable NB

5-yr EFS 90%; OS 99% (n=120); subsequent 

anthracyclines due to inadequate response in 38%

(147)

Intermediate-risk NB

For favorable biology tumor, reducing chemotherapy 

from 8 to 4 cycles maintained excellent survival

Favorable biology tumor (4 cycles): 3-yr EFS 90%; OS 

98% (n=323). Unfavorable biology tumor (8 cycles): 

3-year EFS 83%; OS 93% (n=141)

(141)

High-risk NB

Immunotherapy with ch14.18 (chimeric antibody against 

GD2) provided the best outcome for post-consolidation 

biologic therapy

ch14.18 antibody/GM-CSF/IL-2/ isotretinoin: 2-year 

EFS 66%; OS 86% (n=113). Isotretinoin alone: 2-year 

EFS 46%; OS 75% (n=113) (P=0.01)

(148)

11q loss of heterozygosity (LOH)

Poor prognostic factor in stage 2, 3, and 4s tumors 

without MYCN amplification

<18 months old (stage 2 & 3): 11q LOH, 5-yr EFS 60%; OS 

84% (n=176); normal 11q, 5-yr EFS 83%; OS 98% (n=19). 

≥18 months old (stage 2 & 3): 1q LOH, 5-yr EFS 61%; OS 

73% (n=18); normal 11q, 5-yr EFS 80%; OS 100% (n=49). 

Stage 4s: 11q LOH, EFS 38% ;OS 63% (n=8);  

normal 11q, EFS 87%; OS 97% (n=62)

(140)

IL-2, interleukin-2; OS, overall survival.



166 Saletta et al. Advances in pediatric cancer

© Translational Pediatrics. All rights reserved. Transl Pediatr 2014;3(2):156-182www.thetp.org

patients who have achieved at least a PR after myeloablative 
therapy, immunotherapy was superior to isotretinoin 
alone (2-year EFS 66% vs. 46%, P=0.01; OS 86% vs. 
75%, P=0.02) (148). Immunocytokine therapy using the 
humanized 14.18-IL-2 fusion protein has been tested in 
phase I (149) and II (150) studies in recurrent NB.

Metaiodobenzylguanidine (MIBG) scan is routinely used 
to diagnose NB. Metastatic response assessed by MIBG scan 
was found to predict survival (151,152). A semiquantitative 
MIBG scoring system (Curie score) showed that patients 
with a score >2 after induction therapy had a significantly 
worse outcome than those with scores ≤2 (3-year EFS: 15% 
vs. 44%; P<0.001; n=237) (153).

Targeted radiotherapy

Radiolabeled 131-I-MIBG selectively targets radiation 
to catecholamine-producing NB cells. Phase I studies of 
131-I-MIBG in combination with radiosensitizer (154) or 
with myeloablative therapy and stem cell rescue (155,156) 
has demonstrated efficacy (25-65% response) in refractory 
NB. Studies of 131-I-MIBG followed by myeloablative 
therapy in newly diagnosed NB are ongoing (NCT01175356, 
NCT00798148). 

NB genome

Whole genome sequencing studies have shown paucity 
of somatic mutations in the high-risk NB genome and 
identified ALK and ATRX aberrations in ~20% of high-risk 
NB (157-159). Crizotinib, an ALK inhibitor, is currently 
being evaluated alone or with chemotherapy in recurrent 
NB (NCT00939770, NCT01606878).

Ewing sarcoma (ES)

The incidence of ES is highest in the second decade of 
life. It most commonly presents as an undifferentiated 
bone tumor and less frequently as a soft tissue mass 
(extraosseous ES). The pathognomonic t(11;22)(q24;q12)/
EWS-FLI translocation is also found in peripheral primitive 
neuroectodermal tumor (PNET), a more differentiated 
tumor of bone or soft tissue. These tumors are collectively 
referred to as the ES family of tumors (ESFT) (160).

In addition to surgery +/– radiotherapy for local control, 
doxorubicin-containing chemotherapy regimen is essential 
for effective eradication of micro-metastases in ES (161). 
Improvement in survival of localized disease in the 1990’s 

was attributed to the addition of ifosfamide and etoposide 
(IE) to the standard three drugs [vincristine, doxorubicin, 
cyclophosphamide (VDC)] in the US (162,163). However, 
progress has been marginal in the last 20 years and outcome 
of metastatic ES remains poor. Currently, survival for 
localized and metastatic ES is 80% (164) and <35%, 
respectively (165,166).

For localized ES, one advance of note in the last decade is 
the effective use of “interval compression” of chemotherapy 
(as opposed to dose intensification). The COG AEWS001 
phase III RCT in 587 patients demonstrated 5-year EFS 
of 73% and OS 83% in the intensified arm (alternating 
VDC and IE every two weeks), compared with 5-year EFS 
of 65% and OS 73% in the standard arm (3-week cycle) 
(P=0.048) with no worsening toxicity (164).

Topotecan and irinotecan, both topoisomerase I 
inhibitors, have shown activity in recurrent ES. Response 
was observed in a third of recurrent ES treated with 
topotecan and cyclophosphamide in two prospective studies 
(167,168) and in 60% of patients receiving irinotecan and 
temozolomide in a retrospective study (169). Based on this 
evidence, the current COG phase III RCT (NCT01231906) 
examines the efficacy of adding CVT (cyclophosphamide, 
vincristine, topotecan) to the intensively timed 5-drug 
(VDC/IE) regimen in newly diagnosed localized ES.

Large tumours, pelvic site and poor histologic response 
to induction chemotherapy are known poor prognostic 
factors in localized disease (170,171). The French EW93 
study demonstrated an improved 5-year EFS of 45% in 
a small number of high-risk patients treated with high-
dose busulphan/melphalan and hemapoietic stem cell 
support (172). Furthermore, high-dose chemotherapy may 
be beneficial in the setting of isolated pulmonary metastases, 
which has a better outcome than other types of metastases 
(170,173). Hence, both the recently completed multi-center 
EuroEwing 99 (NCT00020566) study and the current 
EuroEwing 2012 (ISRCTN92192408) (174) phase III RCT 
examine therapy intensification with high-dose busulphan 
and melphalan in patients with isolated lung metastases and 
in those with large (>200 mL volume) or poor histologic 
response (>10% viability) tumors.

Novel targeted therapy is needed for metastatic and 
recurrent ES. Inhibition of insulin growth factor-1 receptor 
(IGF1R) using monoclonal antibody has shown efficacy in 
relapsed ES. Anti-IGF1R antibody that has been studied 
in phase I/II studies included figitumumab (CP-751,871) 
(175,176), ganitumab (AMG-479) (177) and cixutumumab 
(IMC-A12), either alone or with temsirolimus (mTOR 
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inhibitor) (178,179). These studies reported SD and 
response between 25-50%. COG is developing a phase 
II RCT (AEWS1221) to assess the feasibility of adding 
ganitumab to the interval-compressed regimen (180). 

Novel therapeutics in pediatric cancer

Our increased understanding of the molecular basis of 
childhood cancer in the last decade has allowed researcher 
to define molecular targets and evaluate available 
therapeutics that are in clinical development for adult 
cancers. We selected seven novel agents or class of drugs 
that are most frequently studied in clinical trials involving 
childhood cancer. In most instances, the agent has a track 
record in adult oncology and has been subjected to safety 
scrutiny in adult phase I/II trials, in which a maximum 
tolerated dose was established. Tables 7 and 8 provide a 
list of completed and ongoing clinical studies that involve 
pediatric patients. All but one drug have approval from 
the US Food and Drug Administration (FDA) for specific 
cancers; however, none are pediatric cancers.

Bevacizumab (Avastin®)

Vascular endothelial growth factor (VEGF) is a regulator 
of tumor angiogenesis and is a prerequisite for cancer 
growth. Bevacizumab, a humanized anti-VEGF monoclonal 
antibody, sequestrates VEGF (212). Bevacizumab has FDA 
approval for adult malignancies including colorectal, lung 
and prostate cancer (213). In the pediatric population, 
bevacizumab was most effective when combined with 
irinotecan +/– temozolomide (184-186). Numerous Phase II 
clinical trials are ongoing to investigate bevacizumab mostly 
in combination with other agents in a variety of childhood 
malignancies.

Bortezomib (Velcade®)

The ubiquitin-proteasome pathway regulates the stability 
of proteins and deregulated proteolysis has been reported 
in many tumor types. Proteasome inhibition has been 
found to selectively induce pro-apoptotic proteins in 
cancer cells (214). Bortezomib is the first FDA approved 
proteasome inhibitor for the treatment of multiple 
myeloma and mantle cell lymphoma (215,216). Multiple 
preclinical and early clinical trials demonstrated its safety 
and significant anticancer activity towards haematological 
malignancies in both adults (217) and children (190,193). 

Bortezomib is currently being evaluated in a COG phase III 
study in de novo AML and in a phase II study with arsenic in 
APL.

Vorinostat (Zolinza®)

Histone acetylation is a reversible process where histone 
acetyltransferases transfer the acetyl moiety from acetyl co-
enzyme A to a lysine while histone deacetylases (HDACs) 
remove this acetyl groups. HDAC inhibition results in 
accumulation of acetylated proteins and induces growth 
arrest, apoptosis and reactive oxygen species-mediated 
cell death (218). Vorinostat is the first HDAC inhibitor 
approved for advanced cutaneous T-cell lymphoma (219). 
It has also been tested in phase I trials in pediatric solid 
tumors with predominantly disease stabilization (195,196).

Sorafenib (Nexavar®)

It is a multi-kinase inhibitor that targets tyrosine kinases 
VEGFR, PDGFR and FLT3, as well  as the RAF/
MEK/ERK pathway (220). It is currently approved for 
the treatment of metastatic renal cell carcinoma and 
hepatocellular carcinoma (221,222). In pediatric early 
clinical trials, sorafenib combination therapy resulted in 
30% response in solid tumors (187) and 75% response in 
AML (62). Furthermore, next generation TKIs that have 
been developed to provide increased target specificity 
and inhibition have been evaluated in adult clinical 
trials. Pazopanib (223), axitinib (224) and tivozanib (225) 
are potent VEGFR inhibitors whereas quizartinib and 
crenolanib are potent FLT3 inhibitors (226).

Erlotinib (Tarceva®)

Targeting the epidermal growth factor receptor (EGFR) 
is well established in the treatment of a number of adult 
malignancies. Erlotinib, a potent EGFR TKI (227), has 
been approved for the treatment of advanced NSCLC 
and pancreatic cancer (228,229). In early clinical trials 
of erlotinib combined with radiation, prolonged SD was 
observed in pediatric high-grade gliomas (HGG) and 
relapsed/refractory brain tumors (199,200).

Tipifarnib (Zarnestra®)

Farnesylation is necessary for Ras activation, which triggers 
activation of the PI3-kinase/AKT and RAF/MEK/ERK 
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Table 8 Ongoing clinical trials of the seven novel agents

Agent Phase Other agents Tumor type Trial ID

Bevacizumab I Cediranib Solid NCT00458731

I † Everolimus Solid NCT00756340

I/II VCR/IRN/TMZ Solid NCT00786669

I † Sorafenib/CPM Solid/leuk NCT00665990

II Chemo Sarcomas NCT00643565

II † Temsirolimus, vinorelbine/CPM RMS NCT01222715

II CHEMO/RT RMS NCT01871766

II – NF–2 NCT01767792

II – NF–2 NCT01207687

I – NB NCT00450827

I CPM/zoledronic acid NB NCT00885326

II IRN/TMZ NB NCT01114555

II CPM/topotecan ES/NB NCT01492673

III VCR/topotecan/CPM ES NCT00516295

I † Sorafenib, temsirolimus ES/DSRCT NCT01946529

Pilot IRN/TMZ/chemo DSRCT NCT01189643

II Chemo OS NCT00667342

II Chemo GCT NCT00936936

II IRN CNS NCT00381797

II Chemo MB NCT01356290

II Chemo MB NCT01356290

II IRN/TMZ MB/PNET NCT01217437

II TMZ/RT HGG NCT01390948

II Valproic acid/RT HGG NCT00879437

II/III † TMZ/vorinostat/RT HGG NCT01236560

Pilot IRN/TMZ HGG, DIPG NCT00890786

II † Erlotinib/TMZ/RT DIPG NCT01182350

I/II Cetuximab Glioma NCT01884740

II Lapatinib EPM NCT00883688

Bortezomib I IRN NB NCT00644696

II – ALL NCT00873093

II – ALL NCT00440726

II Arsenic APL NCT01950611

III † Sorafenib AML NCT01371981

Vorinostat I/II – Solid NCT01294670

I Isotretinoin MB/PNET NCT00867178

I Isotretinoin NB NCT01208454

I 131-i-MIBG NB NCT01019850

I/II Decitabine ALL NCT01483690

Table 8 (continued)
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pathway, and is implicated in the pathogenesis of solid and 
hematologic malignancies. Tipifarnib (farnesyl transferase 
inhibitor) was shown to have anti-leukemic activity in adult 
phase I/II trials (230,231). There are no ongoing paediatric 
trials of tipifarnib, most likely due to lack of activity as a 
single agent in a number of pediatric studies (207-211).

Mammalian target of rapamycin (mTOR) inhibitors

The mammalian target of rapamycin (mTOR) is a serine/
threonine protein kinase and the PI3-kinase/AKT/mTOR 
pathway plays an important role in the regulation of cell growth, 
proliferation, motility, survival and transcription (232). mTOR 

Table 8 (continued)

Agent Phase Other agents Tumor type Trial ID

Sorafenib I Topotecan Solid NCT01683149

I IRN Solid NCT01518413

II – RMS/kidney liver/thyroid NCT01502410

II – LGG NCT01338857

II Chemo/RT RMS NCT01871766

Erlotinib I Pralatrexate Advanced NCT01532011

I Radiotherapy CNS NCT00360854

I † Sirolimus LGG NCT00901849

II † Sirolimus GCT NCT01962896

III Chemo CNS NCT00602667

mTOR inhibitors: sirolimus (S), 

temsirolimus (T), everolimus (E)

I (S) – ALL NCT01658007

I (S) – Leuk/NHL NCT00068302

I (S) – Solid NCT01331135

I (S) Topotecan Solid NCT01670175

I (S) IRN Solid NCT01282697

II (S) – NF-1 NCT00634270

II (S) Dasatinib, IRN/TMZ NB NCT01467986

I (T) – ALL/NHL NCT01403415

I (T) Etoposide/CPM ALL/NHL NCT01614197

I (T) Perifosine Solid NCT01049841

I (T) Cixutumumab Sarcoma NCT01614795

II (T) IRN/TMZ/ch14.18 NB NCT01767194

I (E) – ALL NCT01523977

I (E) – NF-2 NCT01419639

I(E) – LGG NCT01158651

II (E) – LGG NCT01734512

II (E) – OS NCT01216826

II (E) – Sarcomas NCT01216839

Chemo, chemotherapy; CPM, cyclophosphamide; DIPG, diffuse intrinsic pontine glioma; DSRCT, desmoplastic small round cell 

tumor; EPM, eppendymoma; GCT, germ cell tumor; HGG, high-grade glioma; IRN, irinotecan; leuk, leukemia; NF1, neurofibromatosis 

type-1-related plexiform neurofibroma; NF2, neurofibromatosis type-2-related vestibular schwannomas; OS, osteosarcoma; RMS, 

rhabdomyosarcoma; RT, radiotherapy; TMZ, temozolomide; VCR, vincristine; †, trial involving 2 or more of the 6 novel agents.
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inhibitors include sirolimus (Rapamune®), its analogue 
deforolimus, and its derivates temsirolimus (Torisel®) 
and everolimus (Afinitor®). The latter two are approved 
for the treatment of renal cell carcinoma, subependymal 
giant cell astrocytoma, pancreatic and breast cancer (233). 
There are quite a number of ongoing pediatric phase I/II 
trials of mTOR inhibitors in both hematologic and solid 
malignancies.

Discussion

Advances in research that evolve into improved standard of 
care and outcome in childhood cancer is the result of the 
remarkable effort invested in childhood cancer research. 
The current 5-year OS of 83% in the US (Table 1) (3) and 
79% in Europe (2) represents only a marginal increase 
over a decade. While cancers that already have an excellent 
outcome did not show much improvement, 5-year survival 
of cancers including AML, NB in >1 year, and ALL and 
ES in 15-19 years old has increased by 10% to 20% in the 
last ten years (Table 1). Furthermore, progress in oncology 
is not limited to better survival. Reducing both short and 
long-term treatment-related complications is as important, 
given majority of childhood cancer patients will become 
long-term survivors. This is best achieved by risk-adapted 
therapeutic approach that has been made possible through 
identifying clinical and biologic prognostic factors with 
rigorous research, stratifying patients using these risk 
factors and modifying therapy according to risk group 
assignment. 

Optimizing delivery of conventional therapeutics has 
been the driving force behind continuous improvements 
in pediatric cancer survival in the last 40 years. However, 
the pediatric oncology field acknowledges that further 
escalation of conventional therapy is unlikely going to yield 
improvement in cancers that currently have unacceptably 
low cure rates. This include AML, high-risk ALL and NB, 
high-grade brain tumors, and metastatic bone tumors and 
sarcomas. Advances in medical research technology have 
led to a rapid increase in our understanding of the genetics 
of childhood cancer in the last decade and will continue 
to facilitate identification of molecular targets that can 
potentially be exploited for therapeutic benefits. As we 
move into the era of targeted therapeutics, searching for 
novel agents that target specific genetic lesions in this group 
of poor prognosis cancer becomes both a priority and a 
challenge.

Unlike conventional cytotoxic chemotherapies, the 

premise of effective targeted therapy involves “hitting” 
the intended target resulting in disruption of specific 
signalling pathways. Hence clinical trials will need to focus 
on biologically defined patient subsets, meaning even 
smaller patient population. It will no longer be feasible 
to conduct the standard phase III RCT that requires 
hundreds of patients. The key challenge will be to design 
trials that can clearly delineate the effect of the new agent 
under study. Options include single arm study, of which 
results will be compared with historical control, and phase 
II randomized trial comparing an active but non-curative 
cytotoxic chemotherapeutic regimen with or without the 
new agent. National and international collaborative studies 
will be required to attain sufficient patients and complete 
trials in a timely manner. Furthermore, new endpoints that 
utilize functional imaging or molecular biomarkers can be 
incorporated into clinical trials as a measure of response 
and MRD. However, these endpoints need to be properly 
validated to ensure they accurately reflect clinical benefits.

As we continue into the 21st century, our increased 
understanding of the molecular and genetic basis of 
childhood cancer will facilitate further refinement of 
risk-adapted therapy that utilizes molecular and genetic 
signatures for risk stratification. The ultimate goal is to 
cure childhood cancer with the best quality of long-term 
survivorship.
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