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Introduction

The definition of a rare disease is a disease affecting fewer 
than 2,000 people in Europe (1), while, a disease affecting 
less than 200,000 people is defined as a rare disease in the 
United States. Though the chance that individuals who 
are diagnosed with each rare disease is seemingly low, 
approximately 7,000–8,000 rare diseases are estimated to 
date. The Global Genes Project estimates that 300 million 
people worldwide are affected by a rare disease and eighty 
percent of rare diseases are gene of origin (2). Moreover, 
about fifty percent of those affected by rare diseases are 
in their childhood, thirty percent of who will not survive 
beyond their fifth year old.

The current genomic technological advancement has 
changed the research approaches and clinical strategies 
of rare diseases. In the past few years, the human genome 
project was firstly completed in mapping all the genes in 

human with a cost of almost 3 billion dollars. Then the 
sequencing price significantly dropped with the application 
of the next generation sequencing (NGS). High throughput 
and low cost of genomic sequencing make the further 
insight into genetic diseases in more patients possible. 
However, the percentage of all known rare diseases with the 
pathogenic gene is less than fifty percent (3). One reason 
is that the routine sequencing technology has missed some 
mutations. Hence, it has still been a challenge to develop 
diagnostics, managements and genetic advice for these 
patients in practice. 

This paper aims to provide a review of the third 
generation sequencing (TGS) in genetic diseases. A brief 
review of revolution of the sequencing technology in genetic 
diseases is firstly presented. And then, an overview of the 
TGS approach to the genetic diseases and its clinical effect 
follows. The bioinformatic methods applied to the new 
technology and limitations of the TGS are also discussed. 
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Brief revolution of sequencing technology

Aside from the study of genetic diseases via karyotyping, 
DNA microarrays, FISH or multiples ligation-dependent 
probe amplification (MLPA), the first  generation 
sequencing, including Maxam Gilbert methods and Sanger 
sequencing opened up the new door into the genetic 
diseases since 1977. 

The next generation sequencing (NGS) emerged in 
2004 helped researchers gain deeper understanding about 
the genetic diseases (4). More than 2,400 pathogenic genes 
have been identified (5) and over 150 genetic diseases have 
been identified via the whole exome sequencing (WES) (6). 
Three important centers for Mendelian Genomics (CMGs) 
funded by NIH, including University of Washington, Yale 
University and the Baylor College of Medicine utilized 
the NGS to elucidate many Mendelian disorders (7). In 
short, the NGS has a great impact on de novo mutations in 
rare diseases in recent years. However, many rare diseases 
are still not fully diagnosed by the NGS due to the short-
read methods (~150–300 bp). Structural variants (SVs), 
repetitive elements, extreme guanine-cytosine (GC) content 
or sequences with multiple homologous elements in the 
genome are difficult to be characterized via the NGS, even 
with the use of state-of-the-art bioinformatic algorithms 
(8,9). These drawbacks of the NGS-based investigations of 
human diseases have strongly driven the search for other 
methods to improve the accuracy and reduce diagnosing 
time in genetic diseases. 

The TGS provided by Pacific Biosciences (PacBio) and 
Oxford Nanopore Technologies (ONT) in 2011, is a single 
molecular and real-time sequencing technology (10).The 
PacBio platform adopts single-molecule real-time (SMRT) 
technology (Figure 1). In the DNA library preparation, no 

PCR is required as a closed and circular ssDNA template 
can be replicated automatically. During the sequencing 
process, the fluorescence signals are activated by a laser 
as soon as a labeled dNTPs is incorporated into DNA. 
A camera system then records the color and duration of 
the emitted light in real time in the flow cell equipped 
with zero mode waveguides (ZMVs). The time of the 
base incorporation is longer as the base is modificated. 
Thus, the time called “interpulse duration” can indicate 
the DNA modification event (Figure 2) (11). The SMRT 
technology also allows the direct RNA-sequencing (12). 
The SMRT essentially is still based on sequencing by 
synthesis. Nanopore Sequencing Technology (ONT) 
utilizes nanopore inserted in an electrical resistant 
membrane. A potential is applied across the membrane, 
resulting in a current flowing only through the nanopore 
(Figure 3). The characteristic disruptions in the current can 
be measured, indicating a specific single molecular. In the 
DNA library preparation, a hairpin structure is designed 
to ligate the double DNA strands so that the system can 
read both DNA strands in one continuous read. As dsDNA 
moves through the nanopore, the bound polymerase or 
helicase enzyme can attach the DNA in the pore. During 
sequencing process, a characteristic disruption in the 
electrical current can be measured as the nucleotide passing 
through the nanopore (Figure 4) (13). Then the nucleotide 
can be identified. These features allow the detection of 
hundreds of kilobases in one continuous read. Ultra-long 
reads (ULRs) with above 300 kb reads and some close to  
1 million bp reads can be sequenced in the ONT (14). Also, 
the many pocket-sized sequencers developed by the ONT 
are portable without sophisticated laboratory setup and can 
be transported out of the lab with low cost. For example, 

Figure 1 SMRT sequencing (image adapted from PACIBO website). SMRT, single-molecule real-time. 
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the MinION was transported to Africa for screening Ebola 
and Lassa virus outbreak (15,16). In short, the features of 
the TGS introduced by PacBio and ONT allow for the 
long-read sequencing in real-time with the low alignment 
and mapping errors during library construction.

Comprehensive genetic disease identification

The genetic disease can be understood in molecular level 
rather than that of chromosome owing to the development 
of sequencing technologies. The TGS has not only helped 
to discover more novel genetic diseases (17), but also revised 

Figure 2 A methylated base sequenced by the PacBio; Interpulse duration (dotted arrow in Figure 2A) [image adapted from reference (11)]. 
PacBio, Pacific Biosciences.

Figure 3 Nanopore sequencing and current signals (Image adapted from Oxford Nanopore Technologies website).
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the identification of genetic disease (17).
SV has an important role in genetic disorders (18). SVs 

are defined as mutations affecting more than 50 base pairs. 
The SVs include deletions, insertions, inversions, mobile 
element transpositions, translocations, tandem repeats 
and copy number variants (CNVs) (19). By using SMRT 
sequencing for two haploid human genomes, Huddleston’s 
group pointed out that estimated approximately 89% SVs 
have been missed in the 1,000 Genomes Project (20).  
Although the sophisticated SV genotyping software 
methods were available, the detection of SVs was low 
(30–70%) and the error rates were still high (85%) (21). 
The single molecular and real-time sequencing has shown 
a better capacity to discover the structural-variant events. A 
few SVs related genetic diseases detected through the TGS 
is reviewed in the following part. For example, Aneichyk 
and colleagues studied X-linked Dystonia-Parkinsonism 
(XDP) which is a Mendelian neurodegenerative disease 
and suggested that a SINE-WNTR-Alu (SVA) mediated 
aberrant transcriptional mechanism was associated with 
XDP (22). The precise breakpoints of the deletion in a 
homozygous 7p14.3 were deciphered in the proband with 
Barde-Biedl syndrome (BBS) and carrier parents by long-
read SMRT sequencing (23). The WES yielded only one 
heterozygous causal variants in the patient with glycogen 
storage disease type Ia (GSD-Ia) which is an autosomal 
recessive disease (24), while, a 7.1 kb deletion covering two 
exons in G6PC on the other allele were detected through 
Nanopore long-read whole genome sequencing (WGS) (24). 
Multiple neoplasia and cardiac myxoma with the negative 

NGS results were found in connection with a heterozygous 
2,184 bp deletion of the first coding exon of PRKAR1A (25).  
A complex novel translocation t(X;20)(q11.1;p13) was 
delineated via Nanopore long read sequencing (LRS) 
technology in a balanced reciprocal translocation (BRT) 
case (26). Other congenital diseases associated with 
complex chromothripsis were identified to link to the  
de novo complex SV breakpoints via ONT (27). In addition, 
fine-mapping of dipeptidyl-peptidase 6 gene (DPP6) in an 
autosomal dominant dementia family significantly linked 
to 7q36 was identified via the PromethION sequencing 
platform (Oxford Nanopore Technologies) (28).

Another advantage of the TGS is characterize the 
characterization of complete repeat expansion of genes 
and discriminate pseudogenes. As a typical example, the 
C9ofr72'GGGGCC' (G4C2) repeat expansion associated 
with amyotrophic lateral sclerosis (ALS) and frontotemporal 
dementia (FTD) was validated through Pacific Biosciences 
and Oxford Nanopore Technologies (29). The CGG short 
tandem repeats in fragile X syndrome were detected by 
SMRT sequencing (30). Likely, the familial myoclonic 
epilepsy was connected with a 4.6 kb repeat expansion 
and 12.4 kb deletion in complex repeat regions via SMRT 
(31,32). Additionally, repeat expansions of complex genes, 
such as ATXN10, HTT, SMAD12, TNRC6A and RAPGEF2 
were also validated by SMRT sequencing (33-36). CTG-
repeat expansion was confirmed by SMRT in CRISPR/
Cas9-mediated editing in myotonic dystrophy patient as 
well (37). Other complex and challenging regions of the 
human genome were characterized via the TGS, such as 

Figure 4 A methylated base (red) sequenced by the ONT. [Image adapted from reference (13)]. ONT, Oxford Nanopore Technologies.
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autosomal-dominant polycystic kidney disease (ADPKD). 
Duplicated and high GC content genomic regions as well 
as six pseudogenes of PKD1 gene can lead to ambiguous 
identification of variants via the NGS. However, 94.7% of 
the patients with PKD1 pathogenic variants were identified 
via SMAT by Borras and colleagues (38). A GC-rich 60 
basepair variable number of tandem repeat (VNTR) and 
all variants position of the Mucin-1 gene in autosomal 
dominant tubulointerstitial kidney disease (ADTKD) 
were also determined by SMRT sequencing (39). Another 
example is the primary immunodeficiency-associated gene 
IKBKG. The pseudogene IKBKGP1 can be bypassed by long 
read, single-molecule sequencing which allows the rapid 
and efficient identification of the primary immunodeficiency 
diseases (40). Sanna Gudmundsson and colleagues clarified 
the mechanism of revertant mosaicism through SMRT (41). 
They demonstrated that the dominant negative effects of 
the p.Asp50Asn mutation was reverted by the second-site 
mutations of Cx25-Asp50Asn resulting in the development 
of healthy-looking skin in a patient with ichthyosis-deafness 
(KID) syndrome.

As stated above, the features of the TGS also allows the 
detection of the epigenetic modification in real time. DNA 
modifications have been found in a wide range of living 
organisms, from prokaryotes to eukaryotes. Many existing 
studies have shown that they play important roles in 
development diseases, such as lysosomal storage disorders, 
tumorigenesis, autoinflammatory diseases, imprinting and 
X chromosome inactivation (42-45). The bisulfite Sanger 
sequencing and other next generation sequencing have 
the restriction to read length of only 150–130 bp (46,47). 
Therefore, long-read single-molecule real-time bisulfite 
sequencing (SMRT-BS) developed by Yang and colleagues 
is a technique that combines bisulfite conversion with 
the TGS and allowed the detection of the targeted CpG 
methylation in real time (48). 

Furthermore, LRS allows the detection of full-length 
mRNA transcript in one read. The short-read RNA 
sequencing always leads to inaccurate annotation due to 
computational transcript reconstruction (49). Aneichyk 
and colleagues utilized the long-read RNA-sequencing 
to decipher the TAF1 expression in the X-linked 
dystonia-parkinsonism (XDP) (22). Roeck and colleagues 
demonstrated that the Alzheimer’s disease severity was 
in relation to the varying degrees of nonsense-mediated 
mRNA decay (NMD) and transcript-modifying events (50). 
Twenty-seven genetically unsolved patients with an external 
collagen VI-like dystrophy were found in connection with 

highly recurrent de novo intronic mutation in COL6A1 via 
RNA-sequencing (51).

The combination of the TGS with other technologies, 
such as the NGS or single cell sequencing or target genome 
editing, will also give an insight into the genome and bring 
the new therapies (52). Mimori and colleagues utilized the 
SMRT sequencing and additional short-read data to obtain 
the high-quality and full-length human leukocyte antigen 
alleles reconstruction successfully (53). A study of Hendel A 
and colleagues showed that SMRT sequencing was facilitated 
to quantify the genome editing outcomes after the large 
genes were inserted at the endogenous IL2RG, HBB, and 
CCR5 loci by transcription activator-like effector nucleases 
(TALENs), zinc finger nucleases (ZFNs) or clustered 
regularly interspaced short palindromic repeats (CRISPR/
Cas9 or RNA-guided endonucleases (RGENs) (54).

Clinical effect of the TGS

Importantly,  cl inical  decisions and outcomes can 
be benefited from the TGS applications with more 
complete detection of mutations. For example, de novo  
mutations can occur in the different stage of embryonic 
development. Depending on the different stage of 
postzygot ic  mutat ion dur ing development ,  such 
mutations may lead to somatic or germline mosaicism 
or both (55 ) .  Understanding of  the complex SVs 
guided the genetic counseling and enable a successful 
preimplantation genetic diagnosis in the family (56).  
Maria and colleagues demonstrated that less than 1% of 
the TCOF1 variant c.3156C>T cells were in the paternal 
germ cells in a family with a child suffering Treacher Collins 
syndrome, suggesting the low recurrence risk in offspring (55).  
Similarly, there were 40% of PTPN11 variant c.923A>C 
cells in the paternal germ cells in a family with unsuccessful 
pregnancies, indicating a high recurrence risk of Noonan 
syndrome in offspring (55). Moreover, AGG interruptions 
in females with a FMR1 premutation were detected by long-
read single-molecule sequencing, which was previously 
undetected due to the technical difficulties (57). In short, 
apart from the increasing discovery of novel disease genes, 
the TGS aids the preimplantation genetic counseling. 

Ethics is also important in gene sequencing technology. 
The informed consent, data privacy and return of results 
are three issues demanding attention (58). To date, the 
recommendations of ethical considerations have been 
addressed by the American College of Medical Genetics 
and Genomics (ACMG) (59). Obviously, more ethical issues 
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await the TGS as more discoveries of the novel disease 
genes in clinical practice come up. 

Bioinformatic methods in the TGS

With more discoveries of novel SVs, repeat expansions 
and long noncoding RNAs (IncRNAs) via the TGS, the 

bioinformatic algorithms have to be TGS-specific and more 
user-friendly. The major bioinformatic challenges of the TGS 
is the high sequencing error rate which is 10–15% in the 
PacBio and 5–20% in the ONT. Therefore, the new alignment 
and error correction algorithms are required (Table 1).  
Several studies have offered the relatively new methods to 
correct the sequencing errors in the TGS. The methods 

Table 1 Bioinformatic methods in the TGS

Analysis Methods Platforms Applications

Mapping and alignment MHAP (60) 
Minimap (61) 
DALIGNER 
Canu (62) 
FALCON (62) 
Hinge (63) 
MECAT (64) 
Miniasm (61) 
Spades (65) 
HGAP (66) 
Flye (67)
MARVEL (68) 
LINKS (69) 
npScarf (70) 
RAILLLS 
PBJelly (71) 
Ouiver (66) 
Racon (72) 
BLASR (73) 
BWA-MEM (74) 
GraphMap (75) 
LASMSA (76) 
LAST (77) 
Minimap2 (78) 
NGMLR (74) 
PBHoney (79) 
SMRT-SV (78) 
Sniffles (58) 
FALCON-Unizp (80) 
HapCut2 (81) 
WhatsHap (82) 
SIVM (64) 
NextSV (79) 
NanoSV (83) 
Picky (84)

ONT and PacBio 
ONT and PacBio 
ONT and PacBio 
ONT and PacBio 
PacBio 
PacBio 
ONT and PacBio 
ONT and PacBio 
ONT and PacBio 
PacBio 
PacBio 
ONT and PacBio 
ONT and PacBio 
ONT 
ONT and PacBio 
PacBio 
PacBio 
ONT and PacBio 
PacBio 
ONT and PacBio 
ONT and PacBio 
ONT and PacBio 
ONT and PacBio 
ONT and PacBio 
ONT and PacBio 
PacBio 
PacBio 
ONT and PacBio 
PacBio 
ONT and PacBio 
ONT and PacBio 
PacBio 
PacBio 
ONT 
ONT

De novo mutations and SVs detection

SQANTI (85) 
TAPIS (86) 
ToFU (87) 
BLAT (88) 
Gmap (89)

ONT and PacBio 
PacBio 
PacBio 
ONT 
PacBio

RNA sequencing analysis

Table 1 (continued)
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Table 1 (continued)

Analysis Methods Platforms Applications

BaseMods (11) 
Nanopolish (90) 
SignalAlign (91)

PacBio 
ONT 
ONT

Methylation analysis

Error correction Nanocorr (92) 
MaSuRCA (93) 
PBcR (94) 
Spades (65) 
FALCON-sense (80) 
Pbdagcon (66)

ONT 
PacBio 
PacBio 
PacBio and ONT 
PacBio 
PacBio

De novo mutations and SVs detection

TGS, third generation sequencing; ONT, Oxford Nanopore Technologies; PacBio, Pacific Biosciences; SV, structural variants; SMRT, 
single-molecule real-time.

for alignment and phasing are LAST (77), BLASR (73), 
BWA-MEM (74), GraphMap (75), MECAT (64) and 
minimap2 (78), PBHoney (79), NGMLR (74), Sniffles (74),  
CORGi (83), SIVM (84), SMRT-SV (95), NextSV (96), 
NanoSV (97) and Picky (98) in de novo mutations and 
SVs detection. Regarding the RNA sequencing analysis, 
the available bioinformatic tools include SQANTI (85), 
TAPIS (86), ToFU (87), BLAT (88), Gmap (89). In terms 
of errors correction in sequencing analysis, there are a few 
available methods as well. Hybrid error correction methods 
including Nanocorr, MaSCA, PBcR or Spades utilize short-
read data to correct the error. However, because of biases 
in short-read coverage and repetitive sequence, FALCON-
sense, HGAP, pbCR, Canu or MARVEL is more accurate 
as they are self-error correction methods (99). The other 
technique developed by Jana Ebler and colleagues combined 
the inference of haplotype and genotypes from noisy long 
reads (100). A similar software named as NanoSim is a fast 
and large-scale read simulator to call reads errors in MinION 
platforms (101). A TGS tool developed by Danze Chen’s 
group is a bioinformatic suit to compare isoforms, identify 
alternative splicing pattern and IncRNA (102). Moreover, a 
time and resource effective strategy for completing short read 
assembles has been applied, which enable sufficient analysis 
date to be assembled with the shortest sequencing time (103).

The TGS comes with several limitations (14,43,44). 
First, the DNA library required fresh material or intact 
cells and the protocols for the handing of ultra-long high 
molecular weight DNA require improvements. Second, 
the TGS has the challenges with the higher sequencing 
error rate and systematic error. Third, the cost of the 
TGS still has been higher than that of the NGS ($65–$200 
per Gb in the PacBio and $22–$90 per Gb in the ONT). 

Additionally, because the database systems for interpreting 
complicated SVs are rare, thus the bioinformatic analysis 
are challenging.

Currently, the NGS is still our first choice of diagnosing 
the genetic diseases in clinical settings and the TGS can 
play a complementary role as a result of its limitations. 
However, with the maturation of the TGS approach, it 
will be widely used in researches and clinical practice. In 
the future, the picture of human genome will be more 
comprehensive as the more genomic data generated.
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