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Introduction

Hydrocephalus is a central nervous system disorder 
characterized by excessive accumulation of cerebrospinal fluid 
(CSF) in the ventricles of the brain. Although this disorder is 
common in childhood, hydrocephalus can occur at any age 
and results in significant cognitive and physical handicap. 
A wide variety of disorders including brain tumors, strokes, 
infections and hemorrhage affect the central nervous system 
and can result in hydrocephalus. Hydrocephalus results in 
significant health burden in the developing countries; in the 
United States it is estimated to cost $2 billion annually (1). 
Treatment options for relieving hydrocephalus are primarily 
surgical by insertion of a diverting shunt or by performing 
an endoscopic third ventriculostomy. Both methods have 
drawbacks: shunts fail often despite significant improvements 

in technology (2) and the results of third ventriculostomy 
are not consistent and difficult to predict. Given these risks, 
the patient is guaranteed to a lifetime of monitoring with 
diagnostic tests and more surgery. 

Improvement of the current state of diagnosis and 
treatment of hydrocephalus involves a better understanding 
of the pathophysiology of hydrocephalus. This review will 
begin by examining the circulation theory, additional data 
outside of the scope of circulation theory, data supporting 
the role of osmotic gradients and suggest a potential 
construct to explain how hydrocephalus occurs. 

The concept of circulation theory

Circulation theory states that CSF is actively produced from 
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choroid plexuses in the ventricles and flows from the lateral 
ventricles through the foramen of Monro, the third ventricle, 
aqueduct, the fourth ventricle, and then through the foramen 
of Luschka and Magendie into the subarachnoid space (SAS) 
where it is passively absorbed into cranial venous sinuses into 
the blood (3) (Figure 1). Circulation theory was proposed 
a century ago (4,5) and is based on three key premises (1) 
the active formation or secretion of CSF (2), the passive 
absorption of CSF and (3) unidirectional flow of CSF from 
the place of formation to the place of absorption (3). These 
premises led to the description of CSF circulation as the third 
circulation (after blood and lymphatic circulations) (5-7). 

CSF formation

It is generally assumed that the main production sites of 
CSF are the choroid plexuses (contributing 70-80%) where 
the filtration across the endothelial wall of the capillaries 
and the secretion through choroidal epithelium occur. The 
remaining 20-30% of CSF production arises as a bulk flow 
of the interstitial fluid (also known as the extrachoroidal 

source) likely produced by the ependyma (8-11). Formation 
of CSF is assumed to be an active process independent of 
intracranial pressure and therefore an obstruction of the 
CSF pathways will lead to hydrocephalus (12,13).

CSF circulation

It is believed that flow of CSF results from the pulsatile 
pumping action of the choroid plexuses that is generated 
by the filling and draining of choroid plexuses (14). Each 
pulse within the choroid plexus will force the CSF out of the 
ventricles into the SAS. Additionally, there is some flow of 
the CSF into the spinal SAS, likely with a lower intensity (15). 

CSF absorption

Arachnoid villi inside the dural venous sinuses have been 
generally thought to be the main site of CSF absorption. It 
is believed that CSF is passively absorbed from the cranial 
SAS to the cranial venous blood by means of a hydrostatic 
gradient (16). Initially the villi on the arachnoid granulation 
were described as an open tubular system projecting from 
the granulation tissue into the venous sinus (17,18). The 
ultrastructural studies have not been consistent in support 
of these pressure sensitive openings through the arachnoid 
villi (19,20). 

Therefore, according to circulation theory, hydrocephalus 
is a result of a discrepancy between the amount of CSF 
produced and the amount of CSF absorbed. Any condition 
that results in the blockage of the normal flow of CSF or 
its absorption will result in hydrocephalus. Recently Rekate 
proposed a new definition of hydrocephalus that illustrates 
these concepts: ‘‘Hydrocephalus is an active distension of the 
ventricular system of the brain resulting from the inadequate 
passage of CSF from its point of production within the 
cerebral ventricles to its point of absorption into the systemic 
circulation.’’ (21). Hydrocephalus was classified into six 
different types depending on the site of obstruction: foramen 
of Monro, aqueduct of Sylvius, basal cisterns, arachnoid 
granulations, venous outflow and overproduction by choroid 
plexus papilloma (21). 

What is the supporting data for circulation 
theory?

The rate of formation of CSF has been demonstrated as 
a pressure dependent process and the rate decreases as 
the CSF pressure is increased (22-24). CSF is also formed 

Figure 1 Schematic diagram shows pathways taken by the 
cerebrospinal fluid according to the popular circulation theory. 
Arrows depict the flow of the fluid from the lateral ventricle to the 
superior sagittal sinus. (Reprinted with permission from Rekate 
H. Hydrocephalus in Children. Figure 215-1. In: Winn R. eds. 
Youmans Neurological Surgery, Fifth Edition. Page 3388).
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in the cranial and spinal SAS (extrachoroidal formation) 
(25-27). The theory stating that the choroid plexus is the 
main source of CSF formation is further challenged by the 
observation that volume and composition of CSF does not 
change when choroid plexuses has been removed (28). 

Dandy and Blackfan [1913] were the first to induce 
experimental hydrocephalus by obstructing the aqueduct in 
a dog using a cotton pledget in a capsule (4). The ventricles 
proximal to the occlusion became dilated; however, the 
fourth ventricle did not enlarge. Following this, many 
models of hydrocephalus have been used to study the 
impaired circulation of CSF and assess the efficacy of 
therapeutic measures. Obstructive agents include irritative 
agents such as kaolin, India ink, pantopaque, silastic, 
silicone oil, blood, cotton etc. into the CSF space (29-33). 

All the models tested had pathophysiological mechanisms 
such as inflammation and brain damage (resulting from the 
introduction of a foreign material) in addition to obstruction 
of the CSF pathways. This compounds the analysis of 
causation of hydrocephalus (3). Aqueductal stenosis has 
been associated with hydrocephalus and considered to be 
causative. Aqueductal stenosis has been shown to follow 
the development of hydrocephalus in both animal models 
(34,35) and in humans (36,37). However, there is evidence 
to show that aqueductal stenosis may in fact be the result 
of hydrocephalus, instead of the cause of hydrocephalus. 
First, aqueductal obstruction without induced inflammation 
did not result in dilation of ventricles or even an increase in 
pressure compared to control animals (38). Secondly, there 
is no evidence to pinpoint the exact routes taken by the CSF 
from the choroid plexus in the lateral ventricles through the 
aqueduct. In fact, Fenstermacher showed that 14Csucrose, 
when injected into the lateral ventricles, moves into the 
third ventricle and onto the basal cisterns through the roof 
of the third ventricle before going into the aqueduct (39). 
Moreover, even in the presence of complete blockage of the 
CSF pathways and the aqueducts, nearly a quarter of animal 
models tested did not get hydrocephalus in an experimental 
model using kaolin (40). 

If obstructions in the CSF pathways drive the development 
of hydrocephalus, there should be a corresponding change 
in the transmantle pressure gradients. Transmantle pressure 
gradient is the difference between the intraventricular 
pressure and the pressure in the SASs. This gradient has been 
hypothesized to be the driving force of ventricular dilatation. 
Such a gradient has not been demonstrated in experimental 
animals (41) or in humans (42). 

It was shown by Oresković et al. that CSF formation and 

absorption are in balance at physiological ICPs within the 
isolated lateral ventricles (24). This implies that CSF is 
significantly absorbed inside the ventricles and not just the 
venous sinuses (43-45). CSF is also absorbed from the SAS 
to the lymphatics and this is preserved across the different 
species of mammals (46-51). 

As demonstrated, the CSF circulation theory for the 
development of hydrocephalus is belied by various clinical 
observations and several experimental findings (52-57). 

Why osmotic gradients have a role in the 
pathogenesis?

One of the fundamental assumptions of circulation theory 
is that the brain parenchyma is impermeable to CSF, and 
is therefore incapable of absorbing the CSF accumulating 
within the ventricles. However, the brain parenchyma 
is permeable to water (58). The molecular basis of this 
permeability involves specific ion channels that permit water 
movement with ions as well as aquaporin channels, which 
permit the free movement of water without changing the 
ionic environment (59). Aquaporin channels are membrane 
proteins that have an ion trap and allow movement of 
water without allowing movement of ions. Aquaporin 4 
(AQP4) channels are found in the ependymal cells lining 
the lateral ventricles, and on the end feet of astrocytes. 
These astrocytes, in particular, contact microvessels in the 
periventricular white matter and the subpial region of the 
cerebral cortex (60). The distribution of AQP4 within the 
brain suggests that the aqueous content of CSF may be 
increased or decreased as water moves through the brain 
parenchyma between the ventricles and vascular system. 

Since brain tissue is permeable to water, it implies that 
changes in the concentration of the osmotically active 
chemicals in the ventricular/interstitial fluid results in a 
change in the local osmotic gradient. Any osmotic gradient 
between the ventricular or interstitial CSF and the blood 
should be equilibrated with transport of water between the 
two compartments. Therefore, we will examine the role of 
osmotic gradients in the pathogenesis of hydrocephalus. It 
is well known clinically that osmotic gradients play a role 
in the brain tissues (excluding the ventricular space) in 
normal and abnormal states. For example, in brain edema, 
osmotic diuretics like mannitol are used intravenously to 
draw water away from the extracellular space of the brain. 
Brain swelling can result in conditions where there is 
hyponatremia that permits water movement into the tissues 
of the brain resulting in brain edema (61). 
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Proteins are large macromolecules that are not diffusible 
through the blood brain barrier and therefore contribute 
to larger osmotic content in any fluid compartment. 
Higher protein content in a fluid compartment will change 
the osmotic gradient in favor of water transport into the 
compartment from the blood. Clinically, high protein levels 
in the CSF have been detected in hydrocephalus irrespective 
of radiologic obstruction to the CSF pathways. Higher 
levels of thrombopoietin (62), ferritin (63), chondroitin 
sulfate proteoglycan (64) transforming growth factor beta 1  
(65,66), transforming growth factor beta 2 (65), and 
vascular endothelial growth factor (67) have been found in 
ventricular CSF in patients with hydrocephalus resulting 
from intraventricular hemorrhage. Nerve growth factor (68)  
and S-100 protein (69,70) are found to be elevated in 
patients with hydrocephalus without intraventricular 
hemorrhage. In addition, elevated proteins have been 
found in ventricular CSF in hydrocephalus resulting 
from intracranial schwannomas (71), a few cases of spinal 
schwannomas(72,73), and in about 4% of patients with 
Guillain-Barre’ syndrome (74,75). In a review of potential 
biomarkers for chronic hydrocephalus, Tarnaris et al. 
concluded that tumor necrosis factor, tau protein, lactate, 
sulfatide and neurofilament triple protein are elevated in 
chronic hydrocephalus to make them the most promising 
CSF markers (76). In addition to proteins, increased levels 
of lactate (76,77) and lactic dehydrogenase (LDH) (78) 
have been found in hydrocephalus. Increased levels of ions 
(calcium, magnesium and phosphate) found in congenital 
hydrocephalus correlated with elevated protein levels (79). 
Several of these changes in the composition of CSF in 
hydrocephalus were summarized in a review article by Del 
Bigio (80). 

The importance of the role played by excess macromolecules 
in the ventricles in hydrocephalus is strengthened by 
the relief of hydrocephalus in situations that decrease 
the amount of macromolecules in the CSF. Decreasing 
levels of protein and blood products with removal of CSF 
through an Ommaya ventricular reservoir is associated with 
resolution of hydrocephalus in about 17% of neonates with 
intraventricular hemorrhage (81,82). The elimination 
of blood and blood products decreases the incidence 
of hydrocephalus due to aneurysmal subarachnoid 
hemorrhage (83). The elimination of macromolecules 
results in the relief of hydrocephalus, which may be 
explained by the decrease in the osmotic load and the 
reduction of the macromolecules’ biological effect on the 
brain and CSF secretion.

In addition to the clinical evidence, experimental 
evidence also suggests that osmolality plays a role in the 
genesis of hydrocephalus. Wald et al. found that increasing 
the ventricular fluid osmolality in a perfusate increased the 
volume of CSF produced (84) and increasing the serum 
osmolality decreased CSF production in normal cats (85). 
These experiments led the authors to conclude that CSF 
production is influenced by the osmotic gradient between 
the serum and the ventricular CSF. In other experiments, 
infusion of proteins [FGF-2 (86), thrombin (87)] into the 
lateral ventricles of experimental animals caused dilatation 
of the ventricles. Our laboratory research has demonstrated 
that altering the CSF osmotic gradient by infusing 
hyperosmolar dextran into the cerebral ventricles results 
in hydrocephalus (88) (Figure 2). Further, the severity of 
hydrocephalus is proportional to the increase in the osmotic 
load in the ventricles (89). Other investigators have also 
confirmed the effect of osmotic gradients in the development 
of hydrocephalus (90-92). These results suggest that water 
transport into the ventricles is secondary to the osmotic load 
or the amount of macromolecules in the ventricles.

Further support for the concept of osmotic gradients 
resulting in hydrocephalus comes from experiments 
focusing on the development of ventricles in embryos. 
It is well known that brain ventricles are a highly 
conserved system of cavities that form early during brain 
morphogenesis in vertebrates and are required for normal 
brain function (93). The neural tube is a single cell layer 
tube that is permeable to water. Expansion of this tube 
involves changes in the osmolality of the neural tube fluid. 
Alonso et al., during an investigation of the underlying 
mechanism of neural tube expansion in chick embryos 
found that increasing the neural tube fluid osmolality 
resulted in hydrocephalus (93). In a series of elegantly done 
experiments, Lowery and Sive were able to show that initial 
ventricle expansion occurs independently of circulation and 
is related to cellular proliferation in zebrafish embryos (90). 
Although onset of circulation contributed to continued 
expansion of the ventricles, ventricular expansion occurred 
in silent heart mutant zebrafish embryos that do not have a 
beating heart (90). 

Paravascular and lymphatic pathways involved 
in macromolecular clearance

If osmotic gradients caused by the presence of macromolecules 
in the ventricles result in hydrocephalus, then it is important 
to understand how these macromolecules are cleared from 
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the ventricles. We found that macromolecules infused into 
the ventricles are cleared through the brain parenchyma 
along the perivascular spaces and along the cribriform plate 
into the nose (paper being submitted for publication). These 
findings, that the macromolecules infused into the ventricles or 
intrathecal spaces are distributed in the paravascular pathways, 
are consistent with the results of other authors (94,95). 
These pathways are also termed as the glymphatic pathways 
or system. Rennels et al. infused horseradish peroxidase 
(HRP) into the lateral ventricles and found that there is a 
rapid paravascular influx of HRP-a faster influx than can be 
expected from diffusion (95). They found that decreasing the 
arterial pulsations decreased the movement of HRP through 
these spaces (95). The same group found that this transport 
of HRP through the paravascular pathways was limited by 
focal cerebral edema (96). Zhang et al. (97) injected india ink 
into the cerebral white and gray matter and into the SAS and 
found that the tracer is transported along specific paravascular 

pathways. Further, subarachnoid injection resulted in transport 
of the tracer along the paravascular pathways as well as 
through the lymphatics in the nose. The observation that 
macromolecules or tracers in the ventricles are transported 
along paravascular pathways has been confirmed by observing 
the tracer movement using confocal microscopy (98) and MR 
imaging (99) recently. 

Where do the macromolecules transported through 
the paravascular pathways go? Zhang et al. found that the 
particulate matter that is injected is rapidly and efficiently 
ingested by perivascular cells (97). The authors summarized 
these findings in a review article and highlighted both 
the paravascular and the nasal lymphatic pathways and 
their immunological significance (100). The authors 
proposed that this absorption of the macromolecules by 
immunologically competent cells as an explanation for 
immune mediated CNS disorders. The exact mechanism of 
macromolecular clearance out of the brain is uncertain. 

Figure 2 T2-weighted MRI of animal with hydrocephalus induced by 10 KD dextran. Note the periventricular edema (arrow top row 
last figure from the left) in the corpus callosum and external capsule and the patent cerebral aqueduct (arrow labeled Aq). Note that the 
ventricular enlargement was asymmetric with the larger ventricle on the side of infusion. (Reproduced with permission from Krishnamurthy 
S, Li J, Schultz L, et al. Increased CSF osmolarity reversibly induces hydrocephalus in the normal rat brain. Fluids and Barriers of the CNS 
2012;9:13).
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Venous system plays an important role

Williams has extensively reviewed the significant role 
played by the venous system in the pathogenesis of 
hydrocephalus (101). There are many disease processes that 
can lead to a state of CNS venous insufficiency by causing 
an increase in arterial supply, filtration of fluid into the 
parenchyma or venous pressure. An incomplete list includes 
CNS infection, hypoxia with altitude, carbon monoxide 
poisoning, water intoxication, renal impairment, obesity, 
and anemia (102). Cardiac failure is an infrequent cause of 
hydrocephalus (103). Hydrocephalus can result from the 
compression of the venous channels by single suture or 
multiple suture craniosynostosis (104). Venous hypertension 
from unruptured arteriovenous malformations can result in 
hydrocephalus (105-107). Given the above clinical evidence 
of the relationship between venous insufficiency or venous 
hypertension and hydrocephalus, it is appropriate to state 
that venous drainage is important in the pathophysiology of 
hydrocephalus. 

Summary

Hydrocephalus is a complex condition resulting from a wide 
variety of different disorders. Circulation theory although 

widely accepted to be representative of how hydrocephalus 
develops does not have adequate proof either in clinical 
situations or in experimental setting. There is significant 
evidence that osmotic gradients are responsible for water 
content of the ventricles of the brain just as they are in 
other water permeable organs in the body. Any disorder 
that results in excess macromolecules in the ventricular 
fluid will change the osmotic gradient and result in 
hydrocephalus. Alternatively, we can view hydrocephalus as 
a disorder of macromolecular clearance (Figure 3). Evidence 
points to a paravascular or lymphatic clearance of these 
macromolecules out of the ventricles and the brain into 
the venous system. Although there are clearly some gaps in 
this pathophysiological construct as well, this seems to have 
considerably more support.
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Figure 3 Schematic illustration of the concept of macromolecular transport as it relates to the genesis of hydrocephalus.
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