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Introduction

Aortic stenosis (AS) is a common heart valvular disease 
characterized by progressive valve obstruction and left 
ventricular remodeling (1,2). It’s morbidity in elderlies of 
the western world amounted to 12.4% (3), morbidity of AS 

in juveniles has yet to be reported. It is well known that AS 
is mainly caused by rheumatic fever sequelae, congenital 
aortic valve dysplasia or senile aortic valve calcification. 
Patients can be asymptomatic during the compensatory 
period, and most patients with severe stenosis suffer from 
burnout, dyspnea, angina, dizziness or syncope, and in 
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some cases sudden death. Valvular stenosis causes pressure 
overload of the left ventricle, which in turn triggers a 
prolonged hypertrophic response. Aortic valve replacement 
should be considered over time as the patient transition 
from hypertrophy to heart failure (4). 

Bicuspid aortic valve (BAV) is a common congenital heart 
defect affecting up to 2% of adults today, and potentially 
the main causes of AS (5). BAV complications contain aortic 
regurgitation (13–30%), infective endocarditis (2–5%), 
AS (12–37%), and ascending thoracic aorta dilatation 
(20–50%) (6). BAV is autosomal dominant with incomplete 
penetrance and male predominance (7). Myosin binding 
protein C (Mybpc3) gene sequence and its protein structure 
were first reported back in 1997 (8). Mybpc3 contains 
more than 21,000 bps and 34 coding exomes (9). It is well-
recognized mutations in specific functional domains or 
protein translation modification sites can alter protein 
conformation, protein–ligand binding, or protein–protein 
interaction (10). Mybpc3 is a member of the intracellular 
immunoglobulin superfamily, including 11 domains. The 
current structure and function of Mybpc3 are not fully 
understood. According to the UniProtKB database, seven 
conserved domains are I-set (pfam07679), IG (smart00409), 
IG_like (smart00410), Ig (c11960), I-set (pfam07679), FN3 
(cl00065), and Ig (cl11960). The relationship between the 
location of Mybpc3 mutation and AS/BAV may provide a 
novel perspective of understanding this disorder.

In this study, we studied a BAV family with two affected 
and one unaffected member. Whole exome sequencing 
(WES) was utilized to identify possible disease-causing 
genes or variants. Paired end reading was aligned with 
the GRCh37/hg19 human reference sequence. Through 
comprehensive Clinvar and Genome Analysis Toolkit 
(GATK) analyzing, Binary Alignment/Map (BAM) 
and Variant Call Format (VCF) files were produced. 
An interesting Mybpc3 gene is heterozygous mutation 
(Ala58Val) was identified in an 11-year-old female proband 
with BAV. The proband’s parents were also subjected to 
WES in order to confirm possible disease-causing genes or 
variants. Our results indicate that Mybpc3 mutation may be 
associated with BAV and should be screened in prospective 
clinical practice to encourage early intervention. We 
present the following article in accordance with the MDAR 
reporting checklist. Available at http://dx.doi.org/10.21037/
tp-20-81.

Methods

Clinical presentation

An 11-year-old female proband was admitted for 8 months 
of continuous precordial discomfort. No sign or symptom 
was identified during physical examinations. A 12-lead 
electrocardiogram (ECG) in resting time showed sinus 
arrhythmia, and minor hypertrophy in the left ventricular 
(RV5 =42 mm) (Figure 1A). Biochemical metabolism, 
myocardial enzyme, and cardiac computed tomography 
angiography were also performed and showed normal 
results. Further ultrasound cardiogram indicated and 
recognized that proband suffered from symptoms of BAV 
(Figure 1B,C). Proband’s father was diagnosed with AS. 
Patients who have BAV should be monitored regularly to 
prevent infective endocarditis. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013), and was approved by the Ethics Committee of 
Children’s Hospital of Shanghai Jiaotong University (No. 
2019R002-F01). The patients’ parents provided written 
informed consent for publication.

WES 

DNA libraries of constructs and WES assay were carried 
out according to the manufacturer’s instructions. Briefly, 
a whole-blood genomic DNA extraction kit (Tiangen, 
China) was utilized to isolate genomic DNA, 1 µg DNA 
was used for WES assay. Specific experimental procedures 
and experimental instruments are detailed in previous 
publications (11). 

Sanger sequencing and data analysis

Mybpc3 mutation was confirmed via Sanger sequencing. 
Primers were designed to cover the known mutation sequence. 
Forward primer: 5'- CGGGCAGGAGTGAAGGTG-3' and 
reverse primer: 5'- GCCACAGCAAAGGCAAGAAA-3'. 
PCR products were resolved and purified using QIAquick kit 
(Qiagen, USA), Sanger sequencing was carried out at Suzhou 
Hong Xun Biotechnology Co., Ltd.

Realtime-PCR (RT-PCR) was utilized to detect expression 
of Mybpc3 mRNA, 200 µL of whole-blood sample was 
used to extract RNA according to protocol (PrimeScript™ 
RT Master Mix, takara). Primers were designed before and 
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after the mutation to explore whether the mutation altered 
its expression. Before the mutation forward primer: 5'- 
GGGGAAGAAGCCAGTCTCAG-3' and reverse primer: 
5'- CAGGCCGTACTTGTTGCTG-3'. After the mutation 
forward primer: 5'- TCAAGCTCAGCAGCTCTCAA-3' and 
reverse primer: 5'- CATTTGCCCTTGAACCACTT-3'. 

The data were filtered and analyzed in our previous 
study (11). Briefly, BWA-0.710 software was utilized to 
compare with human genome database (GRCh 37/hg 19). 
Then promising data were filtered and further compared 
with the 1,000 Genomes Project, Exome Variant Server, 
Exome Aggregation Consortium databases, gnomAD, 
Human Gene Mutation Database (HGMD), Clinvar, and 
Online Mendelian Inheritance in Man (OMIM). A series 
of prediction software (Sorts intolerant from tolerant, 
Polyphen-2, Genomic evolutionary rate profiling, and 

Mutation Taster) were utilized to predict mutation effects.

Results

General mutation characteristics 

As Figure 2A,B showed, 94,394 variants were detected 
and these variants were further annotated and filtered by 
Ingenuity Variant Analysis. A total of 91,554 common 
variants were filtered and eliminated taken into account 
their frequencies (Minor Allele Frequency <0.05) according 
to standards of Exome Aggregation Consortium, 1,000 
Genomes Project, Exome Sequencing Project, or gnomAD. 
Thirty variants in 18 genes were determined and identified 
through analysis. Finally, the Mybpc3 mutation was 
detected and selected after rigorous analysis linking Mybpc3 

Figure 1 Twelve-lead electrocardiogram (ECG) and ultrasonic cardiogram in the bicuspid aortic valve (BAV) patient. (A) 12-lead ECG in 
resting time showed sinus arrhythmia, and left ventricular was a little hypertrophy (RV5 =42 mm); (B,C) ultrasonic cardiogram in the BAV 
patient.
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to BAV phenotype (Figure 2B). These rare phenotype-
related variants are now classified following the American 
College of Medical Genetics and Genomics/Association for 
Molecular Pathology guidelines.

A heterozygous mutation of Mybpc3 gene (Ala58Val) 
was first identified in the BAV pedigree from WES results. 
The mutation site c.173C>T is located in exome two of 
Mybcp3. The proband and her father were confirmed to 
be heterozygous carriers of 173 C>T hybridization, and 
her mother was homozygous negative of the mutation as 
showed through Sanger sequencing (Figure 3A,B). The 
expression of Mybpc3 mRNA in the proband and her 
father was reduced in comparison to proband’s mother. 
Furthermore, RT-PCR results exhibited that relative 
Mybpc3 mRNA levels in the proband and her father were 
almost half of proband’s mother (Figure 3C). This result 
also indicates that p. Ala58Val alter Mybpc3 expression, 
may play crucial roles for heritable BAV. Importantly, this 
mutation (c.173C>T) is located in the conserved region 
of Mybpc3 (Figure 3D), indicating this mutation may 
affect Mybpc3’s protein function. Western blot results 
also exhibited that relative Mybpc3 protein levels in the 
proband and her father were almost half of proband’s 
mother (Figure 3E).

Mutation analysis

In order to further explore the possibility of Mybpc3 
mutation (p.Ala58Val) having functional effects of the 
diseases occurrence, the structure of mutant Mybpc3 protein 
was compared to a wild type of Mybpc3 (Figure 4A,B). In 
this study, Mybpc3 heterozygous variant p.Ala58Val was 
located in the I-set domain (Figure 4C). Light blue indicates 
myosin. Light green indicates F-actin, C0 domain and 
C1–C2 domain participate in the interaction of S2 and S1 
structures of myosin, forming muscle contraction, and C0 
domain is also responsible for in combination with F-actin 
(Figure 4D). According to prediction, the mutation site 
plays a critical role in the proper folding of Mybpc3 protein 
structure. The probable mutation effect may be one of the 
possible causes leading for heritable BAV.  

Discussion

In this study, clinical phenotype and genotype of a mutated 
BAV pedigree were collected and analyzed to investigate a 
potential disease-causing variant. Three interesting findings 
are as follows: (I) Ala58Val heterozygous mutation of 
Mybpc3 is first reported in this BAV pedigree; (II) Protein 

Figure 2 Family pedigree and the filtering process for WES data. (A) The family pedigree consists of two probands. I-1 represents the 
proband’s mother, I-2 represents the proband’s father; II-1 represents the proband; (B) The filtering process for WES data. It contains 
94,394 total coding variants. Then filtered 2,840 common variants, 801 deleterious variations, 18 genetic analysis, final 1 associated with this 
phenotype variation.
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Figure 3 The Mybpc3 mutation site and its expression. (A) Human Mybpc3 gene maps to chromosome 11p11.2 and contains 34 exomes. 
The base pair mutation site is c.173C>T, which is located in the second exome of Mybcp3. (B) The proband and her father were confirmed 
to be heterozygous carriers of 173 C>T hybridization, and her mother was homozygous negative of the mutation as showed through Sanger 
sequencing. (C) Relative Mybpc3 mRNA levels before and after the mutation. (D) C. 173C>T mutation is in a highly conservative area of 
cross-species. (E) Mybpc3 protein levels in the proband and her father were almost half of proband’s mother.
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modeling assay indicates that this mutation could reduce 
Mybpc3 protein stability; (III) The proband and her father’s 
Mybpc3 mRNA and protein levels in whole blood were 
only half of proband’s mother. Indicating that the Mybpc3 
(p.Ala58Val) mutation affects Mybpc3 expression, which 
may play a crucial role for heritable BAV.

It is well recognized that extensive heterogeneity of BAV 
were due to a combination of genetic, and hemodynamic 
factors that serve as phenotype modulators. Nine possible 
BAV genes (NOTCH1, EGFR, AXIN1, GATA5, ENG, 
PDIA2, NOS3, TGFBR2, and NKX2-5) were employed 
in forty-eight BAV patients to detect pathogenic variants 
in AXIN1 (12-14), ENG (13), GATA5 (15-18), NOTCH1 
(16-18), and PDIA2 (13). In summary, within the known 
non-syndromic BAV cases, the incidence of causative gene 
mutations is less than 1%, which hinders understanding of 

the disease mechanism and the development of treatment 
strategies.

In order to further explore the possibility of the Mybpc3 
mutation (p.Ala58Val) functional effects of the diseases 
occurrence, we compared mutant Mybpc3 structure 
to a wild type copy of Mybpc3 (Figure 4A,B). Mybpc3 
heterozygous variant p.Ala58Val is located in the I-set 
domain and Mybpc3 is a filament protein playing a critical 
role in modulating muscle contraction. Mybpc3 mutation is 
the second leading cause of hypertrophic cardiomyopathy 
(HCM). Mybpc3 binds to myosin at two binding sites, 
one at its C-terminus and another at its N-terminus. The 
N-terminal binding site is composed of immunoglobulin 
domains C1 and C2, connected by flexible ligands and 
interacting with the myosin S2 by phosphorylation 
regulation (19). Through GPS database we found the lack 

Figure 4 Prediction of the mutation on its functional. (A) Wild type of Mybpc3 protein structure. (B) Mutant of Mybpc3 protein structure. 
(C) STRUM server indicated that the Ala58Val mutation may affect Mybpc3 protein stability. (D) Alternative interpretation is that the effect 
of the Mybpc3 N-terminal fragment is caused by an interaction with thin filament. The coiled-coil part of myosin is shown in light blue; S1 
and S2, in pink; Mybpc3, in red; and F-actin, in light green.
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of phosphorylation, methylation, or sumoylation of mutated 
Mybpc3 (p.Ala58Val). Further analysis on the consequence 
of Mybpc3 heterozygous variant revealed that it may disrupt 
C0 domain, playing critical roles in combining with myosin 
and F-actin. As we all know that myosin and F-actin having 
vital roles in myocardium, posttranslational modification 
plays a major role in disease progression, the Mybpc3 
heterozygous variant may be one of the probable reasons 
for this BAV family.

In reality, lacking in experimental validation is the main 
focus of this research. However, a systematic bioinformatics 
analysis was able to demonstrate the pathogenicity and 
functionality of the impact of mutation. Furthermore, 
RT-PCR assay was utilized to analyze Mybpc3 expression 
among the proband and her parents. The Mybpc3 mRNA 
expression in the proband and her father was only half of 
proband’s mother (Figure 3C); Western blot results also 
exhibited that relative Mybpc3 protein levels in the proband 
and her father were almost half of proband’s mother  
(Figure 3E), indicating that p.Ala58Val alters Mybpc3 
expression. Our results report an interesting mutation in 
Mybpc3 gene mutation that is in association with BAV, 
and the heterozygosity mutation site (Ala58Val) was never 
reported previously. The p.Ala58Val mutation was first 
detected in the BAV proband and her father. This mutation 
is in the conserved area of Mybpc3 protein, and located 
in I-set domain. Protein modeling assay indicates that the 
mutation could reduce the hydrophobicity of Mybpc3 
protein and its stability. 

More than 350 individual Mybpc3 gene mutations have 
been observed to be related with HCM, making it one of 
the most frequently mutated genes in HCM (20,21). Studies 
have shown that Mybpc3 may, through the combination of 
its N-terminus and myosin Subparticulate-part 2, reduce 
actin ATPase activity; its phosphorylation could reverse 
this process. The mechanism of Mybpc3 mutation may 
be involved in the termination of the phosphorylation 
process (22). In this study, Mybpc3 heterozygous variant 
p.Ala58Val was located in the I-set domain of Mybpc3, and 
the mutation site plays a critical role in Mybpc3 protein 
structure (Figure 4C,D). Mark Pfuhl’s team hypothesized 
that Mybpc3 functioned as a tether which fixed S1 heads 
in a stationary position, and phosphorylation released S1 
heads into an active state (19). The probable mutation 
effect may be one of the possible causes for this heritable 
BAV. As Mybpc3 plays a crucial role in HCM, may lead to 
leaving ventricular hypertrophy. If the mutation decreases 
Mybpc3 stability, it may disable ATP production or 

APTase activity or phosphorylation regulation, which could 
partially explain the phenotypes in our patient. Loss of 
Mybpc3 phosphorylation may cause a primary increase in 
calcium sensitivity (23). An increase in calcium transients 
may also have effects on calcium dependent enzymes such 
as calcineurin, calmodulin dependent kinase, and protein 
kinase C all of which have been shown to be important 
for the initiation of myocardial hypertrophy (24). Many 
Idiopathic dilated cardiomyopathy (DCM) probands also 
have congenital defects, including two with BAV with aortic 
regurgitation. Family history and genetic information have 
potential roles on individuals with aortic regurgitation. 
Rare variants in the MYBPC3 gene have been reported in 
several cases of DCM (25). However, the precise molecular 
mechanism of how down-regulated Mybpc3 expression 
affects this system needs further explore.

Conclusions

In conclusion, genetic diagnosis of BAV before the onset of 
symptoms is crucial. The patient and her father were both 
confirmed with Mybpc3 heterozygous mutation (Ala58Val), 
indicting Mybpc3 mutation may be the disease-causing 
variant for heritable BAV. Systematic analysis not only 
improves our understanding of this disease etiology, but also 
contributes to clinical and prenatal diagnosis. Determining 
the genetic origins of BAV is essential to improve the 
clinical care of patients as well as to develop tailored 
therapeutic strategies for monitoring disease progression 
and preventing related aortopathy.
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