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Introduction

Metabolism governs cellular homeostasis, growth, and 
survival. Alterations in cell metabolism are a common feature 
of cancer and have been increasingly viewed as one of the 
hallmarks of malignant transformation (1). In order to support 
their high proliferative rates, cancer cells adapt to their 
environment in part by reprogramming the metabolism of 
all major classes of macromolecules: proteins, carbohydrates, 
nucleic acids, and lipids (1). This link between metabolism 
and cancer is not a novel observation. Sixty years ago, Otto 
Warburg first noted that under normoxic conditions, normal 
cells metabolize glucose by using mitochondrial oxidative 
phosphorylation (OxPhos) instead of glycolysis to maximize 
the production of adenosine triphosphate (ATP), while some 
cancer cells rely more on aerobic glycolysis, a phenomenon 
later known as the Warburg effect (2). Since then, interest in 
this topic has increased and major areas of knowledge have 
been gained, but fundamentally important questions remain 
unresolved. The upstream signals that trigger metabolic 
alterations in cancer cells and what impact these changes have 
on overall tumor development and progression are still under 

intense investigation. 
Many of the signaling pathways altered in oncogenesis, 

such as the PI3K-Akt-mTOR pathway (3), can reprogram 
cell metabolism in a way that promotes malignant 
growth (1,4). Recently, Lin28a and its homolog Lin28b 
(collectively referred to as Lin28) and the let-7 microRNA 
family, have been found to play a direct role in regulating 
glucose metabolism in adult tissues (5-8). In addition, 
mouse genetic studies have shown that the reactivation 
of Lin28 can drive tumor initiation and progression 
through let-7 dependent and independent mechanisms 
(9-13). Although all the connections have not been 
made, it is possible that reprogramming cell metabolism 
could be a major mechanism by which Lin28 exerts its 
oncogenic effects. Determining how Lin28 regulates 
metabolic reprogramming may provide an additional way 
to understand the interplay between oncogenic signaling 
pathways and cellular metabolism. We will first summarize 
roles for Lin28 and let-7 in regulating self-renewal and 
differentiation in stem cells and cancer. Then, we will 
discuss their roles in regulating metabolism. 
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The Lin28/let-7 axis temporally regulates self-
renewal and differentiation

Lin28 and let-7 were first identified through mutagenesis 
screens as heterochronic genes that govern developmental 
timing in C. elegans (14-17). Lin28 homologs are RNA-
binding proteins that consist of zinc fingers (consisting 
of cysteine and histidine residues in the order CCHC) 
zinc fingers and cold shock RNA binding domains (16). 
Subsequent genetic loss and gain-of-function studies 
in worms revealed that Lin28 promotes self-renewal 
and delays differentiation of the hypodermal and vulval 
progenitor cells (16). As expected from these functions, 
Lin28 expression is high during embryogenesis and early 
larval stage of development, and gradually declines to an 
undetectable level in adult tissues (18). In contrast, let-7 
expression increases as Lin28 expression wanes from late 
larval stage and remains high thereafter (14,19). Loss-of-
function let-7 mutations promote the division of seam cells 
and prevent them from cell cycle exit (20), phenocopying 
Lin28 gain-of-function mutants (19). Later, it was shown 
that let-7 promotes differentiation and inhibits self-renewal 
during the transition from larva to adulthood by repressing 
Lin28 expression through its 3’UTR (16,18). 

The expression and regulation of Lin28 and let-7 are 
highly conserved throughout evolution (18). In mice, 
Lin28 is expressed at high levels throughout the embryo 
at early developmental stages (~E6.5) (21). Then, its 
expression declines through development and remains 
present in only some adult tissues (21). Whether Lin28 
also functions to promote stemness in mammals became 
more intriguing when overexpressing Lin28a, along 
with Sox2, Oct4, and Nanog, proved to be sufficient to 
reprogram human somatic fibroblasts into inducible 
Pluripotent Stem Cells (iPSCs) (22). Nevertheless, the 
mechanism by which Lin28 exerted this effect remained a 
mystery until a flurry of studies showed that in both mouse 
embryonic stem cells (ESCs) and C. elegans epithelial stem 
cells, Lin28 inhibits the post-transcriptional maturation of 
let-7. Lin28 binds to the primary immature form of let-7 and 
sequesters it from being processed by Drosha/DGCR8 (the 
small RNA generating machinery in the nucleus) (23,24). 
In the cytoplasm, Lin28 blocks the loading of let-7 into 
Dicer by binding the premature form of let-7 and recruiting 
Tutase4/7, which polyuridylates let-7’s tail, marking it for 
degradation by a exonuclease called Dis3l2 (24-35). Thus, 
when antagonized by Lin28, let-7 is rendered inactive.

Studies in mouse ESCs also demonstrated that let-7 

antagonizes self-renewal and promotes differentiation. 
Melton et al. showed that Drosha/DGCR8 knockout ESCs, 
which are unable to produce most mature miRNAs, fail 
to silence the stem cell self-renewal program when placed 
under differentiation-inducing conditions. Introduction 
of mature let-7 into these Drosha/DGCR8 knockout ESCs 
is capable of rescuing differentiation and even inhibits 
ESC self-renewal in stem cell culture conditions (36). 
These phenotypes were in part due to the let-7 mediated 
suppression of pluripotency factors such as Lin28, Sal4, and 
N-Myc (36). More recently, Worringer et al. in Yamanaka’s 
group showed that let-7 acts as a barrier to counteract 
iPSC reprogramming by promoting the expression of 
differentiation genes (37). Thus, together Lin28 and let-7  
form a highly conserved and highly regulated axis that 
temporally regulates the self-renewal and differentiation of 
stem cells. 

Lin28a and Lin28b are oncogenes

In adult mammalian tissues, let-7 is one of the most 
abundant miRNAs (38). Although the exact roles of let-7 
in adult tissues have not been fully characterized, let-7 is 
known to have tumor suppressor functions. There is copious 
evidence that let-7 expression is downregulated in a large 
number of cancers (39-43) and that let-7 overexpression 
inhibits growth and transformation of cancer cell lines and 
tumor xenografts (44-52). These anti-cancer effects are 
partly due to the suppression of let-7 target genes that are 
critical for cell cycle progression and proliferation, such as 
K-Ras, Cyclin D1, c-Myc, Cdc34, Hmga2, E2f2, and Lin28 
(45-49,51,53). Most of these findings were discovered in 
cell lines, and thus our knowledge of let-7 functions would 
benefit from more definitive investigation in animal models. 

In contrast to let-7, Lin28 expression is upregulated 
in  mult ip le  tumor types  such as  neuroblastoma, 
hepatocellular carcinoma (HCC), Wilms’ tumor, and 
melanoma (13). Several studies have demonstrated that 
activation of Lin28 is able to promote tumor development 
in various mouse tissues in part by suppressing let-7 
(9-12). Furthermore, we recently showed that genetic 
deletion of Lin28a and Lin28b abrogated c-MYC-driven 
hepatocarcinogenesis and improved overall survival 
in mice (12). Similar results were achieved using in vivo 
siRNA to knockdown Lin28b, which resulted in greater 
levels of cell death in tumor tissues (12). In another 
study, He et al. isolated pre-malignant liver progenitor 
cells from Diethylnitrosamine mutagenized mice and 
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showed that these cells have high expression of Lin28a and 
Lin28b, suggesting that Lin28 plays a role in malignant 
transformation within the chronically injured liver (54). 
These studies have functionally established the role of Lin28 
in tumor initiation and progression and suggest that Lin28 
could be a relevant target for either cancer prevention or 
therapy.

Although many major effects of Lin28 are mediated 
through let-7, Lin28 can also directly bind to and influence 
the translation of many mRNAs enriched with GGAGA 
(with G = guanosine and A = adenosine) sequences in their 
loop structures (55). Many of these mRNAs are oncogenic 
or growth-promoting genes, such as Igf2, Igf2-mRNA 
binding proteins, Hmga1, or those encoding ribosomal 
proteins, cell-cycle regulators, and metabolic enzymes (6, 
12,55-59). Whether or not and to what extent these mRNA 
targets of Lin28 contribute to its oncogenic effects are 
important areas for future investigation. 

The Lin28/let-7 axis regulates metabolism in 
mammalian ESCs

Studies in mammalian ESCs provided initial insights into 
the role of the Lin28/let-7 axis in metabolism. Genome-wide 
studies in human ESCs revealed that Lin28 binds to many 
mitochondrial enzyme mRNAs and interacts with RNA 
helicase A to enhance the translation of these mRNAs (56). 
In mouse ESCs, Wang et al. recently showed that threonine 
(Thr) oxidation into glycine (Gly) and acetyl-CoA catalyzed 
by threonine dehydrogenase is critical for cell growth (60). 
A follow-up study by Shyh-Chang et al. revealed that the 
catabolism of Thr also fuels the synthesis of S-adenosyl-
methionine (SAM), which is important for methylation 
reactions and critical for pluripotency (61). Decreased 
SAM ultimately led to slowed growth and increased 
differentiation (61). Metabolic profiling also demonstrated 
that inducing Lin28 and let-7 had dramatic effects on the 
Thr-Gly-SAM pathway in mouse ESCs (61). Specifically, 
overexpressing Lin28 in mouse ESCs led to increased amount 
of many Thr-Gly-SAM metabolites, while overexpressing let-
7 led to reduced amount of these metabolites (61). Together, 
these studies provided the first evidence that the Lin28/let-7 
axis regulates metabolic networks in ESCs.

Lin28 regulates body size, metabolism, and 
tissue regeneration in adult mice

Lin28 and let-7 also modulate the expression of pathways 

that directly regulate metabolism in adult mammalian 
tissues. For gain of function studies, we previously 
engineered a tetracycline-inducible Lin28a transgenic 
mouse model [Lin28a transgenic (Tg)]. Due to leakiness 
of the transgene, Lin28a expression levels are modestly 
increased in the muscle, skin and connective tissues in the 
absence of doxycycline induction. We reported that Lin28a 
Tg mice, compared to control mice without the transgene, 
exhibited increased body size and delayed puberty onset (62). 
These phenotypes functionally validated a number of 
genome-wide association studies that identified connections 
between human height, puberty timing, and the LIN28B 
locus (63,64). 

Most interestingly, Lin28a Tg mice exhibit enhanced 
glucose uptake in peripheral tissues (62). Enhanced glucose 
uptake in Lin28a Tg mice also led to higher levels of the 
glycolytic metabolite lactate (62). Similarly, whole body 
inducible human LIN28B overexpressing mice also exhibit 
superior glucose tolerance, indicating conserved functions 
between the Lin28 paralogs from two species (6). While gain-
of-function Lin28a results in increased body size, loss-of-
function Lin28a [Lin28a knockout (KO)] caused dwarfism 
from E13.5 to adulthood (65). Conditional deletion 
of Lin28a in skeletal muscles led to insulin resistance 
and impaired glucose uptake, indicating that Lin28 is 
physiologically required for normal glucose homeostasis 
(6,65). In contrast to the phenotypes seen in Lin28a Tg 
mice, inducible let-7 Tg mice not only have reduced body 
size and growth retardation, but also have hyperglycemia 
and glucose intolerance (6). Simultaneous Lin28a and 
let-7 whole body overexpression cancels out the glucose 
phenotype of each factor. Thus, there are likely to be 
mutually antagonistic effects including the possibility that 
Lin28a increases glucose uptake by suppressing let-7 (6) 
(Figure 1A).

Mechanistically, the overgrowth of Lin28a Tg mice could 
partly be due to the reduction of let-7 expression levels in 
organs where endogenous Lin28a is not normally present (62) 
and global increases in let-7-target protein production, 
such as Hmga1, Igf2, and Oct4—all of which are known to 
regulate body size (6,66-68). To further illustrate that the 
enhanced glucose uptake seen in Lin28a Tg mice was due 
to cell autonomous mechanisms, Lin28a was overexpressed 
in C2C12 myoblasts. Compared to control myoblasts, 
Lin28a overexpressing myoblasts take up glucose much 
faster (Figure 1A). This was the result of Lin28a suppressing 
let-7, which in turn suppresses the Insulin-PI3K-mTOR 
pathway at multiple nodes (namely, Igf1r, Insulin receptor, 
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and Irs2) (Figure 1A). In terms of signaling output, Akt 
and S6 phosphorylation is increased in a let-7-dependent 
manner, which increases the insulin-sensitivity and glucose 
uptake of myoblasts (6). Furthermore, when muscle specific 
Tsc1 deficient mice, whose mTOR signaling is increased, 
were crossed with Lin28b deficient mice, Lin28b’s dwarfism 
phenotype was rescued. This further confirmed that mTOR 
signaling genetically interacts with the Lin28 program (65). 
Another line of evidence that further corroborates this 
concept is a recent report showing that under nutrient 
deprivation, let-7 prevents mTORC1 activation to induce 
autophagy in primary cortical neurons, muscle, and white 
fat (69). These studies show that the Lin28/let-7 axis 
strongly influences a known controller of organismal and 

cancer metabolism, but the following studies demonstrated 
more interesting mechanisms.

Overexpressing just a modest amount of Lin28a led 
to increased body size and delayed mouse puberty (62). 
Even more striking is the superior tissue repair observed 
in Lin28a Tg mice (7). We and the Daley Lab showed that 
Lin28a Tg mice exhibited enhanced hair regeneration 
after shaving, digit repair after amputation, and ear wound 
healing after hole punch (7). We found that this superior 
regenerative phenotype in Lin28a Tg mice was not caused 
by suppression of let-7 alone, since let-7 antimiR delivered 
to wild-type (WT) mice failed to phenocopy the enhanced 
regeneration caused by Lin28a overexpression (7). By 
profiling metabolism during tissue repair, we demonstrated 

Figure 1 Reactivation of Lin28 reprograms cell metabolism to enhance tissue regeneration and promote cancer growth. (A) Reactivation 
of Lin28 in physiological condition in mouse tissues enhances regeneration by suppressing let-7, upregulating K-Ras expression and the 
insulin-PI3K-mTOR signaling, and more importantly upregulating the expression of metabolic machinery. These changes lead to enhanced 
glucose uptake, increased activity of both glycolysis and OxPhos, resulting in Lin28-positive cells having a much higher bioenergetic 
state; (B) Reactivation of Lin28 promotes growth of multiple cancer cell lines in part by suppressing let-7 and upregulating PDK1 protein 
expression. When let-7 expression is reduced, glucose uptake is enhanced. PDK1 is a negative regulator of OxPhos activity since it inhibits 
the conversion of pyruvate to acetyl-CoA. When PDK1 expression is enhanced by Lin28 overexpression and let-7 suppression, it promotes 
glycolysis and blocks OxPhos activity. Consequently, Lin28-positive cancer cells switch to aerobic glycolysis for glucose metabolism.

Cancer
growth

Tissue 
regeneration

A

B
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that Lin28a enhances both glycolysis and mitochondrial 
OxPhos activity through direct binding and translational 
enhancement of mRNAs that encode several major 
metabolic enzymes such as phosphofructokinase, pyruvate 
dehydrogenase (PDH), and isocitrate dehydrogenase (7) 
(Figure 1A). However, enhancement of OxPhos activity by 
Lin28a turned out to be required for better regeneration 
in all examined tissues, whereas enhancement of glycolysis 
was only required in some contexts (Figure 1A). To further 
understand how this metabolic enhancement influences 
tissue regeneration, Shyh-Chang et al. treated Lin28a 
Tg mouse embryonic fibroblasts (MEFs), which migrate 
significantly faster than WT MEFs, with an OxPhos 
inhibitor and found that the pro-migration phenotype 
was preferentially suppressed in Lin28a overexpressing 
cells (7). This suggested that Lin28a-mediated metabolic 
enhancements are sufficient to promote cell migration (7). 
Consistent with the fact that suppression of let-7 alone 
was not sufficient to recapitulate the regenerative phenotype, 
suppression of let-7 in MEFs had no effect on cell migration (7). 
Taken together, these lines of evidence demonstrated that 
Lin28 regulates metabolism through direct impact on the 
translation of core metabolic enzymes. 

Metabolic reprogramming by the Lin28/let-7 axis 
in cancer

Recent evidence shows that these oncogenic effects have 
a metabolic basis. Ma et al. showed that overexpression 
of either LIN28A or LIN28B in Hep3B, a human liver 
cancer cell line, promotes the Warburg effect in the form 
of enhanced glucose uptake, lactate production, and O2 
consumption rate (70) (Figure 1B). Treating these cells with 
let-7 mimics, however, resulted in the opposite effects (70)  
(Figure 1B). Unexpectedly, they found that LIN28-
overexpressing cell lines under normoxic condition showed 
only marginally activated AKT-mTOR signaling when 
LIN28A or LIN28B is expressed (70). However, when they 
examined protein expression of metabolic enzymes, they 
found that PDH kinase 1 (PDK1) was highly upregulated in 
multiple LIN28-overexpressing cancer cell lines (70) (Figure 1B). 
PDK1 is a well-known metabolic regulator whose role is to 
inhibit the conversion of pyruvate to acetyl-CoA, which is 
used as a starting material for the Krebs cycle. PDK1 does 
so by phosphorylating PDH and inhibiting its activity (71) 
(Figure 1B). 

The regulation of PDK1 by LIN28 most likely occurs 
post-transcriptionally since the PDK1 mRNA level was 

unchanged (70). Consistent with the fact that let-7 mimics 
block glucose uptake in the examined cancer cell lines, let-7  
was shown to specifically suppress PDK1 expression but no 
other OxPhos enzymes (70). Luciferase experiments with 
PDK1 3’ UTR demonstrated that PDK1 is a direct target of  
let-7 (70) (Figure 1B). More importantly, Ma et al. showed 
that knocking down PDK1 in cell lines and xenografts 
impaired the growth-promoting effects of LIN28 
overexpression (70). Together, this study made two 
important findings: first, when expressed in multiple cancer 
cell lines, Lin28 actively promotes aerobic glycolysis while 
inhibiting mitochondrial OxPhos, distinct from what we 
reported in the context of tissue repair. Second, blocking a 
metabolic effector of the Lin28 program in this context can 
disrupt cancer cell growth. Recently, we also showed that 
conditionally overexpressing human LIN28B in the liver 
resulted in the development of liver cancer, with histological 
features of both hepatoblastoma and HCC (12). Based 
on 2-deoxy-2-(18F) fluoro-D-glucose positron emission 
tomography imaging, human LIN28B-driven liver tumors 
are more glucose-avid than surrounding normal tissues, a 
feature that is seen only in a subset of aggressive human 
HCC (12). In light of the Lin28 and PDK1 connection, it 
would be interesting to determine if LIN28B preferentially 
promotes aerobic glycolysis in this endogenous cancer 
setting, and what role this metabolic mechanism has on 
tumor initiation and progression. If inhibition of aerobic 
glycolysis or glycolytic enzymes such as PDK1 can abrogate 
the oncogenic effects of LIN28B, it would not only support 
the idea that Lin28 promotes aerobic glycolysis, but also 
identifies a downstream effector of the Lin28 program that 
is potentially druggable. As molecules that effectively block 
Lin28 activity have not yet been developed, identifying a 
more readily actionable target could be beneficial in treating 
Lin28-expressing cancers. 

Conclusions

Since the initial discovery of Lin28 and let-7 by Ruvkun and 
Ambros 30 years ago, we are closer to understanding the full 
spectrum of mammalian functions for this heterochronic 
pathway. Furthermore, these studies on Lin28 and let-7 
have provided insights into the possible phenotypic outputs 
of post-transcriptional regulation. We have only recently 
identified their novel roles in metabolic regulation and great 
strides have been made in understanding how this translates 
to organismal homeostasis, regeneration, and disease. There 
are still many open questions. Do Lin28-expressing tumors 
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have a distinctive metabolic signature when compared 
to those that are Lin28-negative? If Lin28 does promote 
the Warburg effect, what impact do these effects have on 
tumor initiation versus progression? If let-7 is to be used as 
an anti-cancer agent to target Lin28-positive tumors, will 
it alone be able to reverse the metabolic reprogramming 
events caused by Lin28? Since Lin28 interacts and enhances 
translation of thousands of genes, would targeting a subset 
of these genes be sufficient to abrogate Lin28’s oncogenic 
effects? We hope that future studies on Lin28 and let-7 can 
shed light on some of these questions.
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