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Introduction

Cholangiocarcinoma (CCA), although considered a rare 
disease, is the second most frequent primary tumor of the 
liver, accounting for 10-25% of all hepatobiliary cancers 
and for 10-20% of liver cancer-related deaths (1). Broadly, 
CCA is defined as the malignant transformation of biliary 
epithelial cells (cholangiocytes) even though recent evidence 
suggests CCA may originate from hepatic progenitor 
cells located at the canals of Hering and/or peribiliary 
glands or even originate from transformed hepatocytes 
(2,3). Based on well-established anatomic criteria, CCA 
is conventionally divided into intrahepatic CCA (iCCA) 

and extrahepatic CCA (eCCA). iCCA arises from ducts 
proximal to the second order bile ducts and accounts for 8% 
of all CCAs, eCCA develops from the second order ducts 
to the pancreatico-duodenal ampulla, which tumors are not 
considered eCCA; eCCA includes perihilar (Klatskin) CCA 
which arises in the biliary segment from the second order 
ducts to the origin of the cystic duct and represents the most 
common form of CCA (50% of all CCA) (4). Incidence of 
CCA has increased in the last decade particularly in Europe 
ranging between 0.45 (Switzerland) and 3.36 (Italy) per 
100,000, and in the US (1.67 per 100,000); these figures 
are still lower with respect to South-East Asia, where 
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the highest incidence is 85 per 100,000 in North-East 
Thailand (5). The increased incidence of this neoplasm is 
substantially attributable to iCCA, whereas incidence of 
eCCA has remained stable (6,7). 

In addition to the emerging epidemiological relevance, 
the growing interest in CCA is strictly related to its highly 
aggressive behavior responsible for an extremely poor 
prognosis. In fact, therapeutic approaches with a curative 
intent in CCA are still very limited due to the frequent 
extensive spread of the tumor at the time of diagnosis (8,9). 
CCA metastasizes mostly via lymphatic vessels and along 
the route of bile ducts to areas deeper within the liver, 
to regional lymph nodes, or to distant sites such as the  
lung (10). Surgery remains the only curative treatment for 
patients with CCA, but often with disappointing results. In 
fact, less than 30% of patients with iCCA are eligible for 
curative resection because of its early metastasization to 
regional lymph nodes, and of those, only 60% survive for 
5 years, which is more than for those with eCCA (median 
survival of 36 months) (11,12). Liver transplantation may be 
offered only to a highly selected group of patients; however, 
tumor recurrence within 5 years still affects 12-32% of cases 
(13,14), taking advantage of a multimodality protocol (Mayo 
Protocol), which combines neoadjuvant external beam 
radiotherapy, brachytherapy, chemotherapy, and finally a 
staging laparotomy to rule out metastatic disease (13). The 
lack of effective treatments reflects the uncertainty of the 
mechanisms underlying the invasiveness of CCA. 

An important histological feature of CCA is the highly 
desmoplastic microenvironment where the neoplastic 
bile ducts lay densely embedded. Multiple autocrine and 
paracrine signals are exchanged between the many cell 
types of the stroma and the neoplastic cells. There is a 
strong likelihood that these interactions greatly influence 
the aggressive behavior of CCA. Given the rise in CCA 
incidence, in the face of a still disappointing prognosis, 
better therapeutic strategies for patients with CCA 
are eagerly awaited. The stromal microenvironment 
surrounding CCA will be the focus of this review: we 
will first discuss the multiple cell types involved in the 
tumor stroma and then some of the molecular interactions 
responsible for the aggressive nature of CCA. The 
possibility of exploiting these interactions as therapeutic 
targets will also be discussed.

Tumor reactive stroma: a close cellular 
collaboration that modulates tumor behavior

Cholangiocarcinoma cells are surrounded by a specialized 

mesenchyma that includes an inflammatory infiltrate, 
which releases cytokines, chemokines and growth factors, 
and activated fibroblasts, which also secrete collagen, both 
of which are drawn to the site of the tumor; in addition, 
blood and lymphatic vessels increase and feed the growth 
of the tumor (Figure 1). These histopathological changes 
have been collectively termed as tumor reactive stroma 
(TRS), formerly referred to as “desmoplasia”. In contrast 
with the common mechanisms governing tissue repair 
and remodeling, the role of the TRS is not to heal the 
wound, but rather to provide an environment that favors 
cancer growth and likely metastasization. Evidently, during 
cancer development, immunomodulatory and metabolic 
functions of neoplastic cells overcome the ability of the 
hosting tissue to dictate a reparative response. A number of 
human malignances, including prostate (15,16), pancreatic 
(17-21), ovarian (22), and skin (23) cancers characterized 
by strong invasive properties exhibit an abundant TRS. 
Other studies in different malignancies featuring abundant 
desmoplasia have shown the pro-oncogenic effects of the 
TRS, both in vitro and in vivo. A preliminary study on a 
murine model of breast carcinoma (24) demonstrated that 
the TRS is necessary for the implant of neoplastic cells 
and that the extent of the TRS correlates with a poor 
prognosis (25). In vitro experiments using mouse and 
human samples from hepatocellular carcinoma (HCC), as 
well as an in vivo HCC mouse model, have highlighted the 
concerted efforts of stromal cells and neoplastic cells in 
promoting tumor progression (26). Recent data also support 
the role of stromal cells in favoring cancer cell resistance 
to chemotherapy (27). Based on these observations, it can 
be speculated that a reduction in the TRS may represent a 
highly desirable effect to hamper cancer invasiveness.

Cell elements populating the tumor reactive 
stroma in cholangiocarcinoma

The TRS is host to a number of stromal cell types and 
structures variably contributing to CCA progression, 
including cancer-associated fibroblasts (CAF), tumor-
associated macrophages (TAM), and blood and lymphatic 
vessels (28,29) (Figure 2). Data on the specific role of each 
component of the tumor stroma in CCA are still limited 
by the lack of experimental models of this type of tumor. 
Therefore, data discussed hereafter are also derived from 
studies performed in different cancers with rich TRS.
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Cancer-associated fibroblasts

Fibroblasts within the TRS are in a state of activation 
(myofibroblasts or activated fibroblasts). CAF may originate 
from the recruitment of hepatic stellate cells resident 
within the liver, or from fibroblasts that reside within 
the portal tract, and are recruited to the tumor area by 
pro-inflammatory chemokines and cytokines released by 
inflammatory cells and by the tumoral cells themselves. CAF 
can also be recruited from circulating bone marrow-derived 
mesenchymal cells that co-express both hematopoietic and 
fibroblast markers (30,31). 

Alternatively, several studies proposed that CAF may 
derive from the epithelial-to-mesenchymal transition 

(EMT) of tumoral epithelial cells that would undergo 
a morphological  and functional  switch towards a 
mesenchymal phenotype, which enhance cell motility 
and the ability to remodel the surrounding extracellular 
matrix (ECM). However, the ability of cancer cells to 
undergo complete EMT and serve as a potential source 
of CAF is controversial (32-34). In CCA, CAF share the 
same phenotypic markers of hepatic myofibroblasts, such 
as vimentin, Thy-1, α-smooth muscle actin (α-SMA)  
(Figure 2A), intercellular adhesion molecule-1 and 
laminin (35). High expression of α-SMA in CCA correlates 
with larger tumor size and poor survival of the patients (36). 
Regardless of the cell origin, cross-talk mechanisms 
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Figure 1 Cellular and molecular mechanisms regulating the generation of the tumor reactive stroma in CCA. Following neoplastic 
transformation, cholangiocytes start to secrete a wide range of cytokines, growth factors and enzymes, providing them with the ability to 
dismantle the basement membrane and to establish an intense cross-talk with different cell types. A range of paracrine signals released 
by neoplastic cholangiocytes orchestrate the recruitment of mesenchymal cells to the site of tumor growth: in particular, VEGF-A and 
PDGF-D stimulate the migration of resident fibroblasts, CCL2(MCP-1) dictate the monocyte homing from blood circulation, and VEGF-
C/-D recruit lymphatic endothelial cells. In recruited cells, the tumor microenvironment further stimulates their transdifferentiation into 
CAF and TAM, leading to the deposition of ECM components and to lymphangiogenesis, critical mechanisms of CCA dissemination
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with neighboring cell populations play a relevant role in 
promoting activation of fibroblasts in the TRS. Fibroblasts 
may become activated in response to cytokines released by 
cancer cells and inflammatory cells such as platelet-derived 
growth factor (PDGF), transforming growth factor (TGF)-β 
and fibroblast growth factor (FGF)-2 (28,31,37). In HCC, 
tumor cells have been found to release lysophostatidic 
acid that targets its receptor on resident fibroblasts and 
induce their activation to CAF; treatment with an inhibitor 
of lysophostatic acid blocks generation of CAF coupled 
with a reduction in HCC growth and progression (26). 
Interleukin (IL)-6 is overexpressed in CCA cells in response 
to hypoxia, and represents a key determinant of cancer 
invasiveness (38,39). Elevated levels of IL-6 have been linked 
with enhanced recruitment of mesenchymal stem cells to 
the hypoxic TRS via the signal transducer and activator 
of transcription (STAT)3 pathway which in turn, promote 
survival of the tumor by releasing anti-apoptotic proteins (39). 

A defining feature of CAF is their tendency to 
maintain a persistent state of activation as a result of 
their ability to release cytokines and ECM components 

in a self-perpetuating autocrine loop (40). CAF isolated 
from different types of neoplasia, such as breast cancer, 
melanoma and Wilms tumor, exhibit a high proliferation 
rate in vitro (28) and are able to promote tumor growth 
by hyper-expressing TGF-β and hepatocyte growth factor 
(HGF) (24). In addition, CAF secrete several growth 
factors [vascular endothelial growth factor (VEGF), 
FGF, connective tissue growth factor], cytokines and 
chemokines [CCL2 (monocyte chemotactic protein; 
MCP-1), stromal cell-derived growth factor (SDF)-1, also 
known as CXCL12, CXCL14], that are able to recruit 
monocytes and macrophages, endothelial cells and other 
inflammatory cells (41). CAF are also able to modify the 
structure of the matrix supporting the TRS. To favor the 
tumor cell spread, the TRS needs a highly stiff ECM. This 
is achieved by transforming soluble fibronectin, a major 
component of the ECM, into a stable, insoluble complex 
where exposed integrins coordinate and bind fibronectin 
fibrils (42). These changes in the fibronectin structure allow 
collagen to anchor to the fibrils, further augmenting the 
tensile strength of the ECM. In this process, CAF release 

A B C

D E F

Figure 2 Phenotyping the tumor reactive stroma in CCA. Immunohistochemistry of different markers to characterize cells and structural 
components of the tumor reactive stroma in CCA: CAF (α-SMA, A), ECM (Fibronectin, B), inflammatory cells (CD45, C), TAM (CD206, D, 
arrows), lymphatic endothelial cells (Podoplanin, E) and vascular endothelial cells (CD34, F). A stark unbalance between the lymphatic and 
the blood vascular bed is observed in CCA. Notably, lymphatic vessels lay in close vicinity to neoplastic bile ducts, strictly aligned along the 
ductal profile. Histological specimens were derived from surgical liver resection of patients with iCCA. Original magnification: 200×
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neuropilin-1, which promotes fibronectin matrix assembly 
via regulation of integrin expression (43).

Tumor-associated macrophages

TAM are polarized M2 macrophages that possess 
properties that support the tumor environment (44) 
(Figure 2C,D). In contrast with M1 macrophages that are 
more involved in immune response, M2 macrophages 
modulate tissue remodeling and angiogenesis, and suppress 
T cell activity/proliferation. Phenotypically, TAM are 
characterized by a constitutive high expression of the 
chemokines CCL17 and CCL18, of the interleukins 
IL-1ra, IL-6, IL-10, and of arginase-1 (45), and by 
the low expression of CD51, carbopeptidase M and  
IL-12. Derived from circulating monocytes, TAM are 
recruited by MCP-1 expressed by tumoral cells and/
or several cellular components of the TRS (46). Besides  
MCP-1, several other chemokines can direct monocyte 
homing,  including CCL3,  CCL4,  CCL5,  CCL8, 
macrophage inhibitory protein-1α, macrophage migration 
inhibitory factor, as well as the growth factors VEGF and 
monocyte-colony stimulating factor (M-CSF) (46). Once 
attracted to the neoplastic area, monocytes differentiate 
into M2 macrophages under the influence of soluble 
factors, such as prostaglandin E2 (PGE2), and cytokines, 
such as IL-2, IL10 and TGF-β1 (47). In addition to CAF, 
TAM could play an important role in CCA invasiveness 
as they correlate with poor disease-free survival in  
CCA (48). Similarly, in HCC as well as in several other 
epithelial cancers (49), there is a strong correlation between 
macrophage density and poor survival (50). However, 
molecular effects of TAM in CCA are still largely unknown. 
TAM’s effects on tumor invasiveness are mostly derived 
from studies performed in cancers featuring a rich TRS, 
such as in breast and colon carcinomas. In a mouse model 
of breast cancer, expression of colony stimulating factor-1 
(CSF-1) is highest at the invasive edge of tumor cells, 
a site highly populated with macrophages (50). While 
CSF-1 released by breast tumor cells has been associated 
with recruitment of TAM, TAM reciprocate by releasing 
epidermal growth factor (EGF) stimulating tumor cells 
to migrate and metastasize. Similar findings have been 
observed in a genetic model of colon cancer (50). TAM’s 
ability to support cancer cell migration is also related to the 
secretion of several other growth factors, including VEGF, 
FGF1 and 2, PDGF, GM-CSF, insulin-like growth factor 
(IGF)-1 and TGF-β, and pro-inflammatory mediators, 

such as IL-1, -6, -8, prostaglandins, interferon-γ and tumor 
necrosis factor (TNF)-α (46). In breast cancer, TAM also 
over-express non-canonical Wnt 5a which induces tumor 
invasiveness via the Jun-N-terminal kinase (JNK) pathway. 
However, the role of Wnt 5a in cancer is controversial, 
since in other studies it has been reported to behave as 
a tumor suppressor (51). Moreover, TAM can secrete a 
number of cytokines involved in angiogenesis and ECM 
remodeling, which include VEGF, IL-8, TNF-α and matrix 
metalloproteinases (MMPs), namely MMP-2 and -9 (44).  
In particular, TAM may promote lymphangiogenesis by 
secreting VEGF-C (52). These secretory abilities are 
potentially further enhanced by hypoxic conditions present 
in most desmoplastic tumors (49,53). TAM are also thought 
to increase the invasive potential of tumoral cells by 
releasing MMPs, and indeed, they have been found in close 
vicinity to areas of basement membrane breakdown (44).

Lymphatic vessels

The lymphatic system is a network of vessels and nodes 
necessary to maintain tissue fluid homeostasis, and for 
immunosurveillance by modulating leukocyte traffic. Akin 
to veins, lymphatic vessels possess valves protruding into 
the lumen lined by a specialized endothelium (lymphatic 
endothelial cells, LEC) and surrounded by a scant presence 
of α-SMA-positive mural cells (54). The lymphatic 
vasculature is characterized by the expression of VEGFR-3, 
the specific receptor for the main lymphangiogenic growth 
factors, VEGF-C and VEGF-D, but also by a number 
of peculiar markers such as lymphatic vessel endothelial 
hyaluronan receptor-1 (Lyve-1) (55), podoplanin (a 
membrane sialoglycoprotein) (56), and the transcription 
factor prospero homeobox 1 (PROX1) (57).

The lymphatic vasculature is a critical element of the 
TRS and one of the main routes of metastatic spread, 
particularly in CCA, a malignancy in which metastasis 
to regional lymph nodes is the main cause of ineligibility 
for patients to surgical resection (6,10,58,59). In CCA, 
the presence and extent of lymph node metastasis after 
surgical resection is a predictor of poor prognosis (60).  
A highly developed lymphatic bed typically forms in close 
proximity to CCA neoplastic tissue, embedded in a dense 
TRS. Interestingly, within the TRS, not only do LEC 
appear to be in close relationship with neoplastic cells, but 
also in contiguity with CAF. The extent of CAF appears 
to correlate with lymphatic microvessel density and lymph 
node metastasis in the early stages of invasive colorectal 
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carcinoma (61) and in ovarian carcinoma (62). These 
observations are consistent with the hypothesis that CAF are 
capable of generating a pro-oncogenic microenvironment 
conducive of metastatic behavior by expressing a number 
of angiogenic factors (28). The most studied growth factors 
active on the lymphatic vessels are VEGF-C and -D, their 
receptor VEGFR-3 and the co-receptor neuropilin (NRP)-2  
(63-65), along with Ang-1 and -2 and their receptors Tie-
1 and -2 (66). Although explored to a much lesser extent, 
other growth factors that may exert pro-lymphangiogenic 
effects include VEGF-A (67), PDGF-B (68), IGF (69), 
HGF (70), and FGF (71). Noteworthy, the expression in 
TRS of lymphangiogenic growth factors and receptors such 
as VEGF-C and VEGFR-3, respectively, correlate with a 
poor prognosis in iCCA (72-74). 

In CCA, the large expansion of  the lymphatic 
vasculature contrasts with the significant reduction in 
blood vessels (Figure 2 E,F). The resulting hypoxic tumoral 
microenvironment may represent a critical determinant 
of CCA invasiveness (75). In fact, hypoxia is known to 
promote tumor progression by providing a selective 
pressure that favors the survival of the most aggressive 
malignant cells (76). The vast majority of hypoxic effects 
observed in tumors is mediated by hypoxia inducible 
factor-1 alpha (HIF-1α), a transcription factor expressed at 
both cytoplasmic and nuclear levels. Several studies have 
shown that HIF-1α promotes tumor lymphangiogenesis, by 
inducing the secretion of VEGF-A (77), VEGF-C (78) and 
VEGF-D (79,80), Ang-1 and -2 (81), and PDGF-B (82).  
HIF-1α  expression positively correlates with poor 
prognosis and VEGF-C secretion in non-small cell lung 
cancer (83), oral squamous cell carcinoma (84), and breast 
carcinoma (52,85); HIF-1α expression also correlates with 
VEGF-D in esophageal squamous cell carcinoma (86)  
and breast carcinoma (85). In iCCA (87), HIF-1α 
expression correlates with the size of the tumor and with 
overall and disease-free survival. Besides hypoxia, the local 
concentration of pro-lymphangiogenic growth factors 
can be modulated by signals released by the inflammatory 
cells populating the TRS. Leukocytes and in particular 
macrophages, may induce lymphatic vessel growth 
through LEC activation or recruitment of bone marrow-
derived cells (81). It is worth noting that hematopoietic 
stem cells may serve as an additional source of LEC 
as they account for 1-3% of all lymphatic cells in mice 
transplanted with hematopoietic stem cells. Macrophages 
are able to secrete high amounts of VEGF-C, also in 
response to TGF-β and TNF-α (88). The amount of TAM 

correlates with lymphatic microvessel density in cervix 
cancer (89). In patients with CCA, macrophages (90),  
or M2 macrophages (48), strongly contribute to the local 
secretion of VEGF-C, and their accumulation in TRS 
correlates with a poor prognosis (48).

The different cell components of the tumor 
reactive stroma promote cholangiocarcinoma 
invasiveness by modulating the phenotype of 
tumoral cells

Strong evidence suggests that the progression of CCA is 
influenced by molecular factors secreted by stromal cells, as 
well as by the neoplastic cholangiocytes themselves. These 
autocrine and paracrine cues acting on the tumor may 
influence its survival, proliferation, migration and ultimately 
its invasive potential. 

EMT has been suggested by many studies as an 
alternative, albeit not a mutually exclusive, mechanism 
promoting cancer invasiveness. EMT is characterized 
by the loss of the epithelial phenotype in exchange of 
mesenchymal properties. Down-regulation of E-cadherin, 
a major component of the adherens junction complex, 
and of occludins and claudin, necessary for t ight 
junctions and epithelial cell polarity, results in a reduced 
intercellular adhesion and epithelial layer cohesion that 
could allow a more enhanced invasiveness. In turn, tumor 
cells acquire a range of mesenchymal phenotypic traits 
that are characterized by the enrichment of integrin 
receptors responsible for the interactions with the ECM, 
a leading/trailing edge asymmetry, and up-regulation of 
cytoskeletal proteins within the mesenchymal lineage 
including vimentin, src kinase, N-cadherin, α-SMA and  
MMPs (32). Transcription factors analogous to those 
involved in embryogenesis, such as Twist, Slug, Snail, Zeb-1  
and Zeb-2, which regulate E-cadherin expression, are 
involved in cell motility. They represent the molecular 
basis of EMT-changes typically featuring tumor cells at 
the invasive front compared to those within the core of 
the tumor (91). Overall, EMT imposes plasticity upon the 
tumor cells thereby allowing them to detach from their 
primary site of growth. However, recent studies from our 
group have demonstrated that despite the ability of human 
CCA cells to express some mesenchymal markers, such 
as S100A4 and vimentin, a complete transdifferentiation 
of CCA cells to α-SMA-positive cells was not found after 
xenotransplantation of human CCA cells into SCID mice 
(92,93). Therefore instead of a full EMT, the presence 
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of mesenchymal features in transformed cholangiocytes 
represent only the acquisition of “EMT-like changes”. This 
suggests that interactions with the neighboring stromal 
cells contribute to the mesenchymal-like phenotype 
observed in the tumor cells. In CCA cell lines, TGF-β1 
induces the activation of Snail, a negative regulator of 
E-cadherin expression, whose expression correlates with 
reduced expression of Keratin-19, a cholangiocyte marker, 
and with increased expression of vimentin, a mesenchymal 
cell marker (94). TGF-β1/Snail activation has also been 
associated with increased invasive capabilities of CCA 
cholangiocytes both in vitro and in vivo (94).

Phenotypic changes of tumoral cells may also include the 
gain of stem cell-like properties. These changes not only 
induce more invasive characteristics but even imposes a 
heightened resistance to apoptosis allowing the transformed 
cells to withstand chemotherapeutic agents (95).

Cell behavior is also strongly influenced by interactions 
with ECM proteins. ECM proteins modulate a variety of 
cellular functions, including differentiation, proliferation 
and secretion. In particular, two ECM components, 
periostin and tenascin-C, are released by CAF and function 
together to activate integrins on iCCA cholangiocytes, 
ultimately stimulating their migration and invasion (96). 
Interestingly, periostin, a protein regulated by TGF-β, is 
present within the fibrous stoma of CCA in higher amounts 
than any other hepatic malignancy (97). The ECM also 
serves as a reservoir of CAF-derived growth factors, such as 
HGF and SDF-1, which can therefore be persistently supplied 
to cancer cells. HGF and SDF-1 signal via their receptors, 
c-MET and CXCR4 respectively, on CCA cholangiocytes 
to stimulate their proliferation and migratory activities (96). 
Not only does the TRS provide a communication exchange 
between tumor cells and stromal cells but also among the 
stromal cells themselves; for example, SDF-1 can regulate 
recruitment of TAM (50). Periostin, HGF and SDF-1  
are coincidently up-regulated by hypoxia, which is a 
characteristic of CCA, as previously discussed (96).

Proteases and MMPs released by both tumoral and stromal 
cells direct the remodeling of the TRS matrix. CAF, for 
example, secrete MMP-1, -2 and -9 as well as seprase, which 
are all important for the dissemination of cancer cells (96). 

Enhanced cell survival is another mechanism strongly 
involved in tumor invasiveness which is favored by the 
interactions within the TRS. Signals released by CAF, such 
as periostin, PGE2 and sphingosine-1-phosphate, enable 
CCA cholangiocytes to resist chemotherapeutic agents (97). 
In HCC, PGE2 as well as indoleamine 2,3-dioxygenase 

1 secreted by CAF have been found to suppress the 
activation and cytotoxic effect of NK cells (98). Recently, 
PDGF-B secreted by CAF has been discovered to protect 
CCA cholangiocytes from tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) by cross-talking with 
the Hedgehog signaling cascade (99). When PDGF-B binds 
to PDGFR-β, its cognate receptor expressed by neoplastic 
cholangiocytes, the Hedgehog receptor, Smoothened, 
is trafficked to the plasma membrane in a protein kinase 
A-dependent fashion leading to activation of GLI 
transcription factors, critical regulators of several survival 
pathways (51).

To focus attention to another PDGF-mediated 
mechanism, CCA cholangiocytes can secrete PDGF-D, 
which acting on its cognate receptor PDGFR-β expressed 
by CAF, enables them to be recruited into the TRS (93). 
This finding confirms that CCA cells are major players 
of TRS generation and indicates PDGF-D as a pivotal 
paracrine signal. Activation of PDGF-D signaling in CAF 
involves Rho GTPases, mainly Rac1 and Cdc42, as well as 
JNK, as molecular effectors underpinning CAF migration.

Molecular factors released by tumor cells such as IL-10, 
VEGF-A, TGF-β and MMP-2 are also relevant to induce 
recruitment and differentiation of macrophages towards 
the TAM M2 phenotype acting via STAT3 (48). TAM are 
also particularly attracted to the hypoxic microenvironment 
which they respond to by up-regulating HIF-1α and  
HIF-2α (44), mechanisms that can be of great relevance 
in CCA. Activation of HIF-1α in TAM leads to the 
hypersecretion of a number of cytokines, including VEGF, 
glucose transporter 1, phosphoglucokinase and inducible 
nitric oxide synthase (100). The M1-M2 shift that occurrs 
during tumorigenesis is driven by HIF-1α in concert 
with a balanced down-regulation of NF-kB. Whereas 
M1 are characterized by a high expression of NF-kB, M2 
macrophages express high amounts of p50-NF-kB, that 
inhibits the transcriptional activity of NF-kB, as shown in 
murine fibrosarcoma and human ovarian cancer (101).

Possibility of new therapeutic strategies in 
cholangiocarcinoma by interfering with the 
tumor reactive stroma

When CCA is diagnosed early, i.e. before the development 
of metastasis to regional lymph nodes, a limited set of 
curative options can be considered, encompassing surgical 
resection and, in highly selected cases, liver transplantation. 
In the majority of patients with CCA, especially iCCA, 
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which can remain asymptomatic until advanced stages, the 
disease will have already extended outside the liver by the 
time of diagnosis. In these patients, palliative approaches 
mainly relying on endoscopic treatments or percutaneous 
biliary drainage to relieve biliary obstruction can be offered. 
In recent years, photodynamic therapy has been proposed 
as neoadjuvant treatment for the palliative management of 
hilar CCA (102). In patients ineligible for curative therapies, 
chemotherapy is still largely ineffective (103); the standard 
of care for advanced CCA therapy is a combination of 
Cisplatin and Gemcitabine, which has increased survival 
time by 3 months compared with Gemcitabine alone (104). 

The disappointing results  of the treatments of 
CCA are a consequence of the uncertainty on the 
mechanisms of carcinogenesis and the absence of known 
molecular signatures of CCA invasiveness, which has, 
so far, precluded the possibility to develop molecularly 
targeted therapies. Furthermore, there are no validated 
biomarkers to test a specific targeted agent in CCA at 
present (105). 

In the last few years, growing interest has been drawn 
on the TRS as a potential therapeutic target in a number of 
malignancies, including CCA. It is supposed that stromal cells 
have a putative role in the progression of cancers with high 
desmoplasia, and hypothesized that interfering with the TRS 
and with the recruitment of its different cell components may 
be of therapeutic relevance (106,107). In CCA, validation 
of the effectiveness of this approach is still limited by the 
current lack of experimental models. Hypothetically, several 
pharmacological opportunities to inhibit target proteins 
critical for the recruitment of cellular components of the 
TRS can be considered and may represent a step forwards 
in anticancer treatment, particularly in CCA; these are 
summarized in Table 1.

Strategies aimed at cancer-associated fibroblasts 

A multitude of interactions are exchanged between CCA 
cells and CAF. A number of agents are available to interrupt 
these communications by specifically targeting CAF, and 
preliminary studies indicate that these compounds are also 
effective in reducing tumor mass and improving patient 
survival. 

Hepatic stellate cells are known to secrete CXCL12 
[or SDF-1], the ligand for CXCR4, a receptor highly 
expressed in CCA including human CCA cell lines 
such as HuCCT-1 and CCKS-1, but not in normal 
cholangiocytes  (108) .  As a potential  therapeutic 

intervention to reduce the extent of CAF, treatment of 
cultured CCA cells with the specific CXCR4 inhibitor 
(AMD3100) hampered the CCA-mediated migration of 
hepatic stellate cells. Furthermore, IL-6 secreted by tumor 
cells within a hypoxic environment has been linked with 
recruitment of mesenchymal cells and an antibody against 
IL-6 has resulted in attenuation of mesenchymal cell 
migration (38). 

Cyc lopamine ,  an  inh ib i to r  o f  the  Hedgehog 
signaling pathway acting on Smoothened, unleashed 
TRAIL on neoplastic cholangiocytes and induced their 
apoptosis reversing the effects of PDGF-B released by  
CAF (99). In vivo experiments have found that Cyclopamine 
reduces tumor size but also the metastatic potential of 
CCA cholangiocytes (99). IPI-926, a novel derivate of 
Cyclopamine, can potentially improve the efficacy of 
Gemcitabine in ductal pancreatic cancer, by inhibiting the 
Hedgehog signaling pathway and therefore depleting the 
TRS (109).

In a different study, the tyrosine kinase inhibitor, 
Imatinib mesylate, was a more direct approach to target 
the CAF-emitted-PDGF-B that is signaled to CCA. By 
blocking the PDGFR-β expressed by CCA cholangiocytes, 
Imatinib resulted in increases of TRAIL and apoptosis of 
tumoral cholangiocytes (110). A recent paper published 
by our group (93) outlined the inverse role of PDGFR-β 
in mediating the recruitment of myofibroblasts following 
stimulation by PDGF-D secreted by CCA cholangiocytes. 
In this model, PDGFR-β can be interfered directly 
using Imatinib mesylate or indirectly by inhibiting the 
downstream effectors of this pathway, in particular the Rho 
GTPases with NSC23766 (Rac1 inhibitor) and CASIN 
(Cdc42 inhibitor) and/or JNK signaling with SP600125 (93); 
a strong reduction in CAF migration was similarly obtained 
with both approaches. As with Cyclopamine, Imatinib also 
reduced CCA tumor size and metastasis in rodents (110).

Pro-apoptotic agents, such as Navitoclax, have been 
shown to act selectively on CAF. By activating Bax, 
Navitoclax reduced the number of α-SMA-positive CAF 
as well as CCA tumor mass, which is associated with an 
improved survival in rodents (111). 

Theoretically, MMP inhibition may also be of potential 
interest to modulate cell communications within the TRS. 
However, MMP inhibition does not seem to improve 
patient outcome in many epithelial cancers, even though to 
date, MMP or Seprase inhibition have not been studied in 
CCA (112). A vaccine against Seprase that reduces collagen 
type I expression has shown positive outcomes in survival in 
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mice with mammary and colon carcinomas (112).

Strategies aimed at tumor-associated macrophages 

There is growing evidence indicating that TAM are 
fundamental in mediating tumor cell proliferation and 
invasion in various carcinomas and that their presence 
correlates with a poor prognosis, however, drugs specifically 
targeting TAM are lacking (46). The most promising 
therapy aimed at antagonizing TAM function is the use of 
an anti-programmed death (PD)-L1 antibody. PD-L1 is a 
ligand for PD-1, whose secretion is induced in circulating 
monocytes by the pro-inflammatory cytokines, TNF-α and 
IL-10, released by the tumoral microenvironment. PD-L1 
exerts two pro-oncogenic effects: it induces apoptosis in 
T-cells (113) and enhances the survival of tumoral cells in 
HCC (114), where overexpression of PD-L1 corresponds 
with a poor prognosis and increased mortality (113,114). 

Actually, an anti-PD-L1 antibody was approved for phase 
I clinical trials in the US for several types of cancers, 
including melanoma and non-small cell lung, colorectal, 
and renal cell cancers (115).

Another possibility to target TAM function is related 
to the inhibition of some biological processes dependent 
upon the presence of macrophages. For example, the use 
of specific Cyclooxygenase-2 inhibitors is able to reduce 
macrophage-induced secretion of VEGF-C subsequently 
suppressing lymphangiogenesis and lymph node metastasis 
in two different murine models engrafted with either 
human gastric carcinoma or human lung adenocarcinoma 
cell lines (116,117). On the other hand, Bevacizumab 
(Avastatin) is a VEGF-A neutralizing antibody that can 
inhibit, not only neoangiogenesis and development of 
the lymphangiogenic network (see below), but also the 
recruitment of macrophages (118,119).

The inorganic compound family of bisphosphonates 

Table 1 Therapeutic interference of cellular elements of tumor reactive stroma

Cell type Target protein Inhibitor

CAF CXCR4 AMD3100

Smoothened Cyclopamine, IPI-926

PDGFR-β Imatinib Mesylate

Rac1 NSC23766

Cdc42 CASIN

JNK SP600125

Bcl-2 family ABT-263 (Navitoclax)

TAM Cox-2 Celecoxib

VEGFR-2 Bevacizumab (Avastatin) 

Bisphosphonates 

PD-L1 Anti-PD-L1 antibody 

Lymphatic vessels VEGF-C/-D VEGF-C/-D trap 

VEGFR-2 Bevacizumab (Avastatin) 

VEGFR-3 Soluble anti-VEGFR-3 antibody

NRP-2 Soluble anti-NRP-2 antibody

Angiopoietin 2 Anti-Ang-2 antibody, Anti-Ang-2 peptibody 

Tie-2 Tie-2 neutralizing antibody 

mTOR Rapamycin 

Tyrosine kinases (mainly VEGFR-3) Ki23057 

FGFR-1, VEGFR-2, VEGFR-3, PDGFR-β BAY 43-9006 

VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-β PTK787/ZK 222584 

Tyrosine kinases SU-014813 

EGFR-1, EGFR-2, EGFR-4, VEGFR-3, Src JNJ-264823327 

VEGFR-1, VEGFR-2, VEGFR-3 CEP 7055 
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(such as Zoledronic acid), commonly used for the treatment 
of metabolic bone diseases, are also able to modulate a 
range of macrophage functions, by reducing cell migration, 
infiltration, proliferation (120), and to revert macrophage 
polarization from the pro-metastatic M2 phenotype to that 
of an anti-tumoral M1 phenotype (120,121). Whether their 
effects are therapeutically relevant in CCA is a matter worth 
being investigated.

Strategies aimed at tumoral lymphangiogenesis

Currently there are no reports of therapies acting on 
tumoral lymphangiogenesis in CCA, although the use of 
various anti-lymphangiogenic compounds (drugs, soluble 
receptors, blocking antibodies) are under evaluation in 
other malignancies. Specific targeting of tumoral lymphatic 
vessels has not been developed yet,  so one major disabling 
side-effect in tumoral lymphangiogenic therapy is 
lymphedema.

Several studies in animal models have been conducted 
to directly inhibit the main pro-lymphangiogenic growth 
factors with different inhibitors. Since the VEGF-C/
VEGF-D/VEGFR-3/NRP-2 axis is fundamental in 
this process, several strategies to block its signaling 
were explored by generating monoclonal antibodies 
against the ligands, and soluble antibodies against 
the receptors (122,123). Originally used to hamper 
tumoral  neoangiogenesis ,  Bevacizumab,  a  VEGF 
trap antibody able to interfere with activation of the 
VEGFR-2 signaling cascade, can function to reduce also  
lymphangiogenesis (118). The angiopoietin/Tie pathway is 
another cascade that can be targeted to suppress lymphatic 
tumoral angiogenesis. To interfere with this signaling, 
generation of Ang-1, -2, and Tie-2 neutralizing antibodies 
were able to reduce the LEC sprouting, extent of the 
lymphatic bed, and metastasization in different rodent 
models.

Recent data support the use of Rapamycin to suppress 
lymphangiogenesis and lymphatic metastasis in pancreatic 
cancer (124). In a pancreatic tumor cell line and in 
cholangiocytes, the AKT/mTOR pathway is a critical 
mediator of VEGF-A and -C overexpression (124,125), 
along with an autocrine effect on proliferation and likely, 
sprouting of the epithelial cells. 

Furthermore, a recent study outlined the usefulness 
of tyrosine kinase inhibitors to interfere with the 
lymphangiogenic signaling, in particular Ki23057, an 
inhibitor of VEGFR-3 autophosphorylation. Ki23057 

appears to hamper metastasization and lymphangiogenesis 
in an experimental model of gastric carcinoma. Other less 
specific inhibitors of tyrosine kinases are actually in phase 
I to III clinical trials for different malignancies (i.e. breast, 
ovarian, pancreatic, prostate, lung and advanced solid 
tumors), among them are BAY 43-9006 (126), PTK787/ZK 
222584 (127,128), SU-014813 (129), JNJ-264823327 (130), 
and CEP 7055 (131).

Conclusions

CCA is a very aggressive cancer, with limited therapeutic 
chances, whose mechanisms of progression are hitherto 
largely unknown. Although rare, the epidemiological 
impact of CCA is increasing. All these aspects make CCA 
a “hotspot” in liver research. An important morphological 
feature of CCA is the presence of a striking desmoplastic 
reaction, also termed as the “tumor reactive stroma”, 
closely embedding the neoplastic bile ducts. An abundant 
reactive stroma is reflective of various carcinomas similarly 
characterized by strong invasiveness. Functionally, the TRS 
is an aberrant reparative complex, populated by different 
cell elements, including CAF, TAM and lymphatic vessels, 
strictly interacting with the cancer cell compartment. 
Recent evidence suggests that the TRS is a key driver of 
CCA progression. In fact, the large variety of signals and 
mediators reciprocally exchanged between stromal and 
neoplastic cells provides the tumor microenvironment 
with invasiveness-promoting properties. These paracrine 
communications have started to be elucidated only recently 
and may represent a putative target amenable of therapeutic 
interference. Although there are no current data on the 
use of drugs able to target the paracrine communications 
in the TRS of CCA, some compounds seem to be of great 
potential interest. The lack of experimental models of CCA 
makes the possibility to actually test the effects of these 
compounds difficult, even though the model of human 
CCA cells xenografted into SCID mice seems to provide 
valuable readouts (92,93). Therefore, a deeper knowledge 
of the molecular factors regulating the epithelial/stromal 
interactions in TRS is necessary to open new therapeutic 
avenues in CCA.
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