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Introduction

Cholangiocytes, which line the intrahepatic biliary 
epithelium (1,2), modify bile originally secreted at the bile 
canaliculus (3) before it reaches the duodenum (4). The 
modification of ductal bile is regulated by the secretion/
reabsorption of water and electrolytes that is regulated 
by a number of gastrointestinal hormones, peptides and 
neurotransmitters (1,4-9). Regarding gastrointestinal 

hormones, secretin stimulates the secretion of water and 
HCO3

– ions by interaction with basolateral SR (1,5-7), 
an interaction that leads to increased cyclic adenosine 
3',5'-monophosphate (cAMP) levels, phosphorylation 
of protein kinase A (PKA), opening of the cystic fibrosis 
transmembrane regulator (CFTR) leading to activation of 
the chloride bicarbonate anion exchanger 2 (Cl–/HCO3

– 
AE2) (10) with subsequent secretion of HCO3

– into bile (1,4-9).
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In  addi t ion  to  regula te  ducta l  b i le  secret ion , 
cholangiocytes are the target cells in chronic liver diseases 
such as primary biliary cirrhosis (PBC) and primary 
sclerosing cholangitis (PSC), diseases that are characterized 
by dysregulation between biliary growth/apoptosis (11,12). 
Animal models of cholestasis such as extrahepatic bile 
duct ligation (BDL) (4,8,13), acute treatment with carbon 
tetrachloride (CCl4) (14) and chronic administration 
of the toxin, a-naphthylisothiocyanate (15) or gamma-
aminobutyric acid (GABA) (16) induces the proliferation 
and/or loss of bile ducts (4,8,13-15). We have shown 
that in pathological conditions associated with biliary 
hyperplasia (e.g., following BDL) (4,8) there is enhanced 
expression of SR and increased secretin-stimulated cAMP 
levels and bile and bicarbonate secretion (4,6-8,13), 
parameters which have been suggested to be functional 
indices of cholangiocyte proliferation (4,6-8,13). In models 
associated with biliary damage [e.g., after administration 
of carbon tetrachloride (CCl4) or GABA] (14,15) there is 
reduced expression of SR and decreased responsiveness to 
secretin (14,15).

There is growing information regarding the mechanisms 
of biliary proliferation (17-22). For example, recent studies 
have shown that cytokines/growth factors such as interleukins 
(e.g., IL6), serotonin, melatonin, angiogenic factors [e.g., 
vascular endothelial growth factor (VEGF)-A/C] and nerve 
growth factor (NGF) regulate the proliferation of bile ducts 
by autocrine mechanisms (17-22). Serotonin inhibits biliary 
hyperplasia in cholestatic rats by activation of serotonin 
receptor 1A and 1B (17). While vascular endothelial growth 
factor-A/C (VEGF-A/C) and NGF stimulate cholangiocyte 
hyperplasia by interacting with VEGFR-2/3, melatonin has 
been shown to inhibit biliary growth by down-regulation of 
cAMP signaling (17,19,20,22). Both autocrine and paracrine 
VEGF signaling stimulates the growth of liver cysts in 
Pkd2KO mice (23). In polycystic liver diseases, VEGF 
and angiopoietin-1 stimulate the growth of biliary cysts 
and their vascular supply (24). Also, gastrin inhibits both 
hyperplastic and neoplastic biliary growth by interaction 
with CCK-B receptors through translocation of Ca2+-
dependent PKC isoforms (8,25,26). We have also shown 
that gastrin inhibits secretin-stimulated ductal secretion 
in cholestatic rats (27). Since omeprazole has been shown 
to increase gastrin levels in rodents and humans (28-30), 
we performed studies aimed to demonstrate that chronic 
administration of omeprazole inhibits biliary growth and 
secretin-stimulated ductal secretion by enhanced release of 
gastrin serum levels.

Materials and methods

Materials

Reagents were purchased from Sigma Chemical Co. (St. Louis, 
MO, USA) unless otherwise stated. The antibody against 
proliferating cell nuclear antigen (PCNA) was purchased from 
Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). The 
mouse anti-cytokeratin-19 (CK-19) antibody was purchased 
from Caltag Laboratories Inc. (Burlingame, CA, USA). 
The substrate for γ-glutamyl transpeptidase (γ-GT), N- 
(γ-L-glutamyl)-4-methoxy-2-naphthylamide, was purchased 
from Polysciences (Warrington, PA).

Animal models 

All animal procedures were performed according to 
protocols approved by the Scott and White and Texas A&M 
Health Science Center IACUC. Normal, BDL or bile duct 
incannulated (BDIN) (immediately after surgery) (4) rats 
were treated with omeprazole (40 mg/kg BW by daily gavage 
administration in 500 mmol/L of sodium bicarbonate, pH 9.0 
containing 0.75% methylcellulose) (31) or vehicle for 1 week. 
While BDL rats were used for the collection of serum, liver 
tissue and cholangiocytes, BDIN were used for the in vivo 
studies of biliary physiology. In all animals used, we measured 
liver and body weight and liver to body weight ratio, an index 
of liver cell growth including cholangiocytes (4).

Freshly isolated cholangiocytes

Virtually pure cholangiocytes (by histochemistry for γ-glutamyl 
transpeptidase) (32) were isolated by immunoaffinity separation 
by a monoclonal antibody (a rat IgG2a, a gift from Dr. R. Faris, 
Brown University, Providence, RI) against an unidentified 
antigen expressed by all mouse cholangiocytes (2). 

Evaluation of serum chemistry, intrahepatic bile duct 
mass (IBDM) in liver sections and H3 histone mRNA and 
PCNA protein expression in purified cholangiocytes

The serum levels of the transaminases, glutamate 
pyruvate transaminases (SGPT) and glutamic oxaloacetic 
transaminase (SGOT), and total bilirubin were measured by 
a Dimension RxL Max Integrated Chemistry system (Dade 
Behring Inc., Deerfield IL) by the Chemistry Department, 
Scott & White. We determined in paraffin-embedded liver 
sections (4-5 mm thick) IBDM NGF (2) of cholangiocytes; 
the IBDM was evaluated as area occupied by CK-19 
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positive-bile duct/total area ×100. Sections were examined 
in a coded fashion by BX-51 light microscopy (Olympus, 
Tokyo, Japan) equipped with a camera.

Gene expression for H3 histone (an index of cell 
replication) (33,34) was measured by the lysate RNase 
protection assay (Direct Protect™ kit, Ambion Inc., 
Austin, TX) using lysate samples from organs (100 mg) 
or cholangiocytes (5.0×106) as described (33). For each 
cell sample, we used 45 μL of lysate containing 4.5×105 cells. 
Antisense riboprobes were transcribed with either T7 or 
SP6 RNA polymerase using [α-32P] UTP (800 Ci/mmol;  
Amersham, GE Health Care, Piscataway, NJ) by the 
Maxiscript kit (Ambion). The 32P-labeled antisense 
riboprobes were as follows: a 204-bp riboprobe encoding for 
the H3 histone gene was obtained from Dr. S. Gupta (Albert 
Einstein Hospital, Bronx, NY); and a 316-bp riboprobe 
encoding a complementary sequence for rat glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) mRNA was 
purchased from cDNA purchased from Ambion. We used 
the following controls: rat spleen (positive) and yeast transfer 
RNA (negative) for the H3 histone genes; and rat kidney and 
yeast transfer RNA were the positive and negative controls, 
respectively, for GAPDH the housekeeping gene (34). 

We measured  cho lang iocy te  pro l i f e ra t ion  by 
immunoblots (8,16) for proliferating cellular nuclear 
antigen (PCNA) in protein (10 μg) obtained from whole 
cell lysate from purified cholangiocytes from BDL rats 
treated with omeprazole or saline for 1 week. Immunoblots 
were normalized by β-actin (16). The intensity of the bands 
was determined by scanning video densitometry using the 
phospho-imager, Storm 860, (GE Health Care) and the 
ImageQuant TL software version 2003.02 (GE Health 
Care, Little Chalfont, Buckinghamshire, England).

Measurement of secretin receptor gene expression, and 
secretin-stimulated cAMP levels and bile and bicarbonate 
secretion

We next measured SR mRNA expression, and secretin-
stimulated cAMP levels and bile and bicarbonate secretion, 
as functional indices of enhanced biliary proliferation (4,6-
8,13,35). The expression of SR mRNA was measured by 
the lysate RNase protection assay (Direct Protect™ kit, 
Ambion Inc., Austin, TX) (see above) (33). The 32P-labeled 
318 bp riboprobe was generated from the rat SR cDNA 
clone (a gift of Dr. N. LaRusso, Mayo Clinic, Rochester, 
MN). We used rat heart (positive) and yeast transfer RNA 
(negative) for the SR gene.

Basal and secretin-stimulated intracellular cAMP levels 
were measured in purified cholangiocytes from BDL rats 
treated with vehicle or omeprazole for 1 week by commercially 
available RIA kits (Amersham, GE Health Care). Briefly, after 
isolation cholangiocytes were incubated for 1 hour at 37 ℃ 
to restore membrane proteins damaged during the isolation 
procedure by proteolytic enzymes (8,36,37) and subsequently 
treated with 0.2% BSA (basal) or secretin (100 nmol/L) (8,37) 
in the presence of 0.2% BSA for 5 minutes.

The in vivo studies aimed to evaluate the effect of 
secretin on bile and bicarbonate secretion were performed 
in BDIN rats, which were prepared for bile collection as 
described by us (4). When steady-state bile flow was reached 
(approximately 60 minutes after infusion of Krebs-Henseleit 
bicarbonate solution, KRH, via a jugular vein), secretin (10-7 M)  
administered for 30 min (by a jugular vein) followed by a 
final infusion of KRH for 60 min. Bicarbonate concentration 
(measured as total CO2) was determined by a Natelson 
microgasometer apparatus (Scientific Industries, Bohemia, NY).

Measurement of serum levels of gastrin

Since omeprazole has been shown to increase gastrin serum 
levels in rodents and humans (28-30), we evaluated the 
levels of this gastrointestinal hormone in serum from the 
selected groups of animals. The serum levels of gastrin 
were measured by radioimmunoassay using commercially 
available kits obtained respectively from Diagnostic 
Products Corporation (DPC, Los Angeles, CA) according 
to the instructions supplied by the vendor.

Proliferation assay

Proliferation assay was performed in our normal rat 
intrahepatic cholangiocyte cell line (NRIC) following 
in vitro treatment with omeprazole (0.5, 10 and 20 μM) 
for 48 h. Cell proliferation was measured as previously 
described (16,38). NRICs were seeded (7,000 cells/well) 
onto 96-well plates in complete medium and allowed to 
adhere overnight at 37 ℃. Cells were then serum-starved in 
medium containing 0.5% FBS for 24 h, washed twice with 
1x phosphate buffered saline (PBS). Cells were incubated 
for 48 h with the respective treatments, at which time 10 µL of 
Cell Titer 96 (Promega, Madison, WI) was added to each well 
(16,38). Absorbance at 490 nm was measure with a microplate 
reader (Microplate Spectrophotometer, Spectra Max 3,400 pc, 
Molecular Devices, Sunnyvale, CA). Absorbance is directly 
correlated to the number of viable cells and data is presented as 
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fold-change compared to basal (16,38).

Statistical analysis

Data are expressed as mean ± SEM. Differences between groups 
were analyzed by the Student’s unpaired t-test when two groups 
were analyzed, and by ANOVA when more than two groups 
were analyzed, followed by an appropriate post hoc test. 

Results

Evaluation of serum chemistry, IBDM in liver sections and 
cell proliferation in purified cholangiocytes

There was no significant difference in body weight between 
normal and BDL treated with omeprazole compared to 
control rats (Table 1). In agreement with other studies (4), 
the body weight of BDL rats decreased compared to normal 

rats (Table 1). As expected (4), the liver to body weight ratio 
increased in BDL compared to normal rats (Table 1). There 
was decreased liver to body weight ratio in BDL rats treated 
with omeprazole compared to BDL rats treated with saline 
for 1 week (Table 1).

In BDL rats, the serum levels of transaminases and 
bilirubin were significantly higher than those of normal 
rats (Table 1). There were no significant differences in 
the serum levels of transaminases and bilirubin in normal 
and BDL rats treated with omeprazole compared to the 
corresponding rats treated with saline for 1 week (Table 1).

There was no difference in IBDM between normal rats 
treated with saline or omeprazole for 1 week (data not 
shown). In agreement with previous studies (4,8), there was 
increased IBDM in BDL compared to normal rats (data not 
shown). Prolonged administration of omeprazole to BDL 
rats decreased IBDM compared to BDL rats treated with 
saline (Figure 1A,B). In purified cholangiocytes from BDL 

Table 1 Measurement of body weight, liver weight and liver to body weight ratio, serum chemistry and serum gastrin levels in BDL rats 
treated with saline or omeprazole for 1 week

Parameter Normal + saline 1 wk Normal + omeprazole 1 wk BDL + saline 1 wk BDL + omeprazole 1 wk

Body weight (gm) 177.1±6.4 (n=3) 202.7±10.7 (n=3) 171.7±6.7 (n=11) 162.5±5.6 (n=7)

Liver weight (gm) 8.5 ± 0.2 (n=3) 8.3±0.08 (n=3) 10.1±0.4 (n=11) 8.7±0.3 (n=7)

Liver to body weight ratio (%) 4.8±0.2 (n=3) 4.1±0.3 (n=3) 5.9±0.1a (n=11) 5.3±0.2b (n=7)

SGPT levels (Units/L) 104.5±24.2 (n=4) 76.2±2.3 (n=4) 172.1±19.6 (n=10) 153.1.±16.7 (n=10)

SGOT levels (Units/L) 185.2±27.5 (n=4) 124.7±7.34 (n=4) 357.2±20.0 (n=7) 317.8±21.5 (n=7)

Total bilirubin levels (mg/L) <0.1 (n=4) <0.1 (n=4) 10.3±0.5 (n=10) 9.4±0.4 (n=7)

Gastrin levels (pg/mL) 160.5±11.6 (n=31) 954.7±318.7a (n=28) 504.4±158.5a (n=25) 1100.7±136.3b (n=22)
a, P<0.05 vs. normal rats treated with vehicle; b, P<0.05 vs. BDL rats treated with vehicle.

Figure 1 Measurement of IBDM (by immunohistochemistry for CK-19) in liver sections from BDL rats treated with omeprazole or 
saline for 1 week. Prolonged administration of omeprazole to BDL rats decreased IBDM compared to BDL rats treated with saline (for 
semiquantitative analysis see Table 1). Orig. magn., ×125.
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rats treated with omeprazole there was reduced mRNA 
H3 histone (Figure 2A,B) and PCNA protein (Figure 2C) 
expression compared to the corresponding value from BDL 
rats treated with saline. The levels of GAPDH and β-actin 
were similar in cholangiocytes from BDL rats treated with 
saline or omeprazole (Figure 2A,B).

Measurement of secretin receptor gene expression, and 
secretin-stimulated cAMP levels and bile and bicarbonate 
secretion

There was reduced SR mRNA expression in purified 
cholangiocytes from BDL rats treated with omeprazole 
compared to cholangiocytes from BDL rats treated with 
saline (Figure 2A). The levels of GAPH were similar in 
cholangiocytes from the two experimental groups (Figure 2A).

At the functional level, prolonged treatment with 
omeprazole decreased basal cAMP levels in cholangiocytes 
of BDL rats compared to cAMP levels in cholangiocytes 
from BDL rats treated with saline (Figure 3). Furthermore, 
omeprazole inhibited secretin-stimulated cAMP synthesis 
that is enhanced by secretin in BDL rats (Figure 3). As 
expected, in BDIN rats secretin increased bile flow, and 
both bicarbonate concentration and secretion (Table 2). 
Prolonged omeprazole treatment blocked the stimulatory 

Figure 2 (A-C) Measurement of mRNA expression of H3 histone, PCNA protein expression and SR mRNA expression in purified 
cholangiocytes from BDL rats treated with omeprazole or saline for 1 week. In cholangiocytes from BDL rats treated with omeprazole 
there was reduced mRNA expression for H3 histone, PCNA protein expression and SR mRNA expression compared to the corresponding 
value from BDL rats treated with saline. Data are mean ± SEM of 2 protection assays from cumulative preparations of cholangiocytes; 
(C) Data are mean ± SEM of 8 immunoblots from cumulative preparations of cholangiocytes. *, P<0.05 vs. PCNA protein expression of 
cholangiocytes from BDL rats treated with saline for 1 week.

Figure 3 Measurement of basal and secretin stimulated cAMP levels 
in isolated cholangiocytes. Chronic administration of omeprazole 
stimulated a decrease in basal cAMP levels in rats compared to 
the saline treated BDL rats. There was an inhibition of secretin-
induced cAMP levels in the BDL rats treated with omeprazole 
compared to the control. Data are mean ± SEM of 5 evaluations 
from cumulative preparations of cholangiocytes. *, P<0.05 vs. basal 
cAMP levels of cholangiocytes from BDL rats treated with saline. 
#, P<0.05 vs. basal cAMP levels of cholangiocytes from BDL rats 
treated with saline.

A B C
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effect of secretin on bile flow, and both bicarbonate 
concentration and secretion (Table 2).

Measurement of serum levels of gastrin

To determine if omeprazole effects are mediated by changes 
in serum gastrin levels, we measured the levels of this 
gastrointestinal hormone in both normal and BDL rats treated 
with saline or omeprazole. Consistent with our previous 
findings (33), we have shown that gastrin serum levels are 
higher in BDL compared to normal rats (Table 1). Prolonged 
administration of omeprazole to normal or BDL rats increased 
gastrin serum levels compared to their corresponding values of 
normal and BDL rats treated with saline for 1 week (Table 1).

Proliferation assay

To determine if omeprazole has a dose-dependent effect on 

cholangiocyte proliferation, NRIC were stimulated with 
omeprazole for 48 h. We found that omeprazole induces a 
significant dose-dependent reduction in proliferation (Figure 4).

Discussion

The study relates to the in vivo inhibitory effect of 
omeprazole on biliary proliferation, secretin receptor gene 
expression and basal and secretin-stimulated cAMP levels 
and bile and bicarbonate secretion. Specifically, we have 
treated normal and BDL rats with omeprazole or saline for 
1 week and have demonstrated that omeprazole decreases 
IBDM in liver sections and biliary proliferation in purified 
cholangiocytes from BDL rats. Also, omeprazole decreased 
SR gene expression and both basal and secretin-stimulated 
cAMP levels in purified cholangiocytes from BDL rats, 
and secretin-induced bile and bicarbonate secretion in 
BDIN rats. Conflicting data exists regarding the role of 
omeprazole on liver cell growth. While a study has shown 
that omeprazole stimulates liver regeneration after partial 
hepatectomy by increased gastrin serum levels (39), another 
study has demonstrated an inhibitory effect of omeprazole 
on hepatic regeneration (40). Also, while a study has 
demonstrated liver tumor promoting effects of omeprazole 
in rodents (41), several other studies have provided evidence 
for anti-carcinogenic properties of omeprazole against the 
growth of human colon cancer cells both in vivo and in 
vitro (42-44). The inhibitory effects of omeprazole were 
mediated by increase serum levels of gastrin that we have 
previously shown to inhibit both hyperplastic and neoplastic 
biliary proliferation (8,25,26). The study has strong clinical 
implications since the diffuse use of proton-pump inhibitors 
may not only reduce gastric stomach secretion (45,46), but 
may ameliorate biliary disorders in chronic liver diseases.

Figure 4 Omeprazole induces a significant dose-dependent 
reduction in proliferation.

Table 2 Measurement of bile flow and bicarbonate concentration and secretion in BDIN rats treated with saline or omeprazole for 1 week

Treatment
Basal bile flow 

(l/min/kg BW) 

Secretin-induced 

bile flow 

(l/min/kg BW) 

Basal bicarbonate 

concentration 

(mEq/L) 

Secretin-induced 

bicarbonate 

concentration (mEq/L) 

Basal bicarbonate 

secretion 

(Eq/min/kg BW) 

Secretin-induced 

bicarbonate 

secretion 

(Eq/min/kg BW) 

BDIN + saline 

1 wk (n=5) 

129.4±10.7 194.7±23.8* 37.1±4.5 57.0±6.2* 4.9±0.8 11.5±2.6*

BDIN + 

omeprazole 

1 wk (n=4) 

90.5±8.9* 110.2±13.5ns 33.8±8.9 40.4±2.7ns 3.0±0.2 4.6±0.8ns

*, P<0.05 vs. the corresponding basal values of BDIN rats treated with saline; ns,  vs. the corresponding basal values of BDIN rats 

treated with omeprazole.
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A number of studies have increased our knowledge on 
the mechanisms of biliary hyperplasia in the cholestatic 
BDL model that is characterized by growth/damage 
of cholangiocytes (4,6-8,13,14,18-20,26,27,33). Using 
this model, several studies have shown that a number of 
gastrointestinal hormones and growth factors regulate 
the balance between cholangiocyte proliferation/damage 
that is key for maintaining the homeostasis of the biliary 
epithelium (4,6-8,13,14,18-20,26,27,33). We used the BDL 
model of cholestasis since it is characterized by enhanced 
gastrin serum levels (33); this would allow us to relate the 
antiproliferative effects of omeprazole on biliary growth on 
changes of gastrin serum levels. The increase in serum gastrin 
levels observed in BDL compared to normal rats (33) may be 
due to a compensatory mechanism aimed to decrease the 
enhanced biliary mass.

Supporting this view, the inhibitory effect of omeprazole 
on biliary mass was associated with enhanced gastrin serum 
levels. Although we did not observe any changes in serum 
chemistry in BDL rats treated with omeprazole compared to 
BDL rats treated with vehicle, rare cases of liver damage by 
proton pump inhibitors (e.g., pantoprazole) and omeprazole 
have been described in clinical setting (47-49). For example, 
acute liver failure (massive centrolobular necrosis without 
fibrosis) attributed to omeprazole was observed in 
a 62-year old man with gastroesophageal reflux (48). 
Controlled trial of two doses of omeprazole in 32 patients 
with duodenal ulcer described higher SGPT serum levels 
within the first 1-2 weeks, resolving rapidly on withdrawal 
of the drug (47). One female patient receiving pantoprazole 
during a corticosteroid therapy for encephalomyelitis 
disseminate developed sudden idiosyncratic hepatocellular 
damage (49). On the contrary, other studies in patients 
showed no alterations in SGPT serum levels, jaundice or 
hepatitis after omeprazole administration (50-52).

No information exists regarding the role of omeprazole 
in the regulation of biliary growth and liver damage. Thus, 
our studies due to the diffuse use of omeprazole in the 
clinical setting open the new possibility that proton pump 
inhibitors may be beneficial during the progression of 
biliary disorders. Since we demonstrated that omeprazole 
treatment decrease biliary mass in vivo and cell proliferation 
in purified cholangiocytes, we performed studies aimed 
to demonstrate that the inhibitory effects of omeprazole 
on biliary hyperplasia are due to increased serum levels 
of gastrin that we have recently demonstrate to inhibit 
hyperplastic and neoplastic biliary growth (8,25-27) and 
secretin-stimulated choleresis, a functional marker of biliary 

proliferation (4,8,13,14,35). At the functional level, the 
decrease in intrahepatic bile ductal mass was also supported 
by reduced choleretic response of large bile ducts to secretin 
(4,8,14,27,35). We also found that omeprazole can inhibit 
cholangiocyte proliferation in a cholangiocyte cell line, 
which suggests omeprazole may directly influence biliary 
proliferation. Recently, omeprazole has been identified as an 
aryl hydrocarbon receptor agonist, which may mediate its 
antiproliferative effects in several cancer cell types (53,54). 
This concept will be addressed in future studies hyperplastic 
and neoplastic cholangiocytes.

Contrasting information exists regarding the trophic or 
antiproliferative effects of gastrin on epithelia cell growth. 
For example, gastrin has been shown to stimulate the 
proliferation of enterochromaffin-like cells of the stomach 
and colon epithelial cells, (55,56) but it does not stimulate 
cell replication of the oxyntic mucosal D cells (57) and rat 
liver (58). Activation of CCK-B/gastrin receptor inhibits 
the growth of the pancreatic cell lines, MiaPaca-2 and 
Panc-1 (59), in contrast to the mitotic stimulatory effects 
observed in AR4-2J cells (60).

In conclusion, we have demonstrated that the proton 
pump inhibitor, omeprazole, inhibits biliary hyperplasia 
and liver damage concomitant with reduced cholangiocyte 
proliferation and secretin receptor gene expression and 
decreased choleretic response to secretin. The study raises 
the novel concept that proton pump inhibitors may also 
ameliorate biliary hyperplasia and liver damage.
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