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Introduction

Cancers are a severe co-morbidity of obesity, which is 
recognised as a major health issue worldwide. As obesity 
is difficult to treat, obesity-associated cancers, are a major 
concern for healthcare, requiring greater attention. It is 
estimated that obesity accounts for about 14% of cancer-
caused death (1). Thus, it is important to study obesity-
associated cancer for cancer prevention. Published 
laboratory studies have demonstrated that many cancer 

risk factors altered in obesity, such as insulin, insulin-like 
growth factor, estrogen, leptin, adiponection, IL-6, IL-17 
and TNF-α, play key roles in obesity-associated cancers 
(2-5). Obesity has also been shown to be associated with 
poorer prognosis of many cancers which may be caused by 
the increase of drug resistance to chemotherapeutic agents 
(6,7). Multiple signalling pathways have been shown to be 
activated in obesity-associated cancers (8), which could be 
responsible for the increased cancer incidences and their 
poor prognosis.
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It is not clear whether there is shared genetic basis 
between obesity and cancers. So far, more than 30 gene 
loci have been reported to be associated with obesity (9). 
Among them, fat mass and obesity associated (FTO) gene, 
a well known obesity-associated gene, is the first gene 
that has been confirmed to be related to the obesity (10). 
FTO protein is an AlkB-like 2-oxoglutarate—dependent 
nucleic acid demethylase with substrate specificity 
for 3-methylthymidine and 3-methyluracil in nuclear  
acids (11). It prefers single-stranded nuclear acids and 
thus methylated RNA rather than DNA (12,13). The 
molecular target of FTO has been identified to be N6-
methyladenosine in mRNA (14). One of the physiological 
roles of the FTO has been identified to stimulate food 
intake as it is expressed highest in hypothalamic including 
arcuate (ARC), paraventricular (PVN), dorsomedial and 
ventromedial (VMN) nuclei (15-18), which are known to 
regulate satiety.

FTO genotype is strongly associated with fat mass 
in human bodies (19). Epidemiological studies have 
shown that FTO gene has a high frequency of gain-of-
function mutations such as the mutation occurred at 
position rs9939609 (20-22). The FTO SNP rs9939609 is 
significantly associated with extremes of adiposity (23) in 
ascertained samples and body mass index (BMI) in general 
population (24). It has been demonstrated that homozygous 
“A” allele of FTO rs9939609 has 1.7 fold higher risk to be 
obese than that of “T” allele. Recently, Yang et al. reported 
that FTO affects not only the mean of BMI but also the 
variability of BMI (25). The association has been further 
demonstrated by laboratory studies. Over-expression of 
Fto in mice caused obesity (23) while knock out of Fto led 
to lean phenotype (26). In this review, we summarise the 
studies that investigated the role of FTO gene involved 
in obesity-associated colon cancer to discuss the possible 
molecular mechanisms of the colon carcinogenesis linking 
to the obesity. 

Possible link between FTO and colon cancer

Epidemiological studies have shown that the genetic 
variants at the FTO gene locus are associated with several 
cancers including breast cancer, endometrial cancer, 
pancreatic cancer and colon cancer (27). Kaklamani et al. 
reported that FTO single nucleotide polymorphisms (SNPs) 
are associated with increased risk of breast cancer (28). 
In a case-control study with 354 breast cancer cases and 
364 controls, the associations of SNPs of intron 1 of FTO 

including rs7206790, rs8047395, rs9939609 and rs1477196 
with breast cancer risk were examined (27). It was found 
that all four SNPs examined were significantly associated 
with breast cancer risk with the SNP rs1477196 showing 
the strongest association. FTO is expressed both in normal 
and malignant breast tissue and FTO genotypes could be 
one of breast cancer risk factors. 

Endometrial cancer is a cancer which is highly associated 
with obesity (29). Lurie et al. found that FTO rs9939609 is 
a susceptibility marker for white non-Hispanic women at 
higher risk of endometrial cancer (30). In a study with 832 
cases of endometrial cancer patients and 2,049 controls, 
genetic variants at 7 obesity-related genes (SEC16B/RASAL, 
TMEM18, MSRA, SOX6, MTCH2, FTO, and MC4R) 
were found to be associated with endometrial cancer after 
adjustment of BMI (31), suggesting a potential role of 
these genes in endometrial cancer which is independent of 
obesity.

Genetic variants at FTO locus have also been associated 
with pancreatic cancer. In a meta-analysis study which 
includes 13 studies with 16,277 cases and 31,153 controls, 
FTO  rs9939609 is also associated with pancreatic  
cancer (32). However, most of the participating studies 
do not take the BMI/obesity factor into account. Thus, 
it is unclear whether the association between FTO and 
pancreatic cancer is obesity-dependent or not. Tang et al.  
observed that FTO IVS1-2777AC/AA genotype is 
associated with pancreatic cancer but only limited in 
overweighted people (33).

Relatively fewer studies have reported that the FTO 
variant is associated with colon cancer. Nock et al. 
investigated the involvement of FTO in obesity-associated 
colorectal cancer in 759 Caucasians and 469 African-
Americans and found that FTO variants are positively 
associated with colorectal cancer in African-Americans (34).  
However, Lim et al .  examined the direct effect of 
polymorphisms of 15 loci (BDNF, FAIM2, FTO, GNPDA2, 
KCTD15, LYPLAL1, MC4R, MSRA, MTCH2, NEGR1, 
NRXN3, SEC16B, SH2B1, TFAP2B and TMEM18) in 2,033 
colorectal cancer cases and 9,640 controls, and found that 
only 3 loci (KCTD15 rs29941 and MC4R rs17782313) 
were associated with colorectal cancer independent of 
obesity (35). The sample size used in this study may be not 
big enough to make solid conclusion.

Taken together, epidemiological studies provide 
evidence to support that genetic variants at the FTO 
locus are associated with several cancers including colon 
cancer. The mechanisms could be obesity dependent or 
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independent (Figure 1).

Mechanisms for FTO in obesity-associated colon 
cancer

FTO protein is highly expressed in hypothalamus, a food 
intake regulating organ, indicating its possible role in 
satiety (16,18). Genetic variants at FTO locus have been 
found to be associated with satiety (36). Further studies 
have demonstrated that FTO affects the food intake rather 
than the energy expenditure (18,37-41). For example, a 
particular allele of the FTO SNP rs9939609 has an effect 
to repress satiety and increase food intake (42-46). Church 
et al. reported that over-expression of Fto in mice increased 
food intake and obesity in both standard food feeding and 
high-fat diet (HFD) feeding (47). In contrast, deletion or 
missense mutations of FTO lead to leanness (48-51). 

It has been shown that nutrition state affects the 
expression of FTO and other food intake-related genes 
including Etv5, Faim2 and Negr1 (52). Based on the studies 
on postpradial response of Fto in mice, fasting can increase 

expression of Fto and thus increase food intake (16,53,54). 
Starvation in Wistar rats resulted in an increase of both 
Fto mRNA and protein in neurons of paraventricular and 
ventromedial nucleus (53). This also provides evidence that 
FTO is involved in satiety regulation in normal conditions.

FTO can decrease monoamine such as noradrenaline, 
serotonin and dopamine, which repress food intake (55-59). 
In Fto null mice, catecholamine was increased (26). Hess 
demonstrated that FTO knock out resulted in disruption 
of dopamine pathway (60). On the other hand, FTO can 
also increase orexigenic hormones. FTO has been shown to 
increase these hormones including ghrelin, neuropeptide Y 
(NPY) and oxytocins (58,61,62). Olszewski et al. studied the 
effect of overexpression of FTO on mRNA expression of 
oxytocins, NPY and agouti-related peptide (AgPR). It was 
found that overexpression of FTO up-regulated oxytocins 
but not NPY and AgPR (61). Addition of oxytocins into 
cell culture of hypothalamic cells did not change FTO 
protein expression, suggesting the lack of feedback. Karra 
et al. showed that one allele of the FTO variant increased 
expression of ghrelin, which is known to increase food-
intake (62).

The effect of FTO on BMI can account for the increased 
cancer incidence in patients with FTO SNPs. Obesity 
is known to play an important role in colon cancer via 
increased cancer risks in obesity including insulin, estrogen, 
adipokines and inflammatory factors (63). These factors 
can activate several signalling pathways such as PI3K/Akt, 
MAPK and STAT3 which are known to play key roles 
in carcinogenesis of colon cancer. Therefore, inhibition 
of these pathways by specific small molecule inhibitors 
or phytochemicals can be used for the prevention and 
treatment of obesity-associated colon cancer (8,64,65). 
Leptin is one of the major cancer risk factors in obesity. It 
can activate several signalling pathway to increase cancer 
incidence. FTO has been shown to increase blood levels of 
leptin (66). This could be a mediator for the link between 
FTO mutations and cancer risk. It has been demonstrated 
that FTO-increased leptin increase is via obesity (66).

The mediate effect of obesity in FTO-increased 
colon cancer incidence can be further evidenced by 
the association of FTO with other obesity-associated 
diseases. It has been shown that FTO is significantly 
associated with osteoarthritis, a disease highly related with  
obesity (67). In animal models, it has been demonstrated 
that obesity increases osteoarthritis incidence and 
accelerates its progression (68). Leptin is of critical role in 
obesity-associated osteoarthritis (68-70). 

NPY 

Food 
intake 

Obesity 

Colon 
cancer 

Signaling 
pathways 

FTO 

Cyclin 
D1 

STAT3 

Fig 1. Possible link between FTO and colon cancer 

MMPs 

Ghrelin 

? 

Figure 1 Possible link between FTO and colon cancer. Over-
expression of FTO protein could increase colon cancer incidence 
via obesity dependent and independent pathways. FTO increases 
food intake via satiety hormones and thus results in obesity, 
which is known to increase colon cancer incidence. FTO could 
also activate cellular signalling molecules STAT3, cyclin D1 and 
MMPs to increase cancer incidence. FTO, Fat mass and obesity 
associated; STAT3, signal transducer and activator of transcription 
3; MMPs, matrix metalloproteinases; NPY, neuropeptide Y. 
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The role of FTO in multiple intracellular 
signalling pathways

Evidences have also shown that FTO is directly associated 
with cancer independent of obesity. Kikuchi et al . 
demonstrated that the FTO SNP rs9939609 is associated 
with pancreatic cancer risk in Japanese subjects, possibly 
through a mechanism that is independent of obesity (71). 
Iles et al. provided evidence that FTO variant increased 
melanoma independent of BMI [66]. The study showed a 
genetic variant in intron 8 of FTO, which is not linked with 
BMI, is associated with increased melanoma incidence. It 
is known that the BMI associated FTO variant is located in 
intron 1 (72).

Previous studies have shown that FTO can stimulate 
several intracellular signalling pathways important in 
carcinogenesis including signal transducer and activator 
of transcription 3 (STAT3), phosphoinositide 3-kinase/
protein kinase B (PI3K/Akt), cyclin D1 and matrix 
metalloproteinases (MMPs) (73,74). The direct effect of 
FTO on these pathways is evidence that FTO can increase 
cancer incidence independent of obesity.

FTO and STAT3

STAT3 is a transcription factor that functions as a signal 
transducer and activator. STAT3 is also considered as an 
oncogene because it promotes cell survival/proliferation, 
motility and immune tolerance. In obesity-associated 
colon cancer, STAT3 is activated (2). Activated STAT3 can 
promote carcinogenesis by mediating the functions of the 
downstream proteins through its signaling pathway. FTO 
has been demonstrated to increase the activity of STAT3. 
Over-expression of Fto in rats increased STAT3 mRNA 
expression in the arcuate nucleus of the hypothalamus (58). 
The role of FTO in the STAT3 pathway in colon cells, 
however, is yet to be elucidated.

FTO and PI3K/Akt pathway

PI3K/Akt is an important survival pathway in many 
cancers including colon cancer (75-78). Its activation in 
obesity by various factors is responsible for the increased 
carcinogenesis and drug resistance. FTO has been shown 
to regulate Akt in both neurons and adipocytes. siRNA 
silencing of Fto resulted in increased pAkt while pAMPK, 
a negative regulator of pAkt was decreased (79). However, 
how FTO protein acts on the PI3K/Akt pathway is not clear. 
The possibility of FTO-regulated PI3K/Akt pathway may 

be involved in obesity-associated colon cancer and warrant 
further studies.

FTO and Cyclin D1

Increased cell proliferation is a major hall marker 
of carcinogenesis (80,81). A major regulator of cell 
proliferation is cyclin D1; increase of cyclin D1 can promote 
cell cycle and thus increase cell proliferation (82). Cyclin 
D1 has been shown to play a key role in the carcinogenesis 
associated with adenomatous polyposis coli (APC), a tumour 
suppressor gene (83). The loss of APC gene is closely 
associated with colon cancer. Loss of APC will lead to 
accumulation of beta-catenin, which in turn interact with 
TCF/LEF family to increase gene transcription including 
cyclin D1. 

FTO has been shown to involve in the regulation of 
cell proliferation. Knockout of FTO resulted in decreased 
cyclin D1 and thus reduced cell cycle and cell proliferation 
in endometrial cells (84). This is evidence that FTO may 
involve in cell proliferation directly. However, the effect of 
FTO on cyclin D1 in colon cells has not been studied and 
warrants further studies.

FTO and MMPs

MMPs are enzymes that degrade the extra cellular matrix 
and thus play a key role in physiological activities such as 
extracellular matrix remodelling during growth (85,86). 
They have been demonstrated to play key roles in cancer 
metastasis through facilitating the detachment of cancer 
cells from original sites (85,86). MMPs can also change 
microenvironment of cancer cells to promote growth (87). 
MMPs can increase vascular endothelial growth factor (VEGF), 
a known factor in angiogenesis of tumour growth (86). 

FTO has been shown to regulate MMPs to promote 
cell migration in endometrial cancer cell line Ishikawa. 
Treatment of Ishikawa cells with estrogen at concentration of 
10-9 M up-regulated protein expression of FTO and MMPs 
via estrogen-receptors (84). Knockdown of FTO by siRNA 
resulted in decreased MMP2 and MMP9 and thus reduced 
cell migration in endometrial cells, indicating regulatory role 
of FTO in MMP production. Thus, it is proposed to target 
FTO for treatment of cancer.

FTO, estrogen and cancer risk

It has been shown that estrogen can stimulate FTO expression 
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in both mRNA and protein levels via PI3K/Akt and MAPK 
pathways in endometrial cancer cells (84). Endometrial cancer 
can be estrogen-dependent or independent (88). This 
study showed that FTO was a target protein of estrogen in 
estrogen-dependent endometrial cancer (84). Estrogen can 
bind estrogen receptor-alpha to increase cell proliferation 
and decrease apoptosis. There are several down-stream 
pathways to mediate such an effect. FTO could be one 
of them. Increased expression of FTO in turn promotes 
cell proliferation via cyclin D1. In colon cancer the role 
of estrogen is complicated; it has different effects when it 
binds to estrogen receptor-alpha and estrogen receptor-
beta (89). Estrogen receptor-beta has protective effect and 
estrogen receptor-alpha can promote carcinogenesis. It 
will be interesting to study the role of FTO in estrogen-
mediated effects in colon cancer cells.

FTO in HFD fed mouse model of obesity-
associated colon cancer

HFD is a common model for obesity and obesity-associated 
colon cancer studies. Several studies have demonstrated that 
HFD-induced obesity increased colon cancer incidence in 
mouse and rat models (90-92). Various mechanisms have 
been proposed. For example, leptin and adiponectin are the 
two major adipocytokines, which have been considered to 
be major factors in obesity-associated cancer (2,93). These 
changes could affect intracellular signalling pathways to 
increase colon cancer incidence (2). 

FTO alterations have been found in HFD-feeding 
animals. Short-term HFD-feeding decreased FTO while 
long term HF-feeding increased FTO (58,94). It indicates 
FTO expression is involved in increased colon cancer 
incidence in this model. However, it is not known how 
important FTO is in the HFD-induced obesity-associated 
colon cancer compared to other cancer risk factors.

Possible co-operation between FTO and other 
obesity-associated genes

It is now recognised that many genes may involve in the 
regulation of fat accumulation in body. More than 30 genes 
have been identified to involve in BMI in European decent 
(9,95,96). Dorajoo et al. showed that Asians including 
Chinese, Indian and Malay share some of obesity-associated 
gene mutations (96). Each gene may only contribute a small 
percentage. The outcome of obesity and obesity-associated 
cancer may be due to the co-operation of several obesity-

associated genes. 
Except FTO, other genes important in obesity have been 

identified by GWAS. Kilpelainen et al. identified IRS1 and 
SPRY2 are associated with adipocyte physiology (95). 
Fox et al. studied subcutaneous adipose tissue and visceral 
adipose tissue in 5,560 women and 4,997 men (97). It was 
found that the association between visceral/subcutaneous 
adipose tissue (VAT/SAT) ratio and rs11118316 at 
LYPLAL1 gene is the most significant while SNP in the 
FTO gene was most associated with SAT. In addition, 
rs1659258 near THNSL2 gene is associated with VAT 
in women but not men (97). Okada et al. analysed 62,245 
east Asian subjects and found several genes were associated 
with obesity including previously known SEC16B, BDNF, 
FTO, MC4R and GIPR loci as well as newly identified 
loci including CDKAL1 locus at 6p22 (rs2206734) and the 
KLF9 locus at 9q21 (rs11142387) (98).

GWAS has also identified several other genes which 
are associated with BMI and cancer such as HHEX gene 
rs1111875 mutation (99) and MC4R rs17782313 (30). 
MC4R rs17782313 is linked to increased endometrial 
cancer risk (30). The polymorphisms in HHEX have also 
linked with endometrial cancer risk although the effect was 
weak (100). A metastasis analysis showed that the association 
of FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA 
mutations with early-onset obesity were very strong (101). 
It could be an interesting topic to elucidate how these genes 
co-operate each other to affect cancer incidence. 

Prevention

Although there are abundant evidences that FTO is 
associated with increased cancer incidence including colon 
cancer, there are no prevention approaches at present. It 
has been proposed to take some preventive approaches such 
as targeting FTO in the population with over-expression 
of FTO (47). A question is that FTO is also necessary 
for physiological function of human body. It has been 
shown that an inactivating mutation of FTO (resulting 
in the p.Arg316Gln alteration) in humans caused an 
autosomal recessive lethal syndrome (102). Mice lacking 
Fto gene or dominant mutation (resulting in p.Ile367Phe) 
had reduced fat mass and thus prevented from obesity 
(103,104). However, increased postnatal lethality and 
postnatal growth retardation were also found. Therefore 
it may be not practical to ablate FTO for the prevention of 
obesity. Inhibition of FTO downstream pathways may be 
a better choice. The advantage for inhibition of pathways 
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is that it may also decrease the effect of other gene defects 
which may also activate the similar intracellular signalling 
pathways.

Phytochemicals could be used to disrupt the association 
between FTO and cancer. They are not expensive with 
low toxic and thus ideal compounds for disrupting FTO 
and obesity-induced activation of intracellular signalling 
pathways important for carcinogenesis (64). In addition, 
some phytochemicals such as beta-glucans can increase 
immune responses which can facilitate the early elimination 
of abnormal cells. Phytochemicals have now extensively 
studied for the prevention of cancer. Some of them may be 
applied to obesity-associated colon cancer such as EGCG, 
curcumin and genistein (64,89,105,106). How these 
phytochemicals act on FTO-signalling pathways has not 
been well studied and warrant further exploration.

Conclusions

Epidemiological studies indicate that FTO may be involved 
in obesity-associated colon cancer. Over-expression of 
FTO can increase food intake, leading to obesity, which can 
increase colon cancer risk and result in poorer prognosis 
and drug resistance. FTO protein may also act on different 
molecules in several survival signalling pathways such as 
cyclin D1, MMPs, STAT3 and PI3K/Akt, which play a 
crucial role in carcinogenesis. Over-expression of FTO 
protein has been shown to mediate other cancer risk factors 
such as estrogen and HFD to increase cell proliferation. 
Preventive approaches may be taken in those people with 
over-expression of FTO. Phytochemicals could be suitable 
for the prevention as they can inhibit FTO-induced 
signalling pathways.
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