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Introduction

In typical survival analysis, it is presupposed that all subjects 
are in expose to occurrence of the event. The longer the 
time of study, the higher an event is probable to approach 
one. However, practically, because of medical and early 
diagnose of cancers, a considerable percent of subjects 
survive as the population survives. In this kind of data, 
according to the presence of people with long-term survival 
(cured), making use of cured models is proposed.

Mixture cure model

This model was first presented by Boag and expanded by 
other writers including Farwell, Kuk and Chen, Sy and 
Taylor, Maller and Zhou, Peng and Dear (1-6). In this 
model, it is supposed that subjects are divided into two 
groups: first the percentage of those (θ) not affected by the 
event (cured) which can be survived by the probability of 
one, and the other percentage (1-θ) consists of those subjects 

affected by the given circumstance, and those which can be 
survived by one of the typical survival function. Population 
survival function can be reached by the following formula, 

( ) ( ) ( )1PS t S tθ θ ∗= + − [1]

The Logistic Link function is most commonly used to 
obtain the percentage of the cured members (θ).

The second cure model known as non-mixture, 
promotion time cure models, or alternatively, as bounded 
cumulative hazard model—was first presented by Yakovlev 
and Tsodikov and was expanded by Chen (7,8).

Non-mixture cure model

In this model, it is supposed that the survival function for 
population equals SP (t) = exp(–θF (t)) where θ = exp(β́X) in 
which the covariates effect could be obtained on the cure 
rate and F(t) signifies cumulative distribution function. 
In his article, Chen made used of latent variable scheme 

Original Article

Cure models in analyzing long-term survivors

Mitra Rahimzadeh1, Behrooz Kavehie2, Mohammad Reza Zali3

1Research Center for Social Determinations of Health, Alborz University of Medical Sciences, Karaj, Iran; 2National Organization for Educational 

Testing (NOET), Tehran, Iran; 3Gastroenterology and Liver diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Correspondence to: Behrooz Kavehie, Ph.D. National Organization for Educational Testing (NOET), Tehran, Iran. Email: kavehiebehrooz@yahoo.com.

Introduction: If in the process of surviving data analysis, we are confronted with a high percentage of 
censors, caused when the study comes to an end, and if the time of survey is long enough, some percentage of 
the population might have long-term survival, as a result of which we are to make careful use of cure models. 
These models are categorized based on mixture and non-mixture cure models. Following the publication of 
Chen [1999] article and the submission of a procedure based on latent variable distribution in recent years, 
non-mixture or promotion time cure model have come to attention.
Purpose: In this article, Poisson and compound Poisson models are considered for latent variable 
distribution based on which the cure rate is estimated.
Methods: Model parameters were estimated using Bayesian approach, and to compare the models fitness, 
Deviance Information Criteria (DIC) was used. The applicability of the model has been shown on some 
stomach cancer data.
Conclusions: According to DIC, Poisson and compound Poisson cure models had a better fitting in 
comparison with the typical Weibull survival model.

Keywords: Bayesian approach; compound Poisson; cure model; long-term survival

Submitted Jul 15, 2014. Accepted for publication Aug 30, 2014.

doi: 10.3978/j.issn.2224-4778.2014.09.02

View this article at: http://dx.doi.org/10.3978/j.issn.2224-4778.2014.09.02



150 Rahimzadeh et al. Cure models in analyzing long-term survivors

© AME Publishing Company. All rights reserved. Transl Gastrointest Cancer 2014;3(4):149-154www.amepc.org/tgc

in which N has Poisson distribution with θ parameter, 
signifying cancer cells which in the time of Yii =1,2,3,...,N 
composes the detectable tumor and is considered to have 
F(t) distribution independent of N. As a result, the random 
variable T defined as T = {minZi, 0≤ i ≤ N} has the survival 
function of SP (t) = exp(–θF(t)) and for N=0, with the 
probability of exp(–θ), has survival probability of one.

It should be noted that the presented models in the 
cured model, if there are not any other cure subjects, are 
returnable to the typical survival models.

In recent years, different distribution is considered for 
the latent variable N. For instance, if we consider that the 
distribution of latent variable (N) is a Bernoulli, the mixture 
cure model is obtained. Accordingly, Cooner considered 
Geometric, Bernoulli and Binominal distributions; Borges 
et al. generalized power series distribution, Rodrigues et al. 
Conway-Maxwell Poisson (COM-Poisson) distribution and 
Rahimzadeh et al. Hyper Geometric Generalized Negative 
Binomial in the promotion time cure model (9-12).

It needs to be mentioned that the distribution of latent 
variable can be any divided distribution with the possibility 
of zero (in order to define curability proportion). In 
analyzing the long term survivors, another problem, besides 
the issue of over-dispersion, is that of skew. This is an added 
reason why the distributions in the process of problem 
solving should be different.

In this article, a model is presented in which the 
distribution of latent variable is considered as the compound 
Poisson, and to estimate the model parameters in Bayesian 
approach for model parameters, the Prior Distribution is 
considered. Depending on the Markov Chain Monte Carlo 
with Posterior distributions, model parameters are estimated. 
To select the best model based on Deviance Information 
Criteria (DIC), a model with the least DIC is chosen.

Methods

In Poisson distribution, mean and variance are equal. As 
compound Poisson distribution is to some extents the Poisson 
distribution, it has a separate parameter to define variance. 
Therefore, it is more flexible than the Poisson distribution.

In the model presented by Chen, Tsodikov et al. (13) showed 
that the population survival function can be obtained as follows:
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In the function above, GN (.) is the generating probability 
function of the latent variable N (the remaining cancer 
cells after cure). If N has the Poisson distribution with 
distribution function f

e n

(N n)
n!

= =
−θθ

 n=0,1,2,… and θ >0, 
the generating possibility function will be GN (s) = exp(–
θ(1–s)) in which 0≤ s ≤1. Therefore, the population survival 
function by replacing 2 will result in SP (t) = exp(–θF(t)) and 
the cure rate will be P (N =0) = exp(–θ).

The cure model with compound Poisson:
If the random variable φ includes Poisson distribution with 

θ parameter, the random variable N is defined as follows:

1 2 ... , 0,
0, 0,

if
N

if
φτ τ τ φ

φ
+ + + >

=  =
[3]

in which τ1,τ2,... are independent random variables with 
Gamma(ν,η) distribution. In this case, Feller showed that 
the random variable N has compound Poisson distribution 
with (θ,ν,η) parameters (14).

It will be obviously known that this distribution is 
composed of two pieces: discrete piece, a positive 
probability of being equal to 0 for obtaining cure rate, and 
continuous piece, including the continuous positive value. It 
is to mention that in the discrete piece P(N =0) = exp(–θ) 
which includes the percentage of cure rate. The generating 
probabi l i ty  funct ion for  this  d is tr ibut ion equals 

ln( )( ) exp 1 1N
sG s

η

θ
ν

−    = − − −        
in which by replacement in eq. [2], 

the population survival function is resulted:

ln( ( ))( ) exp 1 1p
S tS t

η

θ
ν

−    = − − −   
     

 [4]

in which S(t) stands for the survival function in the 
promotion of time that can be considered as one of 
the typical survival functions such as Weibull, Gamma, 
Log-Normal, or Exponential piecewise. Depending 
on the parameter’s domain, the effect of the covariate 
variables can be obtained both on the parameter’s θ, 
using exponential link function, or on survival function 
parameters, using exponential link function, Logestic, 
Probit, and so forth.

To analyze data, non-mixture cure rate model with 
Poisson distribution and compound Poisson distribution 
were employed. A Weibull distribution was proposed to 
promotion of time survival function in which the survival 
function is as follows:

( ) ( )exp , 0S t e xλ αγ α= − >
                                          

and λ−∞ < < +∞

This survival function is ascending for α ≥1 values and 
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descending for α ≤1 values.
The credible interval was used to adjust the significant 

effect of covariate variables. In Bayesian approach, a 
credible interval is a probabilistic region around a posterior 
parameter and is similar in use to a confidence interval in 
frequentist approach.

To make the model identifiable, ν = η, as a result of which 
the latent variable N, containing remaining cancer cells 
after treatment, will have compound Poisson distribution 
with mean θ and variance 2

11
v

θ  + 
 .

For distribution parameters, the non-informative prior 
distributions are considered in a way that the likelihood 
functions, to estimate Bayesian parameters, has a dominated 
effect on posterior distributions. Not questioning the 
whole issue, we can assume that the prior distributions are 
independent of each other.

For regression coefficients, uniform non-informative 
distribution is presented as ( ) 1π β ∝  and for Weibull parameters 
α and λ according to their range, Normal and Gamma 
distributions are used respectively and for v parameters, 
Gamma distribution is used.

Due to the high complexity  and dimension of 
distributions of the posterior, it is not possible to find 
an analytical way to calculate the posterior distribution 
of the model parameters.  Therefore,  the Markov 
Chain Monte Carlo methods for inference about the 
model parameters are used. For this reason, sequential 
sampling of the full conditional distributions of the 
parameters using the Metropolis-Hastings algorithm 
will be built (15).The limiting probability distribution of 
these chains is a proper approximation for the posterior 
distribution parameters.

We made the comparison based on a model in which 
typical parametric survival models (without a cure rate), 
using the Weibull survival function, are considered. To 
compare the models, DIC estimation was used. This scale 
has the complexity and fitness of the model without the 
technical problems related to the non-informative of the 
prior distributions. It is defined as ( ) DDIC D Pθ= +  in which 

)(θD  represents the posterior deviation average along 
with fitness level. PD is defined as the number of effective 
parameters, showing the complexity of the model which 
equals the difference between the posterior mean of the 
deviance and the deviance of the posterior mean in model 
parameters, as to be represented by )()( θθ DDPD −= . Based 
on these criteria, the model with the lowest DIC is the best. 
The criteria are useable for any sample size and be easily 
calculated by the Markov Chain Monte Carlo methods (16).

Results

Data used in this paper is part of the data gathered from the 
retrospective study in Taleghani hospital. In this study, a total 
of 746 patients during the years 2002 and 2006 referred to 
digest section of Taleghani hospital and received treatment. 
Also by reading out their phone calls and records, their 
health conditions were surveyed. This information includes 
the type of treatment, tumor size, stage of the disease and 
demographic information such as age and gender (17). In this 
paper, we consider those people who did not have surgical 
treatment and these included 291 patients. The average age 
of patients was 61.38±12.58 years, and 70.1% of the patients 
were men. In this period, 124 people died, 56% were still 
alive, or their survival status was unknown. About 11.3% of 
patients during diagnosis period were less than 45 years old. 
To analyze data, since data analysis in Bayesian approach 
cannot use case with missing values, the cases in which main 
factors were missing were omitted. As a result, for the final 
analysis only 192 patients remained.

One of the easiest ways to identify long-term survival 
data is Kaplan-Meier survival graph. If the graph of survival 
before reaching the zero comes to a plateaus level following 
the years of exposure (Figure 1), this is the indicative of 
the presence of the cure rate. So to analyze this data, non-
mixture cure model with a Poisson and compound Poisson 
distribution was used.

Although more than half a century has passed since 
the advent of cure models, due to the complexity of these 
models, their application is not yet easily available. In 

Figure 1 Kaplan-Meier survival function graph
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STATA package there is a subprogram entitled CURREG 
by the help of which it is possible to fit the Bernoulli and 
Poisson promotion time cure models (18). Also a program 
is written in R package environment that enables fitting 
of cure models with nonparametric distribution like 
proportional hazard model (19). In the above mentioned 
programs, likelihood parameters are used to estimate 
parameters. As an alternative approach, Bayesian approach 
is used to estimate model parameters. To this end, packages 
such as WinBugs have provided a suitable environment 
to estimate model parameters using easy programming in 
Bayesian approach (20).The program used in this article 
is written in WinBugs package environment and was 
conducted by Bayesian estimation approach. To estimate 
model parameters in compound Poisson cure model, the 
following priors were used:

λ~N(0,1),α~G(1,1),ν~(1,1)
After producing samples to diagnosis the statistical 

convergence, Gelman–Rubin statistics was used to 
determine the proper burn-ins (21). Since the value of this 
statistic for all parameters is less than 1.8, 10,000 samples of 
the iterations seem to be appropriate. As a result, 100,000 
samples were produced and a sample was recorded every ten 
iterations for reduction of auto correlation within chain. To 
compare the results of the cure model and typical survival 
models, typical survival model with Weibull function was 
fitted to this data.

The results of fitting the models (compound Poisson 
and Poisson cure rate model and typical Weibull model) 
are presented in Tables 1-3. As can be seen in Tables 1-3, 
metastasis and stage of disease in all three models have 
a significant effect on the cure rate and survival function 
respectively, yet age has no significant effect. To compare 
these three models, the DIC criteria are shown in Table 4.

As shown in Table 4, the cure rate model with compound 
Poisson distribution with a DIC of 775.61 fits better than 
the Poisson cure rate model and the typical Weibull model 
with a deviation of 781.89 and 789.68. As the compound 
Poisson cure model was selected as the best model fitting 
to the data, the estimates of cure rates for this model are 
shown in Table 5. According to this table, we can see that 
the cure rate in metastasis patients is less than that in non-
metastatic patients and the more advanced the stage rate is, 
the less cure rate will be.

Discussion

Common models used in the analysis of survival data are 

Table 1 Posteriors summaries of the cure model with Poisson 
distribution

Parameter Mean SD 2.5 Percentile 97.5 Percentile

α 1.192 0.103 0.992 1.396

λ –3.538 0.274 –4.091 –3.012

Intercept –0.753 0.571 –1.967 0.281

Metastasis 0.690 0.333 0.051 1.063

Grade2 0.537 0.395 0.081 1.177

Grade3 0.979 0.424 0.199 1.851

Age 0.034 0.441 –0.751 0.670

Table 2 Posteriors summaries of the cure model with 
compound Poisson distribution

Parameter Mean SD 2.5 Percentile 97.5 Percentile

α 1.220 0.107 0.001 1.437

λ –3.707 0.330 –4.405 –3.112

Intercept –0.853 0.330 –1.586 –0.180

Metastasis 0.89 0.258 1.143 0.479

Grade2 0.642 0.327 0.181 1.091

Grade3 1.337 0.466 0.702 2.544

Age 0.067 0.261 –0.467 0.445

ν 1.834 0.418 0.807 2.798

Table 3 Posteriors summaries of the parametric Weibull model

Parameter Mean SD 2.5 Percentile 97.5 Percentile

α 0.932 0.074 0.796 1.080

Intercept –4.442 0.604 –5.704 –3.343

Metastasis –0.432 0.233 –0.904 0.012

Grade2 0.654 0.403 –0.089 1.502

Grade3 1.380 0.535 0.563 2.288

Age 0.044 0.275 –0.690 0.880

Table 4 Cure rate estimation based on the cure model with 
compound Poisson distribution

Covariates

Metastasis 

(yes, no)

Grade 1

Metastasis 

(yes, no)

Grade 2

Metastasis 

(yes, no)

Grade 3

Cure rate 32, 65 11, 41 1, 17
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very impressive. But in these models, the basic assumption 
is the occurrence of events happening with the increase of 
follow-up time. But for the analysis of survival data with 
long follow-up observation, some members are censored 
at the end of study; in this case, new models such as cure 
models are needed.

One advantage of these models besides estimating the 
cure rate is to reduce them to a common survival model 
in the absence of cure subjects. It is worth noting that the 
results of these models are reliable only if the study time 
is long enough. One of the easiest and most common ways 
to identify cure subjects is to draw Kaplan-Meier graph. 
If this graph before reaching zero comes to a plateau level 
(Figure 1), there would be evidence for the presence of 
cured members.

By comparing DIC criterion, it comes clear that both 
cure rate Poisson and compound Poisson models in 
comparison with the typical Weibull model had better 
fitting to the data.

In this study, the most important element causing 
reduction of cure rate was to metastasis cancer, which in 
many observations is known to be as the most influential 
element causing decrease in the survival of cancer patients. 
The other element was the stage of disease, which was 
categorized into three levels, and the cure rate decreased as 
the stage level increased. This finding was in coordination 
with results made from the other observations (22) while 
the age variable had no significant effect on cure rate.
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