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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that 
consist of approximately 22 nucleotides, and they post-
transcriptionally suppress the expression of many target 
genes by pairing with complementary nucleotide sequences 
in the 3’-untranslated regions of the target mRNA (1). 
A number of reports have demonstrated that many kinds 
of miRNAs regulate diverse cell fates in tumor biology, 
including cell proliferation (2), cell cycle arrest (3), 
apoptosis (4), senescence (5), the epithelial-mesenchymal 
transition (6), invasion and metastasis (7) in human cancer 
cells, suggesting the potential role of miRNAs in tumor 
initiation, progression and metastasis. Indeed, aberrant 
regulation of miRNAs has been frequently reported in a 
variety of cancers including gastrointestinal (GI) cancers 
(8,9). Interestingly, a previous report has suggested that GI 
tumors can be strictly distinguished from non-GI tumors 

by analysis of global miRNA expression profiles (8). There 
are two types of miRNAs, oncogenic and tumor-suppressive 
miRNAs, which are involved in the pathogenesis of GI 
cancers (10-14). In this review, we have focused on the 
functional role of two types of cancer-related miRNAs, 
oncogenic miR-21 (15) (Figure 1A,B) and the tumor-
suppressive miR-34 family (16) (Figure 2A,B). These 
miRNAs are commonly and frequently deregulated in GI 
cancers (9,17) and their aberrant expression is associated 
with the development and progression of GI cancers. 
Moreover, the potential clinical application of cancer-
related miRNAs as novel molecular biomarkers for cancer 
diagnosis and as novel molecular targets for anticancer 
therapy of GI cancers is discussed.

miRNAs commonly deregulated in GI cancers

Recent advances in tumor biology have revealed the 
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aberrant expression of many miRNAs in a variety of human 
cancers including GI cancers, suggesting a potential role of 
miRNAs in tumor initiation, progression and metastasis. 
Indeed a number of reports have indicated that miRNAs can 
regulate diverse cell fates in human cancer cells. In various 
cancer tissues, deregulation of miRNAs has been shown 
to be highly associated with transcriptional deregulation, 
mutations, epigenetic methylations, DNA copy number 
abnormalities and defects in the miRNA biogenesis 
machinery (18). Among the many kinds of miRNAs, two 
cancer-related miRNAs, miR-21 and miR-34, have been 
shown to be commonly and frequently deregulated in GI 
cancer tissues (9,12,17). Oncogenic miR-21 is upregulated 
and tumor-suppressive miR-34 is downregulated by 

genetic and epigenetic alterations and by an inflammatory 
microenvironment in human GI cancers.

Expression, regulation and oncogenic function 
of miR-21 in GI cancers

miR-21 is frequently upregulated in tumor tissues of a 
variety of human GI cancers compared to normal tissues 
(Table 1). Human esophageal cancers including squamous 
cell carcinomas and adenocarcinomas showed significantly 
increased miR-21 expression (19-23) in association with 
clinical stage (20,21) and lymph node metastasis (21). In 
human gastric cancers, miR-21 was upregulated (24-28) and 
its overexpression was significantly associated with tumor 

Figure 1 Oncogenic function of, and targeting therapy for miR-21 in human gastrointestinal cancers. (A) Chronic inflammation or an 
inflammatory cytokine activates STAT3 expression, leading to activation of oncogenic miR-21. miR-21 is also upregulated by gain of 
chromosome 17q23. miR-21 overexpression downregulates target genes (PTEN, CDC25A, FASL, PDCD4 and TGFβR2), contributing 
to the induction of proliferation, chemoresistance, invasion ability and stemness property and to the suppression of cell cycle arrest 
and apoptosis. Moreover, miR-21-mediated PTEN suppression activates STAT3 expression as a positive feedback loop; (B) an anti-
inflammatory drug or a JAK/STAT3 inhibitor suppresses STAT3 expression, leading to suppression of oncogenic miR-21. miR-21 is 
also downregulated by miR-21 antisense oligonucleotides and a miR-21 sponge. miR-21 suppression upregulates target genes (PTEN, 
CDC25A, FASL, PDCD4 and TGFβR2), contributing to suppression of proliferation, chemoresistance, invasion ability and stemness 
properties and to induction of cell cycle arrest and apoptosis. Moreover, upregulation of the miR-21-target PTEN suppresses STAT3 
expression as a negative feedback loop. miRNA, microRNA; STAT3, signal transducer and activator of transcription 3; PTEN, 
phosphatase and tensin homologue; CDC25A, cell division cycle 25A; FASL, FAS ligand; PDCD4, programmed cell death 4; TGFβR2, 
transforming growth factor beta receptor 2.
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size (27), clinical stage (27), and poor relapse-free and 
overall survival (28). Human colon cancers showed miR-21  
upregulation (29-34), which was associated with clinical 
stage (29,31), metastatic activity (29,30) and poor survival 
(31-34). Colorectal adenoma also exhibited significant 
miR-21 upregulation (31). In human pancreatic cancers, 
miR-21 expression was significantly higher than normal 
controls (35-41) and miR-21 upregulation was significantly 
correlated with metastatic behavior (38,40), recurrence (41) 
and poor survival (38,39,41). Human liver cancers showed 
significantly higher miR-21 expression (42-46), which was 
significantly associated with liver cirrhosis (45), clinical 
stage (45,46) and poor prognosis (45,46). Recent evidences 

also support the potential of miR-21 overexpression as a 
prognostic marker in other types of cancers (51). More 
interestingly, some recent reports have further focused on 
miR-21 upregulation in tumor stromal fibroblasts in human 
GI cancers (47-50). Stromal miR-21 overexpression was 
associated with tumor size (47), clinical stage (47), lymph 
node metastasis (47,49), shorter disease-free survival (48), 
and overall survival (50). These findings suggest a functional 
role for miR-21 overexpression in both tumor cells and 
stromal fibroblasts in the development and progression of 
GI cancers.

Two possible molecular mechanisms have been 
proposed for the upregulation of miR-21 in human GI 

Figure 2 Tumor-suppressive function of, and targeting therapy for miR-34 in human gastrointestinal cancers. (A) Genetic mutation 
or loss of chromosome 17p13 suppresses p53 expression, leading to suppression of the tumor-suppressive miR-34. miR-34 is also 
downregulated by methylation and SNPs of the promoter region and by loss of chromosomes 1p36 and 11q23. miR-34 suppression 
upregulates target genes (CDK6, MYC, BCL2, E2F3, SNAIL and NOTCH1), contributing to induction of proliferation, invasion 
ability and stemness properties and to suppression of cell cycle arrest, apoptosis and senescence. Moreover, upregulation of the miR-34-
target SIRT1 suppresses p53 expression as a negative feedback loop; (B) chemotherapy or radiotherapy activates p53 expression, leading 
to activation of the tumor-suppressive miR-34. p53 is also upregulated by Ad-p53 and CRAd-p53. miR-34 is directly upregulated by 
MRX34 and by a demethylator. miR-34 overexpression downregulates target genes (CDK6, MYC, BCL2, E2F3, SNAIL and NOTCH1), 
contributing to the suppression of proliferation, invasion ability and stemness property and to the induction of cell cycle arrest, 
apoptosis and senescence. Moreover, miR-34-mediated SIRT1 suppression activates p53 expression as a positive feedback loop. miRNA, 
microRNA; CDK6, cyclin-dependent kinase 6; BCL2, B-cell CLL/lymphoma 2; E2F3, E2F transcription factor 3; SNAIL, snail family 
zinc finger 1; Ad-p53, p53-expressing adenovirus; CRAd-p53, conditionally replicating p53-expressing adenovirus; SNP, single nucleotide 
polymorphism.
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cancer cells: (I) an inflammatory environment; and (II) 
chromosomal amplification (Figure 1A). Examples of (I) are 
the significantly higher miR-21 expression in Helicobacter 
pylori-infected gastric mucosa (25) and the up-regulation of 
miR-21 expression by the hepatitis B virus X protein (52). 
Moreover, several inflammatory cytokines have recently 
been shown to be responsible for miR-21 upregulation (32).  
miR-21 is upregulated by interleukin-6 (IL-6)-dependent 
induction of signal transducer and activator of transcription 
3 (STAT3) in human colon cancer cells (53). These 
results strongly suggest a relationship between miR-21 
upregulation and an inflammatory microenvironment. 
With regards to (II), chromosomal instability has also been 
suggested to be associated with high miR-21 expression. 
For example, miR-21 is located on human chromosome 
17q23, which is frequently amplified in GI cancers (54). 
These combined findings demonstrate that miR-21 is 
frequently overexpressed through inflammatory stimuli and 
chromosomal instability in GI cancers.

Regarding the molecular mechanism of the oncogenic 
function of miR-21 (Figure 1A), miR-21 overexpression 
promotes cell proliferation in human GI cancers through 
suppression of the phosphatase and tensin homologue 
(PTEN) gene (42,55,56). miR-21-mediated suppression of 
PTEN upregulates STAT3 expression through activation 
of the IL-6 signaling pathway (53) as a positive feedback 
loop. miR-21 induces cell cycle progression by suppressing 
cell division cycle 25A (CDC25A) in human colon cancer 
cells (57). miR-21 further functions as an anti-apoptotic 
factor by suppressing the pro-apoptotic Fas ligand 
(FASL) (58). miR-21-mediated chemoresistance (59) and 
invasion ability (60,61) are induced by suppressing the 
tumor-suppressive programmed cell death 4 (PDCD4) 
gene, whose expression is significantly downregulated 
in human GI cancers (62). miR-21 overexpression also 
induces stemness properties by suppressing transforming 
growth factor beta receptor 2 (TGFβR2) in human colon 
cancer cells (63). Thus, miR-21 overexpression is highly 
associated with the development and progression of 
human GI cancers through suppression of multiple tumor-
suppressive signaling pathways.

Expression, regulation and tumor-suppressive 
function of the miR-34 family in GI cancers

The expression levels of the miR-34 family in various types 
of cancers including GI cancers have been summarized 
in a recent review (64). This review indicates that the 

miR-34 family can be upregulated or downregulated 
in human cancer tissues. We previously reported that 
miR-34a expression was downregulated in 9 (36%) out 
of 25 human colon cancer tissues compared with the 
corresponding normal tissues (5). Since the miR-34 family  
(miR-34a, -34b and -34c) is a family of tumor suppressive 
miRNAs that are mainly induced by the tumor suppressor 
p53  gene (5,17,65-68),  the miR-34 family may be 
upregulated by DNA damage in p53-activated tumor cells 
and downregulated by genetic and epigenetic alterations in 
p53-inactivated tumor cells (12). Three possible molecular 
mechanisms have been proposed for miR-34 miRNA 
regulation, especially for the downregulation of miR-34 
family members, in human GI cancer tissues (Figure 2A): 
(I) p53 dysfunction; (II) methylation and single nucleotide 
polymorphisms (SNPs) in the promoter region; (III) 
chromosomal deletion. Regarding (I), dysfunction of the 
tumor suppressor p53 is frequently observed by mutation 
(69-71) or by deletions of chromosome 17p13 (72-74), on 
which the p53 gene is located, in more than 50% of human 
GI cancers. Regarding (II), a variety of human cancer cells 
including gastric cancers exhibit frequent hypermethylation 
of the miR-34a promoter (75). The expression of miR-34b/c  
is also downregulated through promoter hypermethylation 
in human colon cancer tissues and cell lines, although 
normal colon tissues show no methylation (76). Moreover, 
some recent reports have suggested a possible relationship 
between the SNP rs4938723 of the miR-34b/c promoter 
region and the risk of colorectal cancers (77) and liver 
cancers (78-80). Regarding (III), the location of miRNA on 
human chromosomes has been reported to be associated 
with the fragile chromosomal sites that have been detected 
in a variety of human cancers (81). In fact, miR-34a is 
located on human chromosome 1p36, which is frequently 
deleted in GI cancers (82). miR-34b/c is located on human 
chromosome 11q23, which is a fragile site that is associated 
with breast and lung cancers (81) and which has been 
identified as a colorectal cancer susceptibility locus in a 
genome-wide association study (83). These accumulating 
evidences strongly suggest that the expression of the 
miR-34 family is frequently downregulated through p53 
dysfunction, genetic and epigenetic alterations of the 
promoter region and chromosomal instability in GI cancers.

As for the molecular mechanism of the tumor-suppressive 
function of the miR-34 family (Figure 2B), miR-34 
suppresses cyclin-dependent kinase 6 (CDK6) expression 
resulting in inhibition of proliferation (84), MYC 
expression, resulting in cell cycle arrest (85), BCL2 (B-cell 



224 Tazawa et al. Role of miRNA in GI cancers

© Translational Gastrointestinal Cancer. All rights reserved. Transl Gastrointest Cancer 2015;4(3):219-235www.amepc.org/tgc

CLL/lymphoma 2) expression, resulting in apoptosis 
induction (86), E2F3 (E2F transcription factor 3) 
expression, resulting in senescence induction (5), SNAIL 
(snail family zinc finger 1) expression, resulting in inhibition 
of invasion (87), and NOTCH1 expression, resulting in 
inhibition of stemness properties (88) in human cancer cells. 
We previously showed that miR-34a overexpression causes 
not only downregulation of E2F-related genes, but also 
upregulation of p53-related genes in human colon cancer 
cells (5), suggesting that miR-34 overexpression can activate 
the p53-signaling pathway probably through a positive 
feedback loop. In fact, it has been shown that suppression 
of SIRT1 (sirtuin 1) expression by miR-34a induces p53 
activation and subsequent upregulation of p53-downstream 
target genes including p21 as a positive feedback loop (89) 
(Figure 2B). Thus, the p53-miR-34 regulatory network 
suppresses multiple oncogenic signaling pathways and the 
development and progression of GI cancers. In contrast, 
downregulation of the miR-34 family contributes to the 
activation of many miR-34-target oncogenes through 
SIRT1-mediated negative feedback loop (Figure 2A).

miRNAs as diagnostic and predictive biomarkers 
for GI cancers

Blood is a very useful sample as a non-invasive liquid biopsy 
for cancer patients. Circulating nucleic acids, including 
DNA, mRNA and miRNA in blood samples have emerged 
as having great potential as novel molecular biomarkers for 
cancer patients (90). In particular, it has recently been shown 
that detection of oncogenic miRNA overexpression in blood 
samples such as plasma and serum, is likely to be a useful 
method for the early diagnosis and prognostic prediction of 
various types of cancers (91). In contrast, tumor-suppressive 
miRNAs are often downregulated due to promoter 
hypermethylation during the pathogenesis of cancer 
development. The detection of promoter methylation status 
and the downregulation of tumor-suppressive miRNAs in 
tumor tissues is a promising biomarker for the diagnosis 
and prognosis of GI cancers. Moreover, stool samples also 
have potential as a non-invasive sample for detection of the 
DNA methylation status of GI cancer patients (92).

Upregulation of oncogenic miR-21 in blood and 
stool samples

Recent accumulating evidences have suggested the 
diagnostic and prognostic potential of circulating oncogenic 

miR-21 in blood samples from cancer patients (93). The 
expression levels of oncogenic miR-21 in plasma and 
serum were significantly higher in patients with esophageal 
cancers (94-97), gastric cancers (96,98-102), colorectal 
cancers (96,103-107), pancreatic cancers (108-114), and 
liver cancers (115-117) compared to healthy controls 
(Table 2). High miR-21 expression in plasma and serum is 
significantly associated with tumor size (95,98,102,105), 
clinical stage (97,98,100-102,104,105,108), metastatic 
activity (98,99,101,105,106,108), recurrence (94) and 
poor survival (105,108,110,113). Recently, the isolation of 
exosomes has emerged as a useful method for the detection 
of high miR-21 expression in serum from GI cancer 
patients (97,107,114,117). Some reports have shown the 
downregulation of high miR-21 expression after operation 
or chemotherapy, strongly supporting the possibility of 
tumor-derived circulating miR-21. miR-21 expression was 
also high in blood samples from patients with precancerous 
diseases, such as colorectal adenoma (105), chronic hepatitis 
B (116) and liver cirrhosis (117). In contrast, in stool 
samples, the expression of miR-21 was higher in patients 
with colorectal cancers compared to healthy controls 
(118-121), although pancreatic cancer patients did not 
show significant increases in miR-21 expression (122,123). 
These evidences suggest that detection of oncogenic miR-
21 overexpression in blood samples is a promising screening 
system for the early diagnosis and prognostic prediction of 
GI cancers. Moreover, the isolation of miRNA using stool 
samples would be a useful method for the detection of miR-
21 overexpression, especially in colorectal cancer patients.

Detection of the downregulation of the tumor-
suppressive miR-34 family by promoter 
hypermethylation in tumor and stool samples

Hypermethylation of the promoters of tumor-suppressor 
miR-34 family members has been frequently observed 
in GI tumor tissues (Table 3). The incidence of miR-34a 
promoter methylation is moderately high (13.0-79.3%) 
in GI cancers (75,124-129), although the incidence of 
miR-34a promoter methylation in gastric cancers remains 
unclear. In contrast, the incidence of miR-34b/c promoter 
methylation was quite high (40.7-100.0%) in GI cancers 
(76,124,126-133). Moreover, the incidence of promoter 
methylation in the miR-34 family was also high (75.0-
93.6%) in stool samples from colorectal cancer patients 
(128,133) and was similar to the methylation in tumor 
tissues. The promoter hypermethylation of miR-34 family 
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members was associated with their downregulation, which 
significantly correlated with clinical stage (125,131), lymph 
node metastasis (125,127,128) and distant metastasis (127). 
Recent accumulating evidences strongly suggest that 
promoter hypermethylation of the miR-34 family is a 
frequent epigenetic alteration during the development and 
progression of GI cancers, and that tumor and stool samples 
are useful for detection of the expression and methylation 
status of the miR-34 family.

miRNAs as novel molecular targets for GI 
cancers

Since the expression of miR-21 and the miR-34 family is 
commonly and frequently dysregulated in human GI cancer 
tissues (Tables 1,3), these findings suggest that miR-21 
and the miR-34 family are promising molecular targets 
for the treatment of patients with GI cancers. Human GI 
cancers show miR-21 upregulation, which is induced by 
inflammatory stimuli, STAT3 activation and chromosomal 
instability. miR-21 overexpression functions as oncogenic 
miRNA during tumor development and progression. In 
contrast, the miR-34 family members are downregulated 
by p53 dysfunct ion,  promoter  hypermethylat ion 
and chromosomal instability in human GI cancers. 
Downregulation of the miR-34 family contributes to cell 
proliferation, cell cycle progression, invasion and metastasis. 
Based on the molecular mechanism of the regulation of 
oncogenic miR-21 and the tumor-suppressive miR-34 
family, several kinds of therapeutic options for miR-21-
suppressing therapy and miR-34-activating therapy could 
be developed.

Therapeutic potential of miR-21-suppressing 
therapy

Since a variety of human cancer cells including GI cancers 
have been shown to overexpress miR-21 (24-26,28), the 
development of miR-21-target therapy that suppresses 
oncogenic miR-21 overexpression is a promising antitumor 
therapy against miR-21-overexpressing human cancers. 
There are several strategies for the suppression of oncogenic 
miR-21 upregulation in human cancer cells, such as anti-
inflammatory drugs, a STAT3 inhibitor, miR-21 antisense 
oligonucleotides and miR-21 sponges (Figure 1B). To 
suppress inflammation-mediated miR-21 upregulation, anti-
inflammatory drugs may be a useful option. For example, 
the anti-inflammatory drug, curcumin, has been shown 

to downregulate miR-21 expression in human pancreatic 
cancer cells (134). Curcumin inhibits IL-6-mediated 
STAT3 activation (135), which probably leads to miR-21 
upregulation in human colon cancer cells (53). Curcumin 
treatment may downregulate inflammation-induced miR-21 
upregulation in GI cancers. To suppress STAT3-mediated 
miR-21 upregulation more strongly than curcumin, 
inhibitors of STAT3 and JAK, which is a STAT3-activating 
kinase, may be useful reagents (136-140). In contrast, to 
suppress miR-21 upregulation due to chromosome 17q23 
gain, miR-21 antisense oligonucleotides or a miR-21 sponge 
may be effective. miRNA antisense oligonucleotides have 
been frequently used to directly and specifically suppress the 
expression of oncogenic miRNAs in preclinical experiments. 
In fact, a miR-21 antisense oligonucleotide has been shown 
to suppress miR-21 expression in human gastric cancer cells, 
resulting in suppression of cell proliferation and induction 
of apoptotic cell death (25). Recently, a biopharmaceutical 
company Regulus Therapeutics Inc. is planning a clinical 
trial of RG-012, which is an anti-miR targeting miR-21, 
for the treatment of renal dysfunction in Alport syndrome 
patients (Table 4). Moreover, a miRNA sponge, which 
contains multiple binding sites for a specific miRNA, is 
also expected to downregulate the inhibitory effect of 
endogenous miRNAs against many target genes (141).  
It has recently been shown that a miRNA sponge for 
oncogenic miR-10b, whose expression is significantly 
associated with metastasis of breast cancers, can suppress 
miR-10b as efficiently as an antisense oligonucleotide (142). 
However, the therapeutic potential of a miRNA sponge for 
oncogenic miR-21 in GI cancers remains unclear. These 
reports suggest that the use of anti-inflammatory drugs, 
STAT3/JAK inhibitors, miR-21 antisense oligonucleotides 
or a miR-21 sponge are promising anticancer strategies for 
the suppression of oncogenic miR-21 overexpression in GI 
cancers.

Therapeutic potential of miR-34-activating therapy

For activation of the miR-34 family in human GI cancers, 
the status of p53 and miR-34 abnormalities should be 
considered (12). In both p53- and miR-34-intact human 
cancer cells, conventional anticancer therapy, such as 
chemotherapy and radiotherapy, efficiently induces  
miR-34 expression through activation of endogenous 
p53 (Figure 2B) (5,65-68). However, since more than 50% 
of human GI cancers lack normal p53 function and are 
therefore deficient in p53-induced miR-34 expression, novel 
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Table 4 Clinical studies of miR-21-suppressing and miR-34-activating therapies

Drug
miRNA 

regulation
Disease Therapy type

Phase  
of study

Estimated 
enrollment  
of patient

Country Sponsor NIH identifier

RG-012 miR-21 
suppression

Alport syndrome Monotherapy I Unknown USA Regulus 
Therapeutics, 
Inc.

–

MRX34 miR-34 
activation

Primary and metastatic 
liver tumors, hematologic 
malignancies

Monotherapy I 48 USA, 
Korea

Mirna 
Therapeutics, 
Inc.

NCT01829971

miRNA, microRNA.

anticancer strategies that can induce miR-34 expression in 
p53-inactivated tumors should be considered. For induction 
of miR-34 expression in human cancer cells in which p53 
is inactivated due to mutation or to chromosome 17p13 
loss, infection with exogenous p53-expressing adenovirus 
(Ad-p53) vectors would be a useful method (Figure 2B). 
Preclinical studies have shown that a replication-deficient 
Ad-p53 vector suppresses cell proliferation and tumor 
growth through p53-mediated induction of apoptotic cell 
death in human gastric cancer cells (143,144). We previously 
reported that Ad-p53-mediated wild-type p53 transfer 
efficiently suppressed cell proliferation, tumor growth 
and angiogenesis in human colon cancer cells (145,146). 
A phase I clinical trial has shown that treatment with  
Ad-p53 was well tolerated in patients with advanced 
esophageal cancers (147). However, the low transduction 
rate of p53 gene transfer by the replication deficient Ad-
p53 is a major problem that needs to be overcome in order 
to improve the clinical outcome in patients with advanced 
GI cancers. We recently reported that combination 
therapy of Ad-p53 with a replication-competent oncolytic 
adenovirus enhances and sustains the expression level of 
the p53 protein, leading to enhanced apoptotic cell death 
of human colon cancer cells (148). Furthermore, a tumor-
specific conditionally replicating Ad-p53 (CRAd-p53) has 
been shown to enhance and sustain p53 gene expression 
more efficiently than Ad-p53 (149-151), which probably 
contributed to strong miR-34 induction in the infected 
human cancer cells. However, in order to induce miR-34  
expression in human cancer cells in which miR-34 is 
inactivated due to miR-34 family promoter methylation 
and/or loss of chromosomes 1p36 and 11q23, direct 
miR-34 upregulation by miR-34 mimics rather than p53 
replacement therapy should be attempted (Figure 2B). We 
previously reported that ectopic expression of miR-34a  

suppressed cel l  v iabi l i ty  and induced subsequent 
senescence-like growth arrest in human colon cancer 
cells with either wild-type or mutant p53 protein (5). 
Interestingly, miR-34a overexpression was recently reported 
to suppress the stemness properties of p53-mutant human 
gastric cancer cells (86), human colon cancer stem cells (88), 
and human pancreatic cancer stem cells (152). These 
findings strongly suggest that miR-34-based anticancer 
therapy can target cancer stem cells within GI cancer 
tissues (153). Recently, a phase I clinical trial of MRX34, 
which is an miR-34 mimic that induces miR-34 expression 
following introduction into cells by a liposome delivery 
system, has been conducted by Mirna Therapeutics, 
Inc. as a monotherapy in patients with advanced liver  
cancers (154) (Table 4). In the future, exploration of the 
antitumor effect of miR-34-based anticancer therapy will 
shed light on the development of novel anticancer strategies 
against GI cancers. Moreover, human cancer cells in which 
miR-34 is inactivated by promoter methylation of the  
miR-34 family would be further sensitive to demethylating 
agents, although other kinds of miRNAs may be also re-
activated after demethylating therapy.

Future direction of research on miR-21 and miR-
34 family

Genetic and epigenetic analyses using clinical samples have 
shown that oncogenic miR-21 is upregulated and tumor-
suppressive miR-34 family is downregulated in most GI 
cancers (Tables 1-3). More understanding of the precise 
molecular mechanism underlying miR-21 upregulation and 
miR-34 downregulation would be needed to develop the 
miRNA-based anticancer therapy. Recently, clinical studies 
of miR-21-suppressing and miR-34-activating therapies 
have been conducted to confirm the safe and feasibility 
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of miRNA-targeting strategy (Table 4). For the clinical 
application of miRNA-targeting therapy, we should confirm 
the therapeutic potential of miRNA normalization therapy 
in combination with conventional anticancer therapy, 
such as chemotherapy and radiotherapy. Moreover, the 
identification of drugs that suppress miR-21 and/or activate 
miR-34 would provide novel insights in developing the 
multimodal antitumor strategy targeting miRNA expression.

Conclusions

Previous studies by many cancer researchers have revealed 
that diverse genetic and epigenetic alterations in protein-
coding genes play central roles in the pathogenesis of GI 
cancers. However, since non-coding miRNAs have been 
shown to be deregulated in a variety of human cancers 
including GI cancers (8,9), it is now also necessary to 
understand the miRNA-based pathogenesis of GI cancers 
and the molecular mechanism of the interaction between 
protein-coding genes and non-coding miRNA genes (155). 
The development of an early detection system for oncogenic 
miR-21 and promoter methylation of the tumor-suppressive 
miR-34 family using clinical samples, such as tumor, blood 
and stool, would improve the clinical outcome of patients 
with GI cancers. p53 replacement therapy using Ad-p53 
and CRAd-p53 is a promising anticancer therapy against 
GI cancers with p53 dysfunction. Adenovirus-mediated 
overexpression of tumor suppressor p53 may further 
suppress oncogenic miR-21 expression through suppression 
of STAT3 expression (156,157). In contrast, in human GI 
cancers with miR-34 dysfunction, direct restoration of 
miR-34 using miR-34 mimics would be a more effective 
strategy than p53 replacement therapy for efficient induction 
of miR-34 expression. As a recent report suggested that 
combination therapy with miR-34 mimics and KRAS siRNA, 
which may suppress miR-21 expression (158), has great 
therapeutic potential in human lung cancer cells in both in 
vitro and in vivo settings (159), the combination of miR-34-
activating therapy and miR-21-suppressing therapy may be 
a promising antitumor strategy. Thus, an understanding at 
the molecular level of miRNA-mediated cancer progression 
would provide a novel platform for the development of 
miRNA-based cancer diagnosis and anticancer therapy for 
the treatment of patients with GI cancers.
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