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Introduction

Gastric cancer has a variety of phenotypes (1). One of its 
interesting features is the differences between diffuse- 
and intestinal-type gastric cancers. The epithelial-
mesenchymal transition (EMT) might explain these 
phenotypic differences. Cadherin 1, type 1, E-cadherin 
(epithelial)  (CDH1)  is  commonly up-regulated in 
intestinal-type gastric cancer. In recent studies, mutations 
or gene alterations in CDH1 have been associated with 
gastric cancer malignancy or metastatic ability. In this 
review, we describe the biological roles of CDH1 in gastric 
cancer association with EMT. Gene expression profiling 
of gastric cancer has revealed that both cancer grades and 
stages can be identified via gene signatures (2). In addition, 
gene and genome alterations have been examined to detect 
cell phenotypes. Based on a comprehensive analysis of 
the gastric cancer genome, a number of genes, including 
CDH1, tumor protein p53 (TP53), AT rich interactive 

domain 1A (SWI-like) (ARID1A), mucin 6, oligomeric 
mucus/gel-forming (MUC6), catenin (cadherin-associated 
protein), alpha 2 (CTNNA2), GLI family zinc finger 3 
(GLI3), and ring finger protein 43 (RNF43) have been 
identified as mutated driver genes (3). These findings 
suggest the significance of molecular information in cancer 
prognosis and treatment.

In several diseases, the expression of EMT-related genes, 
including CDH1, has been demonstrated to be negatively 
regulated (4-8). However, the loss of CDH1 is insufficient 
to induce EMT, suggesting that combinations of genes are 
involved in the EMT process (9). In this review, we focus on 
the biological roles of CDH1 in gastric cancer and discuss 
the cellular phenotypic alterations.

CDH1 and gastric cancer

CDH1 is one of the frequently mutated driver genes in 
gastric cancer, particularly in the diffuse-type gastric 
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cancers (3,10-13). Generally, CDH1 is up-regulated 
in intestinal-type gastric cancer and down-regulated 
in diffuse-type gastric cancers, whereas cadherin 2, 
type 1, N-cadherin (neuronal) (CDH2) is up-regulated 
in the diffuse-type gastric cancer (14). Analyses of 
CDH1- and TP53-mutated gastric cancers suggest that 
transforming growth factor-beta receptor 2 (TGFBR2) is 
a candidate driver gene that plays a role as a metastasis 
suppressor (7). Germline mutations in CDH1  have 
been associated with human hereditary diffuse gastric 
carcinoma (15,16). Analyses using the Catalogue of 
somatic mutations in cancer (COSMIC) database  
(http://www.sanger.ac.uk/genetics/CGP/cosmic/) have 
revealed that CDH1 mutations are also associated with 
diffuse-type gastric cancer (17). Whereas CDH1 is 
mutated in approximately 40% of gastric cancer cases, 
germline mutations in mitogen-activated protein kinase 
kinase kinase 6 (MAP3K6) have been associated with 
gastric cancers without CDH1 mutations (5). The -160C 
to a promoter polymorphism and haplotypes of CDH1 
have been associated with the risk of developing sporadic 
diffuse-type gastric cancer (18).

A previous study has shown that CDH1 expression was 
increased in gastric cancer cells co-expressing a putative 
mitogen-activated protein kinase activator with WD40 
repeats (MAWD) and a MAWD binding protein (MAWBP), 
and they were treated with TGF-1 (19). CDH1, SMAD 
family member 4 (Smad4) and p53 play important roles in 
gastric cancer formation (20). The loss of CDH1 and Smad4 
expression promotes diffuse-type gastric adenocarcinoma 
and metastasis (20).

Gastrokine 1, a molecule associated with gastric mucosal 
defense, is reduced in 36.4% of gastric mucosal tissues and 
is related to miR-185 expression (21). Considering that the 
Gastrokine 1-miR-185-DNA methyltransferase (DNMT) 
1 axis is suggested as a suppressor of gastric carcinogenesis, 
the influence of gastrokine-regulated methylation on tumor 
progression should be investigated (21). Indeed, CDH1 
methylation was detected in more than 80% of gastric mucosal 
tissues examined in this study (21). CDH1, claudin-10 and 
claudin-17 are down-regulated in gastric cancer (22). The 
down-regulation of CDH1 might be involved in cancer 
promotion. Germline variants of CDH1 have been identified 
in sporadic gastric cancer patients, and the involvement 
of down-regulation in CDH1 is indicated (23). In gastric 
cancer, CDH1 is also regulated through cyclooxygenase-2 
(COX-2) via the nuclear factor (NF)-κB pathway (24). 
Several somatic mutations of genes, including erb-b2 

receptor tyrosine kinase 2 (ERBB2) (HER2) and CDH1 have 
been detected in gastric cancer (25). Diffuse-type gastric 
cancer might arise from the down-regulation of CDH1 (25).  
However, the expression of ERBB2 is preferentially up-
regulated in intestinal-type gastric cancers, and the 
prognostic value of ERBB2 in gastric cancer remains 
controversial (25,26). The methylation status of CDH1 
is altered through Helicobacter pylori (H. pylori) infection  
(27-29). CDH1 expression at the plasma membrane is 
decreased in gastroesophageal junction adenocarcinoma 
associated with metastasis (30). The metastasis-associated 
gene (MTA3) is also decreased in tumor tissues, suggesting 
that  the EMT pathway is  regulated via MTA3, a 
potential prognostic factor in gastroesophageal junction 
adenocarcinoma (30). Aquaporin 3 (AQP3) is overexpressed 
in gastric cancer tissues, whereas CDH1 is expressed in 
normal gastric tissues (31). It has been suggested that AQP3 
induces EMT in gastric cancer cells (31). Appendiceal 
and intramucosal gastric signet ring cell carcinomas have 
been identified in diffuse-type gastric carcinoma patients 
with CDH1 mutations (32). Thus, whether signet ring cell 
carcinoma in the appendix is primary or metastatic should 
be carefully examined (32).

CDH1 and EMT

EMT is a switching mechanism (33). EMT typically 
occurs during early embryogenesis, and the mesenchymal-
epithelial transition (MET), the reverse phenomenon of 
EMT, might also occur during the reprogramming of 
fibroblasts through pluripotent factors (33). Epithelial 
cells convert into mesenchymal cells during EMT, which 
involves abundant molecular network alterations (33). 
Smoking reportedly induces EMT in non-small cell lung 
cancer through the HDAC-mediated down-regulation of 
CDH1 (34). The mechanism of EMT in cancer should be 
investigated in correlation with CDH1 (34). As metastasis 
is one of the causes of cancer progression, metastatic 
stem cells, which initiate metastasis, are a noteworthy  
concept (35). Metastatic stem cells may be supported 
through a stem cell niche, such as hematopoietic stem 
cells, providing insight into the metastasis mechanism 
induced by EMT (35).

In EMT-related signal pathways in the neural crest, 
SMAD-interacting protein 1 (SIP1) is a key factor in CDH1 
to CDH2 switching during development (36). CDH1 
expression is regulated through snail family zinc finger 1 
(SNAI1) (SNAIL) signaling, which induces EMT in gastric 
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cancer (37). The amplification of ERBB2, MET, and FGFR2 
is also involved in EMT induction in gastric cancer (37).

CDH1 is a major marker of epithelial cell states. In 
BGC823 human gastric cancer cells, CDH1 was up-
regulated through the siRNA-based gene knockdown of 
N-acetylglucosaminyltransferase V (GnT-V) (38). When 
considering the expression of other EMT markers, GnT-V 
might contribute to the metastasis and invasion of gastric 
cancer (38). CDH1 is down-regulated during EMT and has 
been implicated in the induction of pluripotency (39,40). 
CDH1 is also down-regulated in human cancer and has 
been correlated with increased WNT expression (41).

CDH1 and cancer stem cells (CSCs)

CDH1 expression is decreased during the EMT process, 
which might represent an essential mechanism for CSC 

maintenance (42). Considering that CSCs and EMT are 
strongly related, the CDH1 function might also be involved 
in CSC development (43). A decrease in CDH1 expression 
in hepatocellular carcinomas has been correlated with 
early recurrent disease (44). CDH1 network created by 
cBioPortal may be useful to reveal the cancer mechanism 
(Figure 1, Table 1) (45,46).

Conclusions 

In conclusion, CDH1 is a key molecule for the phenotypic 
transition of gastric cancer cells into mesenchymal states. 
CDH1 is up-regulated in epithelial cells, and the down-
regulation of CDH1 leads to EMT. The role of CDH1 as 
a marker for EMT detection and the mechanism of EMT 
via CDH1 and other molecular signaling should be further 
investigated to understand gastric cancer and CSCs.

Figure 1 Network of CDH1 (analyzed with cBioPortal and cytoscape). Gene network of CDH1 is shown. The network was analyzed 
with cBioPortal and cytoscape (http://www.cbioportal.org/; http://www.cytoscape.org/).
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Table 1 Genes in CDH1 network created by cBioPortal

Gene symbol Gene title

ARVCF Armadillo repeat gene deleted in velocardiofacial syndrome

CASP3 Caspase 3, apoptosis-related cysteine peptidase

CASP8 Caspase 8, apoptosis-related cysteine peptidase

CBLL1 Cbl proto-oncogene-like 1, E3 ubiquitin protein ligase

CDH1 Cadherin 1, type 1, E-cadherin (epithelial)

CSE1L CSE1 chromosome segregation 1-like (yeast)

CSNK2A1 Casein kinase 2, alpha 1 polypeptide

CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102kDa

CTNNB1 Catenin (cadherin-associated protein), beta 1, 88kda

CTNND1 Catenin (cadherin-associated protein), delta 1

CTNND2 Catenin (cadherin-associated protein), delta 2

CTTN Cortactin

DLG1 Discs, large homolog 1 (Drosophila)

DNM2 Dynamin 2

EGFR Epidermal growth factor receptor

EPHA2 EPH receptor A2

ERBB2 Erb-b2 receptor tyrosine kinase 2

ERBB2IP Erbb2 interacting protein

EXOC3 Exocyst complex component 3

FMN1 Formin 1

FYN FYN proto-oncogene, Src family tyrosine kinase

GDNF Glial cell derived neurotrophic factor

GNA12 Guanine nucleotide binding protein (G protein) alpha 12

HGF Hepatocyte growth factor (hepapoietin A; scatter factor)

IGF1R Insulin-like growth factor 1 receptor

IQGAP1 IQ motif containing GTPase activating protein 1

IRS1 Insulin receptor substrate 1

ITGAE Integrin, alpha E (antigen CD103, human mucosal lymphocyte antigen 1; alpha polypeptide)

ITGB4 Integrin, beta 4

ITGB7 Integrin, beta 7

JUP Junction plakoglobin

MET MET proto-oncogene, receptor tyrosine kinase

MMP3 Matrix metallopeptidase 3

MYO6 Myosin VI

NDRG1 N-myc downstream regulated 1

NEDD9 Neural precursor cell expressed, developmentally down-regulated 9

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha

PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

PIP5K1A Phosphatidylinositol-4-phosphate 5-kinase, type I, alpha

PIP5K1C Phosphatidylinositol-4-phosphate 5-kinase, type I, gamma

PKD1 Polycystic kidney disease 1 (autosomal dominant)

Table 1 (continued)
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