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Introduction

Gastric cancer is the fifth commonest cancer worldwide, 
with approximately 1 million new cases diagnosed in 
2012 (1). More than 70% of cases occur in developing 
countries, mainly in Eastern Asia (1). It is the third leading 
cause of cancer-related death, with a 5-year survival of just 
20%, which is partly attributable to our relatively poor 
understanding of the pathogenesis of gastric cancer (1-3). 
The commonest type of gastric cancer is adenocarcinoma, 
which accounts for over 95% of diagnoses (4).

Gastric adenocarcinoma is a heterogeneous, multifactorial 
disease (5). Risk factors include male gender, increasing 
age, a diet high in salty food, pickled food, red meat or 

nitrosamines, infection with Helicobacter pylori (H. pylori), 
smoking, previous gastric ulcer or gastric polyps, pernicious 
anaemia, previous vagotomy or partial gastrectomy, family 
history, history of other cancers, radiation exposure, 
immunosuppression, occupational exposure and blood 
group A (4,6). Of these, H. pylori infection, particularly 
cytotoxin-associated gene A-positive [CagA (+)] H. pylori, 
is the most important risk factor for gastric cancer and is 
responsible for at least 95% of cases (7,8).

The Lauren classification divides gastric adenocarcinoma 
into two main histological types: intestinal or diffuse (9,10). 
The pathophysiology of intestinal type gastric cancer 
is relatively well understood and involves the transition 
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through chronic gastritis, atrophy, intestinal metaplasia, 
dysplasia, intramucosal carcinoma to invasive cancer (9). 
By comparison, the development of diffuse gastric cancer 
is less well understood (9). Solcia et al. suggested that 
diffuse cancer develops from hyperplastic, non-metaplastic 
gastric glands and involves genes involved in cell-cell and 
cell-matrix interactions (11). A study by Nakayama et al. 
found that there were frequent differences in the genetic 
lineages between early [invasive gastric cancer that invades 
no more deeply than the submucosa, irrespective of lymph 
node metastases (T1, any N)] and advanced tubular gastric 
adenocarcinomas suggesting that some early cancers may 
not necessarily develop into advanced cancers and may 
instead represent a distinct variant of cancer (12).

Tumour suppressor genes (TSGs) in cancer

TSGs are genes that normally play a protective role 
in preventing the malignant transformation of cells by 
repairing DNA, inhibiting cell proliferation and initiating 
programmed cell death (apoptosis). They are involved 
in the regulation of a range of cell functions including 
cell adhesion, cell-cell interaction, cytoplasmic signal 
transduction and nuclear transcription (13).

The first identified TSG was retinoblastoma 1 (RB1) gene, 
which was discovered by Cavenee et al. in 1983 (14). This 
confirmed the “two-hit” hypothesis proposed by Knudson a 
decade earlier, based on observation of retinoblastoma cases 
and published reports, that retinoblastoma arises as a result 
of two mutational events (15). Several authors have since 
established that RB1 is lost or inactivated in many other 
more common human cancers including bladder, breast 
and lung carcinoma and that it is also a target for oncogenic 
proteins of DNA tumour viruses which may bind to RB 
family proteins inhibiting their activity at protein, rather 
than at gene, level (16,17).

Over recent decades, there has been a rapid expansion in 
the number of TSGs that have been identified in relation to 
a broad range of inherited and non-inherited human cancers 
and it has been suggested that alterations in TSGs account 
for some of the most common molecular changes in human 
carcinogenesis (18). It is hoped that greater understanding of 
the pattern of TSG expression in gastric cancer may enable 
the identification of specific biomarkers that could be used for 
early diagnosis and the development of targeted treatments.

Mutations in TSGs may result  in their  loss or 
inactivation, enabling cells to undergo uncontrolled cell 
division or malignant change resulting in the development 

of many types of human cancer. Most TSG mutations are 
acquired, although they may be inherited.

TSGs in gastric cancer

A number of TSGs have been implicated in gastric 
carcinogenesis (see Table 1).

A study by Lee et al. found that TSGs accounted for the 
majority of proteins significantly associated with survival 
in gastric carcinomas (39). Specifically, the overexpression 
of p53 and loss of expression of PTEN, E-cadherin, 
smad4, FHIT, MGMT and CD82 were all significantly 
associated with poor prognosis in gastric carcinomas (39). 
Loss of smad4 expression was more common in intestinal 
type, whilst loss of FHIT and E-cadherin expression was 
more common in diffuse type gastric carcinoma (39). 
Loss of p53 expression was more common in poorly 
differentiated tumours (39). Loss of E-cadherin, smad4, 
CD82, MGMT and PTEN expression was associated 
with advanced stage of disease whilst loss of FHIT and 
p16 expression was seen in both early and advanced 
stages of disease (39). Moreover, loss of TSG expression 
accumulates in a stepwise fashion during gastric cancer 
tumour progression and there is a significant correlation 
between this accumulation and patient survival (39). Lee  
et al. suggest that TSG expression status is one of the most 
important factors in determining the prognosis of gastric 
cancer (39).

In addition to mutations in TSG, genetic instability, 
activation of oncogenes and aberrant growth factor 
expression/receptor activation all play a role in gastric 
carcinogenesis (40). For example, in Epstein-Barr virus-
associated gastric carcinoma (EBVaGC), which accounts 
for 10% of all gastric carcinomas, global CpG island 
hypermethylation occurs via viral proteins or microRNAs 
(miRNAs) resulting in epigenetic silencing of TSGs (41,42).

Here we discuss some of the main TSGs that have been 
implicated in the development of gastric adenocarcinoma 
and present an up-to-date review of what is currently 
understood about the genetic and epigenetic mediated 
changes that may underpin gastric carcinogenesis.

TP53

Abnormalities in TP53 have been found in over half of 
human cancers including leukaemia, breast, colon and lung 
carcinoma, and TP53 mutations are the most common 
genetic alteration seen in human cancer (18). They are 
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identified in over 60% of human gastric carcinomas, 
regardless of histological type (43,44). The p53 protein plays 
a key role in cell cycle progression, preventing G1/S phase 
transition after DNA damage has occurred, allowing DNA 
repair or cell apoptosis (19). Downstream targets of p53 have 
also been shown to play a role in gastric cancer invasion (45).

Some studies have shown that abnormalities in TP53 
can occur in non-neoplastic gastric mucosa with intestinal 
metaplasia suggesting that TP53 mutations may occur 
early in gastric carcinogenesis, whilst others have 
suggested that TP53 gene mutations occur relatively late 
in the sequence of events underlying the development 

of gastric carcinoma (46,47). There is some variation 
depending on the histological type of gastric cancer, with 
TP53 mutations seen early in the development of intestinal 
type gastric cancer but late in the development of diffuse 
gastric cancer (11,39).

Hamada et al. analyzed the surgical specimens of patients 
with gastric cancer and found that there were significantly 
fewer apoptotic cells following pre-operative chemotherapy 
or radiotherapy in tumours with mutant TP53 expression 
compared to those expressing wild-type TP53, suggesting 
that TP53 mutations are associated with poorer gastric 
cancer response to chemotherapy and radiotherapy (48). 

Table 1 TSGs implicated in gastric carcinogenesis

Official full name
Official 

symbol

Genomic 

location
Role (references)

Tumour protein p53 TP53 17p13.1 Regulates target genes to induce cell cycle arrest, apoptosis, 

senescence and DNA repair (19,20)

Phosphatase and tensin homolog PTEN 10q23.3 Downregulates Akt/PKB signalling pathways that promote cell 

survival (21-23)

Cadherin 1, type 1, E-cadherin 

(epithelial)

CDH1 16q22.1 Involved in cell-cell adhesion (24)

SMAD family member 4 SMAD4 18q21.1 Regulates gene transcription (25)

Fragile histidine triad FHIT 3p14.2 Involved in purine metabolism (26)

O-6-methylguanine-DNA 

methyltransferase

MGMT 10q26 DNA repair enzyme (27,28)

CD82 molecule/KAI1 CD82 11p11.2 Tumour metastasis suppressor that can be activated by p53 (29)

Cyclin-dependent kinase inhibitor 

2A/p16

CDKN2A 9p21 Cell cycle G1 control (30)

WW domain containing 

oxidoreductase

WWOX 16q23 Induces apoptosis (31)

Gastrokine 1 GKN1 2p13.3 Induces tumour senescence (32)

Adenomatous polyposis coli APC 5q21-q22 Antagonist of Wnt signalling pathway (33). Involved in cell 

migration, adhesion, transcriptional activation and apoptosis (33)

DCC netrin 1 receptor DCC 18q21.3 A member of the immunoglobulin superfamily of cell adhesion 

molecules (34). Induces apoptosis in the absence of ligand (34)

Retinoblastoma 1 RB1 13q14.2 Negative regulator of cell cycle, maintains chromatin structure (35)

Promyelocytic leukaemia PML 15q22 Functions as a transcription factor and as a tumour suppressor, 

regulating p53 response to oncogenic signals (36)

KIAA1324 KIAA1324 1p13.3 Transmembrane protein thought to be involved in the cellular 

response to stress (37). Associated with survival in certain 

carcinomas (37)

CCAAT/enhancer binding protein 

(C/EBP), alpha

CEBPA 19q13.1 Transcription factor (38). Modulates expression of genes involved 

in cell cycle regulation (38)

TSGs, tumour suppressor genes.
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Moreover, mutant TP53 is associated with shorter life 
expectancy, not only in gastric cancer, but also in breast, 
lung and colorectal cancer (19).

Recent studies have suggested that H. pylori CagA (+) 
contributes to the inactivation of TP53 (49). The CagA 
protein is encoded by the cag pathogenicity island of 
H. pylori and interferes with the p53 tumour suppressor 
pathway resulting in an anti-apoptotic effect (50). CagA also 
targets the tumour suppressor ASPP2 (50).

PTEN

PTEN is a lipid phosphatase that dephosphorylates 
phosphatidylinositol-3,4,5-triphosphate (PIP3), reducing 
the activation of phosphoinositide 3-kinase (PI3K) and the 
serine/threonine-specific protein kinase Akt, both of which 
promote cell survival (21). Loss of PTEN increases levels 
of PIP3, increases Akt activation and consequently inhibits 
apoptosis (22).

Inactivation of PTEN may occur as a result of gene 
mutation, loss of heterozygosity (LOH), promoter 
hypermethylation or miRNA-mediated alteration in gene 
expression or post-translational modification and has been 
shown to occur in many cases of gastric cancer (51).

In gastric adenocarcinoma, mutation of PTEN is 
associated with more advanced stage of disease, poorer 
tumour differentiation, lymphatic vessel invasion and 
tumour chemoresistance (39,51,52). Wen et al. found 
that PTEN and E-cadherin protein expression are 
significantly downregulated in gastric cancer tissue 
compared with normal gastric tissue whilst PI3K, 
Akt,  MMP-2, MMP-9 and NF-κBp65 protein are 
overexpressed in gastric cancer (52).

CDH1

E-cadher in  has  been impl icated in  ear ly  gastr ic 
carcinogenesis, tumour progression, invasion and metastasis 
(7,53). Deregulation of E-cadherin may occur as a 
consequence of CDH1 gene mutation, epigenetic promoter 
hypermethylation, LOH, transcriptional modification and 
regulation by miRNAs (53). Somatic alterations in CDH1 
are found in approximately 30% of all patients with gastric 
cancer of both histological types with approximately one 
third of these having structural alterations (7.5% LOH, 
1.7% mutation) with the remainder having epigenetic 
modifications (18.4% hypermethylation) (54). Epigenetic 
modifications are more common than structural in diffuse 

gastric cancer whilst intestinal type cancer has roughly 
similar rates of structural and epigenetic changes (54). 
Structural alterations, rather than epigenetic modifications, 
of CDH1 are associated with the poorest prognosis (54).

Loss of E-cadherin expression resulting from CDH1 
gene alteration is associated with increased cancer cell 
proliferation, invasion and/or metastasis and is thought 
to be the primary carcinogenic event in hereditary diffuse 
gastric cancer (53,55,56). The cumulative lifetime risk of 
developing gastric cancer in CDH1 mutation carriers is 
quoted by Chun and Ford [2012] as being up to 80% (3). 
The level of CDH1 hypermethylation is also higher in 
gastric cancer and adjacent gastric mucosa than in normal 
gastric tissue (55). Furthermore, hypermethylation of 
CDH1 correlates with H. pylori status in gastric cancer (55). 
E-cadherin interacts with β-catenin, a proto-oncogene, 
at the cell-membrane and aberrant expression of this 
complex is also seen in gastric cancer (7).

A recent study by Wei et al. found that mRNA and 
protein expression levels of T-cadherin (another member 
of the cadherin family) are significantly lower in gastric 
cancer tissue compared with corresponding adjacent 
normal gastric tissue (57). Moreover, decreased T-cadherin 
protein expression is correlated with larger tumour size, 
lymph node metastases and higher TNM stage (57). 
Multivariate analysis reveals that T-cadherin expression is 
an independent prognostic factor for overall survival (57).

SMAD4

Mutations in SMAD4 are associated with gastric cancer 
(39,58). Loss of expression of smad4 is associated with 
advanced pT stage and poorer outcome in gastric carcinoma 
patients and is more common in intestinal compared with 
diffuse type gastric adenocarcinomas (39).

FHIT/FRA3B locus

The FHIT gene is located at the most fragile human 
chromosome site, a location which predisposes genes 
to chromosomal rearrangements that may result in 
neoplastic growth (39,59). LOH for alleles in this region 
is seen in around 50% of uncultured stomach and colon 
carcinomas and it is also lost or absent in lung, kidney 
and cervical carcinomas (59,60). Loss of FHIT protein 
expression is a significant and independent predictor of 
survival in gastric adenocarcinoma and is significantly 
correlated with diffuse type, poor differentiation and 
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advanced stage of disease (39,61).

MGMT

MGMT plays an important role in the repair of DNA 
damage and inactivation of MGMT by promoter methylation 
is implicated in gastric carcinogenesis (62,63). A study of 
gastric cancer patients by Park et al. found that MGMT 
promoter methylation was significantly associated with KRAS 
mutation, lymph node invasion, tumour stage and disease 
free survival (64). The MGMT promoter is more frequently 
methylated in advanced gastric cancer but has also been 
found in early gastric cancer and precancerous lesions (65,66).

CD82 molecule (CD82)

The CD82 molecule is a membrane glycoprotein that 
belongs to the transmembrane 4 superfamily, which act 
as inhibitors of tumour cell motility and metastasis (67). 
Reduced expression of CD82 is found in gastric cancer and 
loss of CD82 protein expression is associated with disease 
progression, metastasis and poor clinical outcome (68,69).

CDKN2A/p16

CDKN2A is more commonly methylated in gastric cancer 
compared to normal gastric tissue (70).

WW domain containing oxidoreductase (WWOX)

WWOX is a TSG, involved in the negative regulation of 
cell growth, which is frequently mutated in gastric cancer 
(71,72). It is thought to play a role in tumour progression 
by regulating the TGFβ/SMAD and Wnt signaling 
pathways and loss of WWOX expression is associated with 
more aggressive disease and poorer prognosis in a range of 
cancers including gastric carcinoma (71,73,74). Increased 
hypermethylation of WWOX is found in EBVaGC and in 
the presence of H. pylori infection (75,76).

Gastrokine 1 (GKN1)

GKN1 is a TSG, highly expressed in normal stomach (77). 
GKN1 expression is frequently lost in the presence of H. 
pylori infection and gastric cancer, particularly the diffuse 
subtype, with conflicting evidence on its expression in 
metaplasia (77-79). Reduced or lost GKN1 expression 
occurs with similar frequency in gastric adenomas and 

carcinomas, suggesting it may play a role in the early 
stages of gastric carcinogenesis (80). GKN1 plays a role 
in the inflammatory response of gastric mucosa via the 
regulation of cytokine production, the NF-κB signaling 
pathway and cyclooxygenase-2 expression, inhibits the 
carcinogenic effect of H. pylori CagA (+) and has a pro-
antioxidant effect (78). GKN1 negatively regulates cell 
survival, proliferation, colony formation, epithelial-to-
mesenchymal transition (EMT), cancer cell migration, 
invasion and metastases, and promotes apoptotic cell death 
(78,81). Moreover, expression of GKN1 is associated with 
increased tumour sensitivity to fluorouracil treatment (82).  
Loss of GKN1 is associated with significantly shorter 
survival in intestinal type gastric cancer (79).

Adenomatous polyposis coli (APC)

The APC gene is located on the long arm of chromosome 5 
close to other TSGs involved in gastric adenocarcinoma (83). 
Inactivation of APC as a consequence of germline mutations 
is seen in familial adenomatous polyposis (FAP) and as a result 
of somatic mutations in the development of a range of human 
cancers (84). Unlike colorectal cancer, changes in genes such 
as APC, though present in gastric carcinoma, are rare in gastric 
adenomas, suggesting that the adenoma-carcinoma sequence 
is less common in gastric carcinogenesis and indeed Tahara 
[2004] suggest that the sequence is found in only 20% of 
gastric adenomas with APC mutations (85,86). APC can also be 
inactivated by promoter hypermethylation (87).

Allele loss on chromosome 5q is often seen in gastric 
adenocarcinoma, particularly in well-differentiated early 
cancer (44). LOH at the APC genetic locus is found in over 
25% of cases of gastric cancer, including early cancers, 
suggesting that abnormalities in the APC gene may occur early 
in tumourigenesis (88). In advanced gastric cancer, LOH at the 
APC locus is found in 30% of informative cases (89).

DCC netrin 1 receptor (DCC)

LOH at the DCC locus is associated with well differentiated 
and advanced gastric cancer (89,90).

RB1

RB1 is involved in the negative regulation of the cell cycle at 
the G1/S transition (16,91). LOH at the RB1 locus is found 
in 30% of informative cases of advanced gastric cancer (89).  
RB1 has also been shown to be a target of miRNA-
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106b~25, which promotes cell proliferation, EMT, cell-cycle 
progression and exerts an anti-apoptotic effect (92).

Promyelocytic leukaemia (PML)

PML protein is a tumour suppressor, involved in the control of 
apoptosis and cell proliferation via p73 and the yes-associated 
protein (YAP 1), which is downregulated in gastric cancer (93).

KIAA1324

KIAA1324 is downregulated in gastric cancer and plays a role 
in the control of cell proliferation, invasion and apoptosis as 
well as inhibiting GRP78 oncoprotein (94).

CCAAT/enhancer binding protein (C/EBP), alpha (CEBPA)

CEBPA  encodes a transcription factor involved in 
inducing terminal differentiation and in the control of cell 
proliferation (95). It has been identified as a TSG in several 
types of cancer and its expression is lost in 30% of cases of 
gastric cancer (95).

Candidate TSGs

Over recent years, several putative TSG have been identified. 

These are shown in Table 2 and discussed below.

Mutated in colorectal cancers (MCC)

The MCC gene, like APC, is mapped to chromosome 5. 
A study of 24 surgical specimens of primary gastric cancer 
analysed by Tamura et al. found that LOH at the MCC 
locus occurred in all cases though other studies have found 
much lower incidences (88,106-108). Sanz-Ortega et al. 
subsequently reported the loss of MCC heterozygosity in 
intestinal metaplasia and in dysplastic lesions, in addition to 
gastric cancer (109). LOH at the MCC locus is frequently 
accompanied by LOH at the APC locus and both are found 
in differentiated and undifferentiated, early and advanced 
gastric carcinoma (106). Interestingly, a study by Rhyu et al. 
found that allelic deletion at MCC/APC was not detected in 
tumours that did not have allelic deletion of TP53, suggesting 
that MCC allelic deletions do not occur independently of 
TP53 alterations in gastric carcinogenesis (110).

FAT atypical cadherin 4 (FAT4)

FAT4 suppresses tumour growth via activation of Hippo 
signalling (111,112). In a recent study by Jung et al., loss of 
FAT4 protein expression was found in 24% of gastric cancer 
cases and was associated with increased invasiveness, high 

Table 2 Putative TSGs in gastric carcinogenesis

Official full name
Official 

symbol

Genomic 

location
Role (references)

Mutated in colorectal cancers MCC 5q21 Negatively regulates cell cycle progression (96)

Cytoplasmic polyadenylation element 

binding protein 1

CPEB1 15q25.2 Regulates mRNA translation and processing of 

3’ untranslated region (97). May play a role in cell 

proliferation and tumourigenesis (97)

ADAM metallopeptidase with 

thrombospondin type 1 motif, 9

ADAMTS9 3p14.1 Inhibits angiogenesis (98)

Paired box 5 PAX5 9p13 Transcription factor (99)

ZFP82 zinc finger protein ZFP82 19q13.12 (100)

B-cell CLL/lymphoma 6, member B BCL6B 17p13.1 (101)

FAT atypical cadherin 4 FAT4 4q28.1 Regulates planar cell polarity (102)

Zinc finger, MYND-type containing 10 ZMYND10 3p21.3 (103)

Checkpoint with forkhead and ring finger 

domains, E3 ubiquitin protein ligase

CHFR 12q24.33 Cell cycle progression and tumourigenesis (104)

STIP1 homology and U-box containing 

protein 1, E3 ubiquitin protein ligase

STUB1 16p13.3 Functions as a ubiquitin ligase/cochaperone (105)

TSGs, tumour suppressor genes.



300 Satherley et al. Tumour suppressor genes in gastric carcinogenesis

© Translational Gastrointestinal Cancer. All rights reserved. Transl Gastrointest Cancer 2015;4(4):294-307www.amepc.org/tgc

TNM stage and reduced disease-free survival time (111).

Zinc finger, MYND-type containing 10 (ZMYND10)

ZMYND10 is involved in the regulation of gastric cancer 
cell proliferation and colony formation (113). Methylation 
of ZMYND10 is significantly higher in gastric cancer 
compared with normal tissues with subsequent reduction in 
ZMYND10 protein expression levels (114).

Ubiquitin protein ligases

The CHFR gene codes for E3 ubiquitin-protein ligase and 
abnormal promoter methylation of this gene is thought to 
play a role in gastric carcinogenesis (115). The carboxyl 
terminus of Hsc-70-interacting protein (CHIP) is a U-box-
type ubiquitin ligase, the overexpression of which is 
associated with reduced gastric cancer growth (116).

Controversial TSGs in gastric cancer

Runt-related transcription factor 3 (RUNX3), a member 
of the RUNX transcription factor family, is a downstream 
effector of the TGFβ signaling pathway which regulates 
cell proliferation, apoptosis, angiogenesis, adhesion and 
invasion (117). Several studies have found that loss of 
function of RUNX3 is associated with gastric carcinogenesis 
and this effect appears to be mediated via the Akt1, TGFβ 
and Wnt signaling pathways (7,117-119). Loss of RUNX3 
is also significantly associated with the presence of H. 
pylori Cag (+), spontaneous EMT and is associated with 
the degree of gastric mucosal inflammation, atrophy and 
intestinal metaplasia (7,117). The expression of RUNX3 
also correlates with that of E-cadherin (7).

Lu et al. found that the proportion of gastric lesions with 
RUNX3 promoter methylation increased with increasing 
stage of gastric cancer progression, with promoter 
methylation evident in 16% of chronic atrophic gastritis, 
37% of intestinal metaplasia, 42% in gastric adenoma, 
55% in dysplasia and 75% in gastric cancer (120). These 
effects were more pronounced in H. pylori positive patients 
compared to those who were H. pylori negative (120).

Despite these features, however, Lotem et al. have 
recently re-appraised the evidence regarding the role of 
RUNX3 and assert that it is not a bone fide cell-autonomous 
TSG although it may have an indirect influence on tumour 
development by virtue of its important roles in immunity 
and inflammation (121).

Epigenetic changes in gastric cancer

Altered gene expression can occur not only as a consequence 
of genetic or environmental factors but as a result of 
epigenetic factors resulting in gastric carcinogenesis 
(122,123). These inheritable, but non-genetic chromosomal 
modifications, which include DNA methylation and histone 
modification, occur as a result of chromatin modifiers 
and non-coding RNA (ncRNA) and result in altered gene 
expression (123). Inactivation of TSGs in gastric cancer 
is more commonly due to epigenetic change by promoter 
methylation than it is due to mutation (124).

For example, epigenetic inactivation of hepatocyte growth 
factor (HGF) activator inhibitor type 2 (HAI-2) is found in 
gastric cancer (125). Loss or reduction in expression of the 
iroquois homeobox 1 (IRX1) TSG on chromosome 5p15.33 
is also found in gastric cancer and work by Guo et al. has 
shown that this is not due to mutations in IRX1, but rather, 
it is due to hypermethylation suppressing the transcription 
of IRX1 (126). Another study by Ling et al. found that 
N-myc downstream regulated gene 2 (Ndrg2), a candidate 
metastasis suppressor gene, is frequently downregulated in 
gastric cancer cell lines and tissues (127). Moreover, this 
effect, which occurs secondary to hypermethylation of the 
Ndrg2 promoter is associated with H. pylori infection and 
it is thought that H. pylori induces this effect by NF-κB 
activation and up-regulating DNMT3b (127).

Non-coding RNAs (ncRNAs)

ncRNAs regulate gene expression and are essential for 
the control of important cell functions including cell 
proliferation and survival (128). Deregulation of ncRNAs 
contributes to gastric cancer development by altering the 
expression of oncogenes or TSGs and by their regulatory 
effect on factors such as PTEN, E-cadherin, Akt and p53 
(128,129). They have been shown to play a major role in 
gastric cancer development, invasion and metastasis (130). 
They can be sub-divided into long non-coding (lncRNAs) 
and miRNAs (128).

miRNAs are small, endogenous single stranded RNA 
molecules that negatively regulate gene expression by 
cleaving target mRNA or inhibiting translation (131). They 
play a significant role in the development of gastric cancer 
via the regulation of cell cycle progression, invasion, motility, 
metastasis and apoptotic cell death (129,132). Altered 
expression of miRNAs has been associated with gastric 
tumour size, degree of differentiation, disease stage and the 
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presence of metastasis (130). Several previous studies have 
suggested that several miRNAs act as tumour suppressors in 
gastric carcinogenesis via a number of mechanisms including 
deregulation of E-cadherin (133-142).

lncRNAs are non-coding transcripts over 200 nucleotides 
long that have also been shown to act as oncogenes and tumour 
suppressors and may play an important role in the development 
of gastrointestinal carcinomas (143,144). They regulate gene 
expression by chromosome remodeling, transcriptional or 
post-transcriptional gene processing, resulting in a range of 
effects including imprinting, gene activation, gene repression 
and cell proliferation (145-147). In gastric cancer, lncRNAs 
have been implicated in the regulation of cell proliferation, 
cell-cell adhesion, EMT, extracellular matrix degradation, cell 
migration, invasion, metastasis, angiogenesis and tumour cell 
apoptosis (128,148,149).

Piwi-interacting RNAs (piRNAs) are a recently 
discovered class of small ncRNAs that bind specifically to 
Piwi protein family members to form piRNA compounds 
(piRC) that regulate gene-silencing pathways (130). They 
are implicated in gastric carcinogenesis and have shown 
promise as a possible peripheral blood-based diagnostic 
biomarker (150).

H. pylori and TSGs in gastric cancer

H. pylori promotes gastric carcinogenesis by a variety of 
means: it stimulates oxygen-derived free radical release 
from activated neutrophils, increases cytidine deaminase 
activity in infected gastric tissues resulting in mutations, 
CagA is secreted into gastric epithelial cells causing 
inflammation and oncogene activation, it induces epigenetic 
transformations such as promoter methylation in TSGs, 
and it induces aberrant expression of miRNAs (151).

Cumulative loss of TSGs in gastric cancer

There is a wealth of evidence to suggest that many TSGs 
may play a role in gastric cancer individually but also 
evidence to suggest that cumulative loss or abnormalities 
in these genes may also be important. A study by Cho et al. 
investigating simultaneous LOH in advanced gastric cancer, 
found that 33% of tumours informative at APC, DCC and 
RB1 loci had LOH at all three of these loci (89).

Gene therapy and TSG in gastric cancer

Improved understanding of the TSGs involved in gastric 

carcinogenesis has opened up potential opportunities for 
novel therapies involving the reintroduction of TSGs 
by gene therapy using viral or synthetic vectors (152). In 
particular, adenoviruses provide an attractive vehicle for 
gene therapy and have been used in phase III clinical trials 
to deliver wild-type TP53 to patients with head and neck 
and ovarian cancer (153). The reintroduction of TSGs by 
gene therapy is an attractive treatment strategy since it 
offers the prospect of cancer treatment without toxicity to 
nearby normal cells (154). However, there are currently a 
number of issues limiting the clinical application of gene 
therapy including concerns regarding toxicity, ethical and 
regulatory issues, practical limitations such as efficiency 
of gene transfer as well as limitations in disease response, 
which need to be overcome (155).

Reintroduction of TSGs by gene therapy aims to 
reinstate the cell’s natural regulatory mechanism for 
suppressing tumour growth but may have additional 
therapeutic effects, such as inducing apoptosis via the 
activation of other genes and increasing the sensitivity of 
cancer cells to chemotherapy (156,157).

Previous studies have shown that infection of human 
gastric carcinoma cell lines with recombinant TP53 
adenovirus vector results in inhibition of growth and 
apoptotic cell death (157,158). Meanwhile, a review by 
Ishii et al. found that reintroduction of FHIT inhibited 
in vitro tumour cell growth or tumourigenicity in 57% 
of experiments analysed (159). Moreover, experimental 
work by Ishii et al. has shown that in FHIT-deficient 
mice, orally introduced viral vector-mediated FHIT was 
associated with reduced tumour development and reversal 
of established tumours by apoptosis (160). Reintroduction 
of CDKN2A using an expression vector resulted in reduced 
gastric cancer cell growth rate and enhanced sensitivity to 
chemotherapeutic drugs (161).

Conclusions

Gastric cancer is a complex, multifactorial disease in 
which TSGs play an essential role. Genetic and epigenetic 
changes in these genes contribute to gastric carcinogenesis 
regardless of histological type at all stages of disease 
progression and show promise as potential biomarkers of 
disease or as therapeutic targets.
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