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In recent years, the relationship between interleukin-6 (IL-6), hepatobiliary inflammation, and cancer has been studied.  It 
is becoming clear that this cytokine plays an important role in the pathogenesis of both cholangiocarcinoma (CCA, cancer 
of the bile ducts) and hepatocellular carcinoma (HCC, cancer arising from the liver parenchyma). Inflammation due to 
various chronic hepatobiliary diseases including hepatitis B, hepatitis C, alcoholic liver injury, and primary sclerosing 
cholangitis (PSC) has been associated with increased levels of IL-6 and with increased rates of malignancy. In this review, 
we will summarize the current knowledge linking inflammation to hepatobiliary cancer, and discuss the key role of IL-6 
and its signaling pathways in mediating this link. We will first review the major signaling pathways that are triggered when 
IL-6 engages its receptor. These include PI3 kinase, JAK/STAT, p38 MAP kinase and others that ultimately lead to cell 
proliferation, protection from apoptosis and increased metastatic potential. We will then discuss data linking IL-6 and 
hepatobiliary cancer, namely HCC and CCA.
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 .I n t r o d u c t i o n

Cel l  sur v ival  s ignaling plays an impor tant role in the 
pathogenesis of cancer. Dysregulation of cell survival signaling 
is critical for tumor growth and progression for many reasons. 
First, aberrant cell survival mechanisms allow cells that harbor 
activated oncogenes or are genetically unstable to resist cell 
death, and thus allow progressively aggressive clones to arise. 
Furthermore, such mechanisms allow sur vival in a non-

adherent state and thereby permit metastases. In addition, these 
mechanisms contribute to tumor cell resistance to hypoxia, 
immune surveillance, chemotherapy, radiation therapy, growth 
factor deprivation and other selective environmental pressures. 
Knowledge of the mechanisms of cell survival signaling is thus 
essential for understanding the pathogenesis of cancer, and for 
developing effective therapeutic strategies.

The inflammatory cytokine, IL -6, is a multifunctional 
cytokine that plays a major role in the response of hepatic 
epithelia to inflammation (1). IL-6 has been implicated as 
an autocrine promoter of cancer growth for several human 
cancers such as CCAs (biliary tract epithelial cancers), multiple 
myeloma and prostate cancer (2,3). Knowledge of IL -6 
survival signaling in cancers is essential for the development of 
effective therapeutic strategies. Inhibition of apoptosis is a well-
characterized mechanism of cell survival. Most studies of IL-6 
signaling in hepatic and other epithelia have focused on either 
proliferation or acute phase protein production as end-points, 
and the pathways involved in these have been well characterized 
(3,4). In contrast, there is a paucity of information regarding 
intracellular mechanisms involved in mediating the survival 
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or anti-apoptotic effects of IL-6. Many different pathways are 
known to be activated by IL-6, including the JAK-STAT pathway, 
the p38 MAPK pathway, the ERK pathway and the PI3 - kinase 
pathway (5). The role of these pathways in IL-6 mediated 
survival signaling is outlined in detail below.

 .IL-6 activates several pathways involved 
in survival signaling

PI3 kinase signaling

One major pathway believed to play a pivotal role in human 
cancer progression is the phosphatidylinositol 3-kinase (PI3K)/
Akt pathway (6). Activation of Akt by cytokine treatment is 
generally mediated by phosphotidylinositol-3 kinase (PI-3 
kinase), a ubiquitous heterodimeric lipid kinase composed of 
a p85 regulatory and p110 catalytic subunit (7). IL-6 binding 
and receptor activation generally occurs by recruitment of PI-3 
kinase to the plasma membrane where it catalyzes the conversion 
of membrane phosphoinositide 4,5-bisphosphate (PIP2) in the 
D3 position to generate phosphoinositide 3,4,5-trisphosphate 
(PIP3). The accumulation of PIP3 creates docking sites for Akt 
at the plasma membrane, which binds to PIP3 via its pleckstrin 
homology domain.  Another kinase that is recruited to the 
plasma membrane by the same phospholipids is PDK-1, a 
kinase that phosphorylates Akt at Thr308 (8). Full activation of 
Akt requires its phosphorylation at a second site, Ser473. How 
Akt is phosphorylated at Ser473 is less clear but is commonly 
assumed to be a consequence of Thr308 phosphorylation. Once 
phosphorylated, the inactivation of Akt is believed to occur via 
dephosphorylation by protein phosphatase 2A (9).  

IL-6 intracellular signaling involves a complex network of 
different pathways. Among them, it has been shown that, in 
cancer cell lines, PI3K/Akt has an important role. In human 
cervical neoplasms IL-6 regulates the expression of the anti-
apoptotic protein Mcl-1 via a PI3K/Akt-dependent pathway 
and facilitates oncogenesis of human cervical cancer by inhibiting 
cellular apoptosis. IL-6-induced activation of the PI3K/Akt 
pathway is involved in protection against apoptosis, as well as 
in enhanced proliferation of multiple myeloma cells (10-12). 
Moreover, in human Hep3B hepatoma cells IL -6 leads to 
activation of the PI3K/Akt pathway necessary for the anti-
apoptotic effect of IL-6 during transforming growth factor-β 
treatment (13). It should be noted, however, that PI3K activation 
upon IL-6 treatment is observed in a cell-type specific manner; 
e.g., no significant Akt activation could be observed in IL-6-

treated HepG2 hepatoma cells (14). The molecular mechanism 
linking gp130 engagement to the activation of the PI3K/Akt 
pathway is not well understood. After IL-6 stimulation the 
adaptor protein Gab1 interacts with PI3K (15). Similarly, PI3K 
associates with the IRS-1 (insulin receptor substrate-1) adaptor 
in response to OSM (16), suggesting that both IRS-1 and Gab1 
may couple gp130 to PI3K activation.

PI3K/Akt pathway is also activated by the low-molecular-
weight GTP/GDP binding GTPase Ras, which is found 
oncogenically mutated in 30% of all human cancers (17). The 
ability of IL-6 dependent Ras/PI3K/Akt pathway to induce 
uncontrolled deregulated proliferation and tumor survival in 
human cancer cells may depend not only on activating genes 
that stimulate cellular proliferation and survival but also on 
antagonizing those genes that suppress proliferation and/
or induce apoptosis (18). Indeed, recent studies document 
the importance of IL-6-dependent activation of PI3K/Akt 
as it promotes proliferation (19), protects survival (12) and 
stimulates migration (20) of cancer cells.

JAK/STAT pathway signaling

IL-6 imparts its signal into the cell by forming a complex 
with IL -6R  and gp130, a transmembrane glycoprotein, 
and phosphorylation of signal transducer and activator of 
transcription (STATs) by gp130-associated janus kinases 
( JAKs) (21,22). The JAK-STAT pathway is a signal transduction 
cascade initiated by the binding of a cytokine to its receptor. In 
many instances this involves the recruitment and interaction 
of non-receptor protein tyrosine kinases designated Janus 
kinases and STAT proteins (signal transducers and activators 
of transcription). Upon binding ligand, receptor-associated 
JAKs become activated and mediate phosphorylation of specific 
receptor tyrosine residues. This leads to the recruitment of 
specific STATs, which are then also tyrosine-phosphorylated. 
Activated STATs are released from the receptor, dimerize, 
translocate to the nucleus, and bind to members of the γ-activated 
site (GAS) family of enhancers.

STAT proteins are latent cytoplasmic transcription factors that 
are transiently recruited to activated cytokine receptors through 
their SH2 domains. STAT3 was first described as a DNA-
binding factor from IL-6 stimulated hepatocytes, capable of 
selectively interacting with an enhancer element in the promoter 
of acute-phase genes, known as the acute-phase response 
element. Molecular definition of the factor demonstrated that 
the same protein, a close relative of STAT1, is activated by 
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the entire family of IL-6 type cytokines, which signal through 
gp130 and related receptors. After IL-6 stimulation, STAT3 
and STAT1 become phosphorylated, dimerize and translocate 
to the nucleus where they rapidly bind to DNA and trigger 
transcription of target genes. Normally, activation of STAT3 
is rapid and transient and absent in astrocytes of unlesioned 
brain (23). Mutation of tyrosine-705 to phenylalanine (Y705F) 
inhibits IL-6-induced tyrosine phosphorylation of STAT3 (24). 
A constitutively active form of STAT3 (STAT3-C) that can 
dimerize in the absence of tyrosine phosphorylation is sufficient 
to induce cellular transformation of fibroblasts and tumor 
growth in nude mice (25). These findings suggest that IL-6 may 
promote tumor development by activating STAT3.  On the other 
hand, a recent study showed that VEGF expression correlates 
with constitutive STAT3 activity in diverse cancer cell lines and 
that VEGF is regulated directly by activated STAT3 (26). Much 
more intriguing, for human cervical cancer it was demonstrated 
that IL-6 promotes tumor angiogenesis by activating VEGF via 
STAT3 (27). Therefore, IL-6 might promote tumor growth by 
facilitating neoangiogenesis.

p38 MAP kinase signaling

The p38 mitogen-activated protein kinase (p38-MAPK) pathway 
is one of several MAPKs pathways in a family which transduces 
signals from the cell membrane to the nucleus after responses to 
various stimuli (28). When stimulated, MAPKs phosphorylate 
their specific substrates at serine and/or threonine residues, 
which can either positively or negatively regulate the substrate 
and ultimately regulate the entire signaling pathway (29). The 
p38-MAPK family consists of four isotopes: p38-MAPKα, p38-
MAPKb, p38-MAPKg, and p38-MAPKδ with p38-MAPKα 
being the most common (30). The p38 MAPK pathways are 
activated in response to various environmental and cellular 
stresses, inflammation and other signals (31). Recent studies 
have suggested a role for p38 MAPK in mediating pathways 
leading to cell apoptosis and growth inhibitory signals (32). 
However, other studies with malignant cells have shown that 
activation of p38-MAPK signaling pathways may produce just 
the opposite effect: anti-apoptotic and proliferative effects, and 
various cell survival pathways (28,33). These studies suggest that 
tumor cell growth might be regulated by coordination between 
cell proliferation and apoptosis. The inability of malignant cells 
to respond to p38 MAPK signaling towards apoptosis could 
possibly be due to alterations in regulators of apoptosis that 
provide a survival advantage to the cell (34).

P38-MAPK pathways are involved in multiple cancer cell 
lines. The recently identified MAPK-like protein kinase TOPK/
PBK gene represents a likely candidate IL-6 target gene as 
suggested by its significant up-regulated expression in hybridoma 
cells induced to grow by a brief IL-6 pulse (35). PBK/TOPK 
expression is increased in highly proliferative malignant cells 
and during normal fetal development (36). Transfection of the 
TOPK gene into COS-7 cells up-regulated phosphorylation 
of p38 MAPK. Gel precipitation indicated that TOPK protein 
can be associated with p38 in vitro (37). Studies also indicate 
that a recently discovered survival pathway, involved in H-500 
rat Leydig cancer cells, is directly tied to the p38-MAPK 
pathway through mediation of CaR-induced proliferation. This 
growth leads to a higher calcium content, which ultimately 
leads to apoptosis prevention through cell survival pathways 
(38). Another such case involves survival pathways in 2F7 and 
10C9 B Non-Hodgkin's lymphoma (NHL) cells. Inhibition 
of Interleukin 10 (IL-10) secretion was found to be mediated 
by the p38-MAPK signaling pathway. P38-MAPK pathways 
induced the transcription of IL-10 which through Bcl-2, led to 
drug resistance via protection from apoptosis (39). 

Tumor cells secrete IL -6 in response to inflammatory 
cytokines such as tumor necrosis factor α (TNF-α) and IL-
1b. IL -6 secretion resulted in proliferation of malignant 
cholangiocytes. It was further shown that the interaction of IL-6 
with its receptor complex triggered the activation of MAPK 
pathways involved in cell proliferation. Several lines of evidence 
support a critical role of p38 MAPK signaling in IL-6 mediated 
signaling during growth of human tumors. IL-6 stimulation 
activates the p38 MAPK in malignant cholangiocytes, but 
not in non-malignant cholangiocytes (34,40). Furthermore, 
inhibition of p38 MAPK signaling in malignant cholangiocytes 
reduces anchorage independent growth in vitro and decreases 
xenograft growth in immunodeficient mice (41,42). In addition, 
p38 MAPK signaling activates a dominant cell survival pathway 
in response to dsRNA, a potent inducer of IL-6 expression 
in malignant cholangiocytes (43). More recent studies have 
examined the possibility of inhibiting p38-MAPK pathways 
and its potential role in adjunct therapy for cancer cell lines, or 
eventually for the chemoprevention of malignant cancer cells by 
reducing cell survival, and increasing the susceptibility of cancer 
cells to apoptosis via chemotherapeutic agents.  

Others

c-Jun NH2-terminal kinase ( JNK) constitutes one of the four 
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mammalian mitogen-activated protein kinase families: ERK, 
JNK, p38 kinase, and ERK5/big mitogen-activated protein 
kinase 1. JNK is activated in response to various stimuli and 
agents, including IL-6, translocates to the nucleus, and mediates 
the phosphorylation and activation of transcription factors, 
including c-Jun (44). Activated c-Jun participates in activator 
protein-1 (AP-1) formation. JNK, as well as AP-1, contributes 
to the regulation of cell proliferation and apoptosis during 
various physiological and pathological events, including tumor 
development (45). JNK2 has been shown to be involved in cell 
proliferation and survival in androgen-independent prostate 
cancer PC-3 cells (46). IL-6 is produced by adipocytes and 
plays a role in androgen-independent prostate cancer cell 
growth. Interestingly, serum IL-6 levels are remarkably elevated 
in patients with clinically evident hormone-resistant prostate 
cancer as compared with those with hormone-dependent 
cancer (47). Consistent with the clinical result, IL-6 is secreted 
by androgen-independent prostate cancer cells but not by 
androgen-dependent LNCaP cells (48,49). Thus, autocrine as 
well as exogenous IL-6 can promote androgen-independent 
prostate cancer cell growth. 

 .Downstream target molecules involved
 in cell survival by IL-6

IL-6 can lead to the activation of yet an additional signaling 
cascade involving PKB/Akt. Autocrine growth stimulation 
and/or apoptosis inhibition via PI3K/AKT activation have 
been suggested as the possible mechanisms for the oncogenic 
action of IL-6 (50-52). Activated AKT phosphorylates TSC2, 
thereby rendering TSC1/TSC2 complex unstable and inactive. 
Rheb, a small G protein, is no longer inhibited by the GTPase 
activating protein (GAP) activity of TSC2 (53,54). TSC1 
and TSC2 are tumor suppressors, which are often mutated in 
tuberous sclerosis, a condition characterized by the emergence 
of multi-systemic benign tumors (55,56). Rheb leads to 
activation of mTOR through an unknown mechanism (57,58). 
mTOR is a member of the phosphatidylinositol kinase-related 
protein kinase (PIKK) family. Activation of mTOR leads to 
the phosphorylation of eukaryotic initiation factor 4E-binding 
protein-1 (4E-BP1), dissociating 4E-BP1 from the mRNA 
cap binding protein eIF4E to promote protein synthesis (59). 
mTOR also affects the activity of the ribosomal protein S6 kinase 
(p70S6K) and subsequent phosphorylation of S6 ribosomal 
protein to stimulate protein translation, and p70S6K has been 

shown to be required for cancer cell survival (60).  
Over the years, studies have focused on the transcriptional 

regulation of oncogenesis. More recently, a growing emphasis 
has been placed on translational control (61). eIF-4E is a 
rate-limiting translation initiation factor that binds to the cap 
structure at the 5'-end of mRNAs of eukaryotic mRNAs as a 
component of the cap-binding complex eIF-4F that mediates the 
recruitment of ribosomes to mRNA. IL-6 rapidly phosphorylates 
the translation initiation factor eukaryotic initiation factor-4E 
and triggers anti-apoptotic responses in cholangiocarcinoma 
cells. Reduction of cellular eukaryotic initiation factor-4E by 
RNA interference decreases IL-6-induced effects on cytotoxic 
drug-induced caspase activation and apoptosis (62). Alterations 
in initiation will result in altered distribution of rRNA between 
monosome and polysome-associated fractions. Abundant 
evidence implicates translational dysregulation in promoting 
tumor growth. Aberrant expression of translationally regulated 
apoptosis regulatory genes could promote cell survival under 
otherwise detrimental environmental conditions. This could 
result in the survival of cells with inheritable genetic defects 
that may have otherwise caused cell death. eIF4E is indeed 
overexpressed in many solid tumors and tumor cell lines. The 
list includes cancers of the colon, breast, bladder, lung, prostate, 
gastrointestinal tract, head and neck, Hodgkin's lymphomas and 
neuroblastomas (63-69). Modulation of eIF-4E decreases tumor 
cell growth (70).

Substrates of Akt also include the forkhead transcription 
factor FKHR and Bad (Bcl-2/Bcl-XL-antagonist, causing cell 
death), whose phosphorylation is associated with increased 
survival or cell growth. gp130 conveys signals through this 
pathway, which lead to prevention of doxorubicin-induced 
apoptosis (71). Also, in basal cell carcinoma cells the PI3K 
pathway is crucially involved in the IL-6-mediated prevention 
of apoptosis that coincides with the up-regulation of the anti-
apoptotic protein Mcl-1 (72). Mcl-1 was also shown to be 
upregulated in cholangiocarcinoma cell lines via an IL-6/Jak/
Stat-dependent mechanism (73). Mcl-1 is a member of the BCL-
2 protein family, the best characterized protein family involved 
in the regulation of apoptotic cell death. The anti-apoptotic 
members of this family, such as Bcl-2 and Bcl-XL, prevent 
apoptosis by sequestering proforms of death-driving cysteine 
proteases called caspases (a complex called the apoptosome) or 
by preventing the release of mitochondrial apoptogenic factors 
such as cytochrome C and apoptosis-inducing factor (AIF) into 
the cytoplasm. After entering the cytoplasm, cytochrome C and 
AIF directly activate caspases that cleave a set of cellular proteins 
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to cause apoptotic changes. Thus, the Bcl-2 family of proteins 
acts as a critical life-death decision point within the common 
pathway of apoptosis. A number of studies have recently shown 
that the anti-apoptotic properties of IL-6 in cancer cells were 
associated with the expression of the Bcl-2 family proteins (74). 
The upregulation of the Bcl-xL protein was detected in human 
myeloma cell lines and patients' myeloma cells at relapse and that 
serum IL-6 levels tended to rise upon disease progression (75).

 .
Other mechanisms by which IL-6 contributes to 

chemoresistance

Chemotherapy has been one of the most effective and 
widely used means of treating cancer. A major limitation in 
chemotherapy for cancer is multidrug resistance (MDR), 
an innate or acquired phenotype, which allows cancer cells 
to resist a broad spectrum of chemotherapeutic, drugs. 
One of the most extensively studied and clinically relevant 
mechanisms of drug resistance is the overexpression by 
cancer cells of the transmembrane multidrug transporter 
P- g lyco pro te i n  (P- g p)  (7 6 ) .  P- g p  i s  encoded by  the 
multidrug resistance 1 gene (mdr1) and is believed to 
mediate multidrug resistance by reducing the intracellular 
accumulation of cytotoxic drugs and compounds. Many 
types of cancers express high levels of mdr1 and are known 
to be unresponsive to chemotherapy (77-79). In fact, P-gp 
expression has been considered to be a predictive factor of 
poor response to chemotherapy and overall survival (80-82). 
Increasing evidence has shown that mdr1 polymorphism is 
associated with functional alterations of P-gp activity and by 
this mechanism may interfere with efficacy or toxicity of anti-
cancer treatment (82).

Human cancer cells selected for multidrug resistance to 
common chemotherapeutic agents demonstrate increased 
expression of IL -6 (83). The development of multidrug 
resistance, however, has posed major barriers limiting the 
efficacy of chemotherapy and hence cancer treatment (84). 
The expression of IL-6 in drug-sensitive breast cancer cells 
induces mdr1 gene expression and, in correlation, increases 
the resistance of the cells to doxorubicin treatment. IL-6 is 
expressed and secreted by multidrug-resistant breast cancer 
cel ls,  whereas no IL -6 gene expression is found in the 
parental drug-sensitive cells (85). Despite the expression of 
a large number of genes selectively expressed in multidrug-
resistant cells, only a few of these genes have been shown 

to increase resistance to chemotherapeutic drugs (86). The 
expression of IL-6 in non-IL-6-producing breast tumor cells 
induces drug resistance, indicating that the production of 
IL-6 protects the cells from cytotoxic agents. The induction 
of mdr1 gene expression is a potential mechanism by which 
IL -6 provides drug protection. Other studies have shown 
that inhibition of IL-6 secretion in prostate cancer cell lines 
increases the sensitivity of these cells to anticancer drugs 
(87). Thus, some tumor cells may acquire the ability to 
express and produce IL-6 as a protective mechanism against 
drug-induced death. 

 .IL-6, inflammation and hepatobiliary cancer

The relationship between chronic inflammation and cancer has 
been well established (88). It was Virchow who first proposed 
this link in 1863 (89), and recent epidemiologic studies 
have proven him to be correct for many types of cancer.  It 
is estimated that 15% of human cancers are associated with 
chronic infections (90,91). Some well-known associations of 
this kind are gastric cancer with H. pylori infection, colorectal 
cancer w ith inf lammator y bowel disease,  and bladder 
cancer with schistosomiasis. Chronic inflammation plays an 
important etiological role in hepatobiliary cancer as well. 
Rates of hepatocellular carcinoma (HCC) are significantly 
increased by chronic viral hepatitis, and cholangiocarcinoma 
(CCA) is associated with primary sclerosing cholangitis, a 
chronic inflammatory disorder. A better understanding of the 
mechanisms underlying these relationships will likely lead to 
new and better treatment options for these malignancies. Given 
that HCC and CCA are among the deadliest of human cancers 
and often refractory to current chemotherapy regimens, it will 
be important to further elucidate the molecular mechanisms 
underlying carcinogenesis so that more targeted therapies can be 
developed. IL-6 has been known for many years as an important 
pro-inflammatory cytokine produced by the liver during the 
acute phase response. However, recently the role of IL-6 in 
promoting various human cancers has been discovered. Here we 
will focus on recent advances in our understanding of the role of 
IL-6 in promoting HCC and CCA.    

 .IL-6 and hepatocellular carcinoma

Early studies in rats provided the first clue that IL-6 may be 
important in the pathogenesis of HCC. It was shown that a 
highly metastatic cell line derived from rat HCC produced much 
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higher levels of IL-6 than poorly metastatic cells derived from 
the same tumor (92). In addition, when the poorly metastatic 
cells were engineered to overexpress IL-6 using a retroviral 
vector, they gained the ability to metastasize, particularly to the 
abdominal wall (93). The authors of these studies concluded 
that IL-6 is critical for HCC cells to gain the ability to spread 
beyond the liver. It has been known for some time that, in 
humans, IL-6 levels are increased in serum from patients with 
chronic liver disease including cirrhosis and HCC (94,95). 
However, IL-6 levels are significantly higher in HCC patients 
when compared to cirrhotic patients who do not have cancer 
(96). Interestingly, this was associated in one study with a single 
nucleotide polymorphism (SNP) in the promoter region of the 
IL-6 gene at the -174 position. The G allele at this position was 
associated with higher levels of IL-6 only in HCC patients, not 
in cirrhotics. Other studies have shown that levels of IL-6 are 
correlated with the size of the tumor in HCC (97). Furthermore, 
higher IL-6 levels have been associated with progression from 
chronic viral hepatitis to HCC. In one study of chronic hepatitis 
C patients, IL-6 was shown to be an independent risk factor 
for development of HCC (98). Interestingly, this correlation 
only held true for female patients. The relationship between 
gender, IL-6 and HCC will be discussed in more detail later in 
this review. In another study of patients with chronic hepatitis 
B, a serum IL-6 concentration above 7 pg/mL was associated 
with progression to HCC. The positive and negative predictive 
values at this cutoff were 72% and 71%, respectively (99). These 
studies have led some to the hypothesis that IL-6 may be useful 
as a prognostic marker for HCC, however not all studies thus far 
have supported this notion (100).  

Another line of evidence linking IL-6 to HCC comes from 
studies showing aberrant IL -6 signaling in HCC cells. As 
outlined in detail above, IL-6 signals through several different 
well-characterized pathways involved in cell proliferation and 
survival. Multiple studies have linked both positive and negative 
regulators in these pathways to the pathogenesis of HCC. For 
example, the suppressor of cytokine signaling (SOCS)-1 and -3 
genes are well known negative regulators of IL-6 signaling that 
act as inhibitors of the JAK/STAT pathway (101). Yang et al. 
have shown that hypermethylation of the SOCS-1 promoter 
is associated with HCC (102). Among nine tumor suppressor 
genes examined, SOCS-1 was the gene found to be most 
frequently hypermethylated in a sample of tumors from 51 
HCC patients. Sixty-five percent (33/51) of these tumors 
were found to contain SOCS-1 promoter hypermethylation. 
In addition, SOCS-1 was one of three tumor suppressor genes 

shown to be preferentially methylated in HCC versus cirrhotic 
patients without HCC. SOCS-1 promoter methylation was also 
found to be more prevalent among HCC patients who were 
hepatitis C virus (HCV)-positive than those who were HCV-
negative. Interestingly, other studies have suggested that HCV 
itself causes down-regulation of the SOCS-1 gene through the 
HCV core protein via a mechanism independent of promoter 
methylation (103). Other potential mechanisms linking chronic 
hepatitis C to HCC have been reviewed elsewhere (104). Recent 
studies have suggested a similar relationship exists between 
SOCS-3 and HCC.  In a rat model of chemically-induced 
HCC, STAT-3 activity was found to be increased (105). Using 
a hepatocyte-specific Socs3 knockout mouse model, Riehle et 
al. demonstrated that STAT-3 and ERK-1/2 phosphorylation 
were increased in response to IL -6 stimulation following 
partial hepatectomy. This correlated with increased hepatocyte 
proliferation and development of HCC in response to a chemical 
carcinogen (106). Another study using these hepatocyte-
specific Stat3 knockout mice showed that STAT-3 target genes 
including Bcl-XL, Bcl-2 and cyclin-D were produced at higher 
levels and that hepatocytes from these mice displayed increased 
resistance to apoptosis (107). This study also demonstrated that 
in humans, HCC tissue expressed significantly higher levels of 
SOCS-3 than surrounding normal liver tissue. Another negative 
regulator of JAK/STAT signaling, SHP-2, has also been shown 
to act as a tumor suppressor in HCC, further implicating the 
IL-6 and JAK/STAT pathway in promotion of this disease (108). 
Other signaling pathways downstream of IL-6 have also been 
linked with HCC. Recent studies have implicated JNK (109) 
and c-Jun (110) in promotion of HCC, further highlighting the 
importance of IL-6 signaling in this disease process. Mutations 
in the IL-6 receptor, gp130, have also been identified which 
appear to predispose to HCC. Sixty percent of inflammatory 
hepatocellular adenomas have gp130 mutations that result 
in constitutive activation of IL-6 signaling (111). A subset of 
these tumors with wild-type gp130 has been shown to harbor 
STAT-3 mutations in the SH2 domain that produce the same 
effect independent of IL-6 and gp130. Although inflammatory 
hepatocellular adenomas are benign liver tumors, combination 
of the above gp130 or STAT-3 mutations with other oncogenic 
mutations, such as β-catenin, lead to development of HCC (112).

There has been some interesting progress recently on the role 
of gender and obesity in HCC and the possible role of IL-6 in 
these relationships. It has been well established that HCC occurs 
more frequently in men than women, and epidemiologic studies 
have suggested that this may be due to the protective effects of 
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Figure 1. Schematic representing the proposed role of IL-6 in hepatobiliary carcinogenesis. Abbreviations: NF-κB: Nuclear factor kappa B; 
TNF-α: Tumor necrosis factor alpha; IL-1: interleukin-1; IL-6: interleukin-6; PI3-K: Phosphatidyl inositol-3-kinase; JAK: Janus-activated kinase; 
JNK: c-Jun N-terminal kinase; TOPK: T-LAK Cell-Originated Protein Kinase; AP-1: Activator protein 1; HCC: Hepatocellular carcinoma; CCA: 
cholangiocarcinoma.
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estrogens.  However, the mechanistic explanation for this has 
been unclear. A recent study by Naugler et al. has suggested a 
potential role for IL-6 (113). The authors showed that male mice 
produce greater amounts of IL-6 in response to the chemical 
carcinogen diethylnitrosamine (DEN), and that the IL-6 gene 
is required for the gender disparity in HCC rates. Furthermore, 
they showed that this disparity is also dependent on MyD88, an 
adaptor protein required for Toll-like receptor signaling which 
is known to activate IL-6 gene expression.  A subsequent study 
also showed that, in female mice, estrogen acts to suppress IL-6 
production by Kupffer cells and this correlates with decreased 
rates of HCC development (114). In recent years evidence has 
accumulated that links obesity to different inflammatory diseases 
and cancer (115,116). HCC is among the cancers for which 
there is substantial evidence implicating obesity as a risk factor 
(117). However, the mechanisms underlying this relationship 
are largely unknown. Recent studies have shed some light on 
this issue. For over a decade, it has been known that IL-6 levels 
are increased in overweight and obese patients, and the level 
of serum IL-6 correlates with BMI (118). Furthermore, it has 
been shown that weight loss leads to a decrease in IL-6 levels 
in obese women. More direct evidence of a link between IL-6, 
obesity and HCC was provided by Park et al. who demonstrated 
that, in mice, obesity induced by a high-fat diet potentiates the 
development of HCC in response to DEN treatment (119). 
However, IL-6-/- mice fed a high fat diet and then treated with 
DEN did not develop HCC any faster than those fed a low-fat 
diet. The authors concluded that IL-6 is required for obesity to 
increase the risk of HCC in mice.

 .IL-6 and cholangiocarcinoma

Cholangiocarcinoma, or cancer of the bile ducts, is the second 
most common type of primary hepatobiliary cancer next to 
HCC.  Like HCC, CCA has several well-established associations 
with infectious and non-infectious chronic inflammatory 
conditions. Risk factors for CCA include primary sclerosing 
cholangitis, long-standing intraductal gallstone disease, and 
infestation with the liver fluke parasites Clonorchis sinensis 
and Opisthorchis viverrini (120). The molecular mechanisms 
underlying CCA pathogenesis are much less well understood 
than those for HCC, but data are emerging suggesting a critical 
role for proinflammatory signaling, particularly IL-6 and its 
associated pathways.  Similar to HCC, increased levels of IL-6 
have been demonstrated in serum from CCA patients. IL-6 
levels in one study were not only elevated in CCA patients 

compared to healthy controls, but they were elevated to a greater 
extent in CCA than in HCC or colorectal cancer patients (121). 
In addition, serum IL-6 levels correlated with tumor burden and 
were significantly decreased two weeks after surgical resection 
of CCA. Other studies have evaluated the potential for IL-6 as 
a diagnostic and prognostic tool in CCA. Tangkijvanich et al. 
showed that detectable levels of IL-6 (0.18 ng/mL) were able 
to distinguish between CCA and benign biliary disease with a 
sensitivity and specificity of 71.1% and 90%, respectively (122). 
The authors propose that IL-6 in combination with CA-19-9, 
a conventional tumor marker for CCA, may provide superior 
diagnostic accuracy and sensitivity. It should be noted that 
this study was performed using patients from Thailand where 
CCA is particularly prevalent, presumably due to high rates of 
Opisthorchis viverrini infestation. Another study performed in 
Korea showed that IL-6, at a cut-off value of 0.25 ng/ml, provides 
a sensitivity and specificity of 73% and 92%, respectively. This 
study also examined the effect of photodynamic therapy (PDT) 
on levels of IL-6. PDT is an emerging treatment for CCA in 
which an intravenous photosensitizer is administered followed 
by illumination at the appropriate wavelength. This treatment 
leads to an apoptotic and anti-angiogenic response (123). 
Interestingly, in CCA patients following PDT, IL-6 serum levels 
dropped approximately 7-fold, again suggesting an important 
relationship between IL-6 and CCA (124). 

Recently studies have begun to link aberrations in IL-6 
signaling to the development of CCA. The earliest clues came 
from studies showing that IL-6 functions as an autocrine growth 
factor in CCA cell lines and that this effect was dependent on 
p38 and p44/p42 MAPK signaling (40,125). Subsequently, 
IL-6 was shown to mediate cell survival in CCA cell lines 
via increased telomerase activity as well as upregulation of 
Mcl-1 and glucocorticoid kinase (2,126,127). Furthermore, 
studies have demonstrated that IL-6 promotes cholangiocyte 
proliferation through epigenetic mechanisms. Methylation of the 
Egfr and Socs-3 genes has been shown to be dependent on IL-6 
in malignant human cholangiocytes (128,129). Additionally, 
micro RNA's (miRNA) have recently been implicated in IL-6 
mediated cancer signaling. miRNA's are small non-coding 
RNA molecules that have recently been implicated in the 
pathogenesis of many different types of cancer (130). miR-370 
was identified as a miRNA that is downregulated in response 
to IL-6 overexpression in malignant human cholangiocytes 
(131). miR-370 was also shown to specifically target MAP3K8, 
an important proliferative signaling molecule. This effect was 
found to be dependent on DNA methylation and coincide 
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with increased expression of DNA methyltransferase enzyme-1 
(DNMT-1). Other miRNA molecules have also been implicated 
in IL-6-mediated oncogenesis. Braconi et al. recently showed 
that two miRNA's that are downregulated by IL-6, miR-148a 
and miR-152, specifically target DNMT-1 (132). Furthermore, 
overexpression of miR-148a and miR-152 correlates with 
increased expression of the tumor suppressor genes, Rassf1a and 
p16INK4a, and with reduced proliferation of a CCA cell line. 

 .Future directions

Primary hepatobiliary cancers are among the deadliest of human 
cancers and we are in desperate need of new and better therapies 
for these diseases. It will be important to further characterize the 
mechanisms underlying carcinogenesis of both HCC and CC 
in order to develop more targeted therapeutics. Here we have 
outlined the main signaling pathways that are thought to link 
IL-6 to hepatobiliary cancer and highlighted some of the recent 
work implicating chronic inflammation and the pleiotropic 
cytokine IL-6, in the pathogenesis of HCC and CC (Figure 1). 
Current and future work on IL-6- based therapeutics provides 
hope for better outcomes in patients suffering from these 
diseases. 
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