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Cholangiocarcinoma pathogenesis: Role of the tumor microenvironment
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Cholangiocarcinoma is a tumor that originates from the neoplastic transformation of the epithelial cells of the intrahepatic 
or extrahepatic bile ducts. This type of cancer is difficult to diagnose, extremely aggressive, and has very poor prognosis. 
It is also relatively resistant to chemotherapy and radiation therapy. Its pathogenesis is poorly understood, however it is 
known that the tumor microenvironment is a very important factor in the regulation of tumor angiogenesis, invasion, and 
metastasis. The current knowledge about the mechanisms by which these events are regulated as well as the role of the 
tumor microenvironment in the pathogenesis and classification of cholangiocarcinoma will be discussed. 
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 .I n t r o d u c t i o n

Cholangiocarcinoma is a tumor that arises from the malignant 
transformation of the epithelial cells of the intrahepatic or 
extrahepatic bile ducts. This type of liver cancer has very 
poor prognosis and is extremely aggressive with symptoms 
unobservable until there is a blockage of the bile duct by the 
tumor. Treatment of cholangiocarcinoma by chemotherapy and 
radiation therapy is not very effective; leaving surgical resection 
of the tumor as the only treatment option. Further study of the 
factors that lead to tumor initiation, promotion, and progression 
is necessary to be able to design alternative treatments for this 
devastating illness. The tumor microenvironment is a very 
important factor in the regulation of tumor angiogenesis, 
invasion, and metastasis; however, the mechanisms by which 
these events are regulated remain mostly unknown. The goal 
of this review is to discuss the current knowledge about the 

role of the tumor microenvironment in the pathogenesis 
and classification of cholangiocarcinoma as well as recent 
advancements in the development of therapies directed at the 
tumor microenvironment. 

 .Cholangiocarcinoma origin, epidemiology 
and risk factors

Cholangiocarcinoma originates from the neoplastic transformation 
of cholangiocytes into intrahepatic, perihilar, or distal extrahepatic 
tumors (1). Usually, cholangiocarcinomas are adenocarcinomas 
and have poor prognosis with restricted treatment alternatives. 
This is partly due to the late onset of symptoms and relative 
resistance to the therapies currently available (2). 

The incidence of intrahepatic and extrahepatic cholangiocarcinoma 
varies by geographic region, with the highest being in Asian 
countries. Intrahepatic cholangiocarcinoma mortality rates 
have continuously increased since 1970, conversely, deaths 
due to extrahepatic cholangiocarcinoma have been decreasing 
in most countries. Men are slightly more likely to develop 
cholangiocarcinoma, while incidence increases with age in both 
sexes (3). As mentioned above, cholangiocarcinoma incidence 
varies by geographic region. This is partly due to the distribution 
of risk factors by region and ethnic groups (4). Regional risk 
factors share the involvement of chronic inflammation and 
biliary irritation (5). In Asian countries, prevalence of this 
disease is associated with infection by pathogens that include 
liver flukes, Hepatitis B, and Hepatitis C. Meanwhile, in Western 
countries, 90% of patients diagnosed with cholangiocarcinoma 
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lack any of the reported risk factors (4). However, certain risk 
factors are associated with the remaining 10% of cases, these 
include chronic inflammation, primary sclerosing cholangitis, 
obesity, hepatolithiasis, bacterial infection, and/or bile stasis-
related chronic cholangitis (6-8).

 .Tumor microenvironment

The tumor microenvironment is made up of neoplastic epithelial 
cells, a biologically complex stroma constituted of various types 
of stromal cells and the extracellular matrix (9). Stromal cells, 
particularly inflammatory cells, vascular endothelial cells, and 
fibroblasts, have been shown to actively support tumor growth 
in murine models of tumorigenesis (10-13). Additionally, the 
microenvironment has been shown to play a role in neoplastic 
transformation, progression, metastasis and invasion of cancer 
cells (10,13). Also, resistance to radiotherapy and chemotherapy 
is influenced by the interaction between the cancer cells and 
the tumor microenvironment (14,15). There is evidence that 
shows that the interaction between the cancer cells and stromal 
cells of the microenvironment is bi-directional and dynamic. 
Neoplastic cells can secrete factors that recruit and activate 
stromal cells into the tumor microenvironment in a paracrine 
fashion. Stromal cells that have been recruited and activated 
can then release factors into the extracellular milieu that can 
stimulate or inhibit tumor growth (16-18). Vascular endothelial 
cell proliferation and recruitment leading to the formation of 
new blood vessels provides the tumor with the nutrient supply 
necessary for its growth and metastasis. Cancer-associated 
fibroblasts can stimulate angiogenesis as well as promote 
tumor growth and invasion. The immune cells present in the 
tumor microenvironment, tumor-associated macrophages in 
particular, can confer resistance to toxic insults in addition 
to promoting growth. Finally, the proliferation of lymph 
endothelial cells leading to the increase in lymphatic vessel 
density can promote tumor metastasis (Figure 1). The individual 
roles of the components of the tumor microenvironment in 
cholangiocarcinoma will be further discussed below.

 .Angiogenesis

Angiogenesis is defined as the physiological process by which 
new blood vessels are formed from pre-existing ones. Formation 
of new blood vessels is necessary to supply nutrients and oxygen 
to support tumor growth (19). Angiogenesis is accomplished by 
the organized release of angiogenic factors from the tumor cells, 
such as vascular endothelial growth factor (VEGF), epidermal 
growth factor (EGF) and fibroblast growth factor (FGF). These 

angiogenic factors bind their receptors on the endothelial cell 
surface leading to augmented vascular permeability, which results 
in the extravasation of plasma proteins and the dissociation 
of pericyte coverage (20,21). Endothelial cell proliferation 
and migration to initiate the formation of new blood vessels 
follows (22). Localized degradation of the extracellular matrix 
is a necessary step in the formation of the new blood vessels. 
This degradation is executed by the matrix metalloproteinases, 
cathepsin B and other degradation enzymes, in addition to 
increased matrix protein expression including fibronectin and 
laminin (23-25). Tumor cells or cancer-associated fibroblast are 
the main source of these essential extracellular matrix proteins 
(17).

Tumor-associated angiogenesis in intrahepatic cholangiocarcinoma 
has been observed by the immunohistochemical study of microvessel 
density and lymphatic microvessel density. Lower 5-year 
survival rates, higher recurrence rates, and increased nodal 
spread were seen in patients that had tumors with increased 
microvessel density (26). The angiogenic factors, nerve growth 
factor-β(NGF-β) and vascular endothelial growth factor-C 
(VEGF-C), are overexpressed by 57.1% and 46.4%, respectively 
in cholangiocarcinoma samples (27). VEGF-A and VEGF 
receptors (VEGFRs), angiogenic factors angiopoietin-1, -2, 
and thrombospondin-1, EGF, EGF receptors (EGFR), and 
basic fibroblast growth factor are also overexpressed in human 
cholangiocarcinoma cell lines and samples (28-32). Secretion 
of these factors may individually or cooperatively increase 
angiogenesis, evidenced by increased microvessel density. 
An example of this is VEGF-A, which contributes to the 
neovascularization of extrahepatic cholangiocarcinoma (33). 

Angiogenic factors may act via an autocrine manner to elicit 
diverse effects on cholangiocytes and cholangiocarcinoma 
growth (31,33-37). In fact, the proliferative effects that 
estrogen has on cholangiocarcinoma cell lines are thought to 
be due to the upregulation of VEGF expression, since VEGF 
blockage diminishes the estrogenic effects on proliferation 
(38). Collectively, theses data suggest that agents capable of 
blocking angiogenesis can potentially have a direct effect on 
proliferation of cholangiocarcinoma cell in addition to their 
anti-angiogenic effects. In support of this notion, inhibition 
of VEGFR and EGFR signaling with vandetanib (ZD6474, 
tyrosine kinase inhibitor) can be an important approach for 
the management of the subset of cholangiocarcinoma that lack 
KRAS mutations and/or have EGFR amplification (37). The 
orally active, specific inhibitor of EGFR tyrosine kinase, ZD1839 
(IRESSA) has clinical activity against cholangiocarcinoma. This 
inhibitor stabilizes the cell cycle inhibitor p27Kip1 and improves 
radiosensitivity in cholangiocarcinoma cell lines (36). Curcumin 
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is a natural phenol found in tumeric. In a hamster model of 
cholangiocarcinoma, curcumin resulted in suppression VEGF 
expression and a decrease in the microvessel density. Curcumin 
can also have antiproliferative and proapoptotic effects on 
cholangiocarcinoma cell lines independent from the angiogenic 
effects (39,40). Inhibitors of histamine synthesis, H3 histamine 
receptor agonists, and Endothelin-1, among others have similar 
effects (41-43). The interplay between angiogenesis, angiogenic 
factors, and cholangiocarcinoma growth and progression are 
illustrated in Figure 2. 

 .Cancer-associated fibroblasts

Under homeostatic conditions,  f ibroblasts have a low 
proliferative index and secrete factors necessary to maintain 
a normal physiological state. Normal fibroblasts provide 

biochemical signals that restrain epithelial tumor cells within 
their basement membrane (44,45). As a result of tissue injury, 
stromal cells quickly and transiently alter their phenotype and 
proliferation rate. In tumorigenesis, the normally reversible 
wound healing response lacks the regulatory mechanisms that 
allow it to return to normal homeostasis. Thus, stromal dynamics 
are altered because of this lack of downregulation. Tumor-
dependent changes in signaling and plasticity of the stroma elicit 
alterations that result in a 'primed' stroma capable of supporting 
and inciting tumor initiation or progression (45). 

The stroma of cholangiocarcinoma tumors is made up 
of mostly cancer-associated f ibroblasts (also known as 
myofibroblasts) (46). An increase in α-smooth muscle actin-
positive fibroblasts correlated with decreased survival times 
and increased tumor sizes in resected cholangiocarcinoma 
tissue(47,48). The origin of these cancer-associated fibroblasts 

Figure 1. Effects of stromal support cells on tumor growth and metastasis. B (B-cell), EMT (epithelial-mesenchymal transition), M 
(monocyte), T (T-cell), TAM (tumor associated macrophage). 
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is currently unknown, though hepatic stellate cells, portal 
fibroblasts and circulating bone marrow-derived precursor 
cells, among others, have been suggested as possible sources 
(48-50). Cancer-associated fibroblasts in cholangiocarcinoma 
tumors appear to be a heterogeneous population. It is likely 
that these fibroblasts have multiple sources of origin. Genetic 
screening to elucidate the differences in gene expression between 
cholangiocarcinoma-derived cancer-associated fibroblasts and 
non-malignant liver fibroblasts showed differential expression 
of several genes associated with angiogenesis, cell proliferation 
and motility. Particularly the cell adhesion molecule, periostin, 
was significantly upregulated and correlated with shorter 
survival time in patients and increased cell proliferation and 
invasive properties in vitro (51). The extracellular matrix protein 

tenascin-C is specifically expressed by cholangiocarcinoma-
derived cancer-associated fibroblasts. It is expressed mainly in 
the stroma near the invasion front of the tumor and is associated 
with poor prognosis in intrahepatic cholangiocarcinoma (52,53). 
Additionally, thrombospondin-1 expression by cancer-associated 
fibroblasts correlated with increased metastasis (31,54). The 
stromal-derived factor 1, a chemokine, is released from stromal 
fibroblasts leading to the stimulation of invasion and migration 
of cholangiocarcinoma cells by interacting with the chemokine 
receptor, CXCR4 (55). Recent studies have shown that 
myofibroblast-derived platelet-derived growth factor protects 
cholangiocarcinoma cells from TRAIL-induced cell death via 
a hedgehog dependent mechanism in vitro and in vivo (56). 
The signaling molecules and their known functions secreted by 

Figure 2. Interactions between cholangiocarcinoma and angiogenic factors that regulate proliferation and angiogenesis. VEGF (vascular 
endothelial growth factor), FGF (fibroblast growth factor), EGF (epidermal growth factor).



75Translational Gastrointestinal Cancer, Vol 1, N0 1 April 2012

cholangiocarcinoma-derived cancer-associated fibroblasts are 
summarized in Figure 3. 

Cancer-associated fibroblasts seem to play an important role 
in the growth and invasion of cholangiocarcinoma. Targeting the 
molecular signals released by these cells, in addition to strategies 
to suppress cholangiocarcinoma cell proliferation, could aid in 
cholangiocarcinoma treatment.

 .Tumor-associated macrophages

Tumor initiation and progression are intimately related to 
inflammation and the immune system. A major risk factor for the 
development of various tumor types is chronic inflammation of 
the target organ. Within a tumor, tumor-associated macrophages 
(TAMs) are the primary immune cell found. Macrophages 
have the ability to secrete pro- or anti-inflammatory mediators 
depending on the stimuli (57). Macrophages activated with 

TNF-α have anti-tumor activity and signal tissue destruction, 
this is known as an M1 phenotype. The M2 phenotype 
characterized by the initiation of tissue repair, remodeling, and 
tumor promotion can be induced by interleukin-4 activation 
(58). Most TAMs are the M2 phenotype, as a result of multiple 
signals expressed within the tumor microenvironment which 
include interleukin-10, transforming growth factor-β, and colony 
stimulating factor-1. These immunomodulatory signals have 
been reported to be secreted by myeloid-derived suppressor 
cells, IL-10+ B lymphocytes, Th2 helper T cells, and the tumors 
themselves (57). Alternatively activated TAMs have reduced 
anti-tumor activities, and increase the production of angiogenic 
mediators that include VEGF and IL-10, in addition to M2-
specific genes known to be involved in the promotion of cell 
proliferation. These events are summarized in Figure 4. Strategies 
that inhibit the M2 phenotype and induce M1 signals can re-
establish the anti-tumor functions of TAMs and aid in the 

Figure 3. Effects of signaling molecules secreted by cholangiocarcinoma-derived cancer-associated fibroblasts on cholangiocarcinoma 
progression. CAF (cancer-associate fibroblasts), HGF (hepatocyte growth factor), PDGF (platelet-derived growth factor), SDF-1 (stromal 
derived factor-1).
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removal of protective signals that originate from the M2-TAMs, 
perhaps activating the innate immune response thus leading to a 
reduced tumor size (57,59).

Chronic inflammation and cholangiocarcinoma seem to be 
intimately related (60). Cholangiocarcinoma cells are known 
to overproduce many inflammatory cytokines, however, IL-6 
is the most studied to date (61). How TAMs are involved 
in cholangiocarcinoma development and progression is 
still unclear. Recent studies have shown that the density of 
infiltrating macrophages (stained for MAC387, a specific 
macrophage marker) was high in more than half of the studied 
tumor samples. This high density of MAC387-positive cells 
correlates with poor survival rates, despite the lack of evidence 
that the MAC387-positive cells are of the M2 phenotype 

(62). Cholangiocarcinoma patients have increased circulating 
CD14+/CD16+ monocytes, which are thought to be precursors 
of resident macrophages. This increase correlated with the 
higher density of MAC387-positive infiltrating macrophages. 
Additionally, the circulating CD14+/CD16+ monocytes 
expressed higher levels of angiogenic factors that include VEGF 
and CXCL3 (63). In an a separate study, it was found that M2 
macrophages infiltrate intrahepatic cholangiocarcinoma (stained 
for CD163, an M2 marker); their number closely correlates with 
neovascularization and infiltration of FOXP3+ regulatory T cells. 
This study also found that treating macrophages in vitro with the 
supernatant from CCA cells lead to macrophage polarization 
toward the M2 phenotype and secretion of VEGF-A, IL-10 
and TGFβ (64). Collectively, these data support the hypothesis 

Figure 4. Differential activation of macrophages and their effect on tumor growth. M1 (pro-inflammatory), M2 (anti-inflammatory). 
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that TAMs may play a role in cholangiocarcinoma progression. 
However, the regulation of the crosstalk between M2 TAMs 
and cholangiocarcinoma cells is not understood and needs to be 
further studied.

 .Lymphangiogenesis

Tumor metastasis is a major cause of the lethality present in this 
disorder and the spread of tumor cells generally occurs through 
lymphatic vasculature. In the lymph nodes, a higher incidence 
of tumor foci is found which leads to an unfavorable prognostic 
factor in most cancers. Previously, it was thought that the spread 
of tumor cells via the lymphatic system was a passive process 
where detached tumor cells would enter pre-existing lymphatic 
vessels in the tumor area (65). We now know that new lymphatic 
vessels are formed in the tumor microenvironment and that this 
correlates with lymphatic metastasis (66). Lymphangiogenesis 
is regulated by growth factors similar to those that control 
angiogenesis. VEGF-C and VEGF-D are secreted from the 
tumors and in turn activate VEGFR-3, which is expressed on 
lymphatic endothelium (67). VEGFR-3 activation induces 
the proliferation of lymphatic endothelial cells in vitro and the 
formation of new lymphatic vessels in vivo (68,69). Additional 
lymphangiogenic factors include VEGF-A, fibroblast growth 
factor-2, angiopoietin-2, and platelet-derived growth factor-BB 
(70-73).   

Since the factors mentioned above have overlapping 
angiogenic and lymphangiogenic activities, agents that block 
angiogenesis may also block lymphangiogenesis. Inhibitors that 
block VEGF-C/VEGF-D/VEGFR3 signaling could potentially 
block lymphangiogenesis in addition to angiogenesis, leading 
to blockage of lymphogenous metastatic spread (74-76). 
Supporting this, it has been shown that blocking the interaction 
between VEGF-D and its receptors with a monoclonal 
neutralizing antibody resulted in the inhibition of angiogenesis, 
lymphangiogenesis,  and metastatic spread through the 
lymphatics in a murine tumor model (77). 

Lymphangiogenesis in the context of cholangiocarcinoma 
remains poorly understood and controversial. Recent studies 
suggest there may be a correlation between lymphangiogenesis 
and lymph node metastases and prognosis. Patients with 
cholangiocarcinoma tumors that have low lymphatic vessel 
density have a longer survival rate compared to patients that have 
higher lymphatic vessel density (78). Furthermore, intrahepatic 
cholangiocarcinoma tumors that show high lymphatic vessel 
density correlate with higher nodal spread and recurrence rate 
(26). On the other hand, other studies show that in intrahepatic 
cholangiocarcinoma tumors, lymphangiogenesis does not 

correlate with lymph node metastasis but correlates with 
VEGF-C expression and the presence of myofibroblast that 
express the same markers as lymphendothelial cells, possibly 
explaining the divergence in conclusions (79). NGF has been 
associated with tumor progression and growth as well as VEGF 
expression in various other cell types (80-84). NGF-β expression 
and its correlation with lymphangiogenesis, lymph node 
metastasis, and VEGF-C expression in hilar cholangiocarcinoma 
were studied by Xu et al. This study concluded that high NGF 
expression indeed correlates with VEGF-C overexpression, 
lymphatic vessel density, and lymph node metastasis; this 
suggests that NGF might play a role in the stimulation of 
lymphangiogenesis in cholangiocarcinoma tumors. 

 .Conclusions

In summary, the research discussed in the present review 
highlights the role that the tumor microenvironment plays 
in the grow th, progression, and metastatic invasion of 
cholangiocarcinoma. The interaction between stromal and 
cholangiocarcinoma cells via signaling mediators results in 
an environment that supports tumor growth and suppresses 
innate immunity, thus conferring resistance to cytotoxic 
insults (endogenous and chemotherapeutic).  How the 
support cells in the stroma of cholangiocarcinoma tumors are 
recruited and activated remains unclear. Targeting the tumor 
microenvironment rather than the cholangiocarcinoma cells 
directly may lead to more effective therapeutic strategies to treat 
this devastating cancer. 
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