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Mast cell origination, location and activation

Location

Mast cells are important components of the immune system 
of vertebrates. Mast cells are found in varying quantities in 
virtually all tissues of the human body and are stationed much 
like sentinel cells of the immune system at bodily portals 
of entry. The numbers of mast cells are highest at locations 
where they can respond to foreign organisms and antigens, 

thereby concentrating heavily in the dermis, intestinal 
mucosa and submucosa, conjunctiva, pulmonary alveoli and 
airways. They are even present in the atrial appendage of the 
heart (1-4). Mast cells are found in the choroid plexus of the 
brain, the vascular bed of the meninges and in low numbers 
in the kidneys and bone marrow. Often located closely to 
blood vessels, nerves and lymphatics, their concentration 
averages an estimated density of 7,000 to 20,000 mast cells 
per cubic millimeter of tissue (5-11). 
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Origination 

Mast cells originate in the bone marrow and spleen, arising 
from pluripotent CD34+ stem cells (12-14) and differentiate 
along the myeloid pathway and leave the hematopoietic 
tissues as committed progenitors (12,15). Their migration 
is directed out of the circulation by signals only partially 
characterized and home to specified tissues where they 
differentiate further during the maturation process (16,17).

Anatomy 

Mast cells are round, mononuclear cells with variation in their 
cytoplasm and contain numerous metachromatic cytoplasmic 
granules ranging in size from 0.3 to 0.8 micrometers. From 
their vantage point surrounding blood vessels, their 
actions can influence the function of vascular structures, 
monitor blood for inflammatory and infectious changes 
and distribute mediators, which they release in response 
to a specific stimulus (18). Mast cell-derived mediators are 
of three basic types and include: (I) preformed mediators 
stored in secretory granules, which can be released into 
the extracellular environment within seconds after mast 
cell activation, (II) newly-synthesized lipid mediators, and 
(III) cytokines and chemokines (19,20). The preformed 
mediators are responsible for the acute symptoms of mast 
cell-mediated allergic reactions (20). These mediators are 
stored in cytoplasmic granules include histamine, neutral 
proteases, heparin proteoglycans, and cytokines such as 
TNF-α.

Histamine and histamine receptors 

Histamine can produce powerful physiologic effects and its 
actions are mediated through specific receptors located on 
target cells labeled as H1, H2, H3 and H4 receptors (21-25). 
H1 actions includes: increased vascular permeability, bronchial 
and intestinal smooth muscle contraction, increased nasal 
mucus production, increased heart rate and cardiac output, 
flushing, T cell neutrophil and eosinophil chemotaxis (4,26). 
H2-mediated actions include increased gastric acid secretion, 
airway mucus production, but at the same time, inhibition 
of neutrophil and eosinophil influx into a tissue (26,27). H3 
receptors have been found in the brain and H4 receptors can 
act as chemoattractants for bone marrow derived mast cells 
and modulation of calcium influx (28,29). Histamine and other 
mast cell-derived mediators have been studied intensely with 
regard to their physiologic and pathogenic actions. 

Growth 

The growth of mast cells is influenced mostly by stem 
cell factor (SCF), which is produced by stromal and 
endothelial cells and fibroblasts (30-32). The surface 
receptor for SCF is the receptor tyrosine kinase c-kit 
(CD117), which is expressed by stem cells and present 
during myeloid differentiation. CD117 is an early marker 
for mast cell precursors and expressed throughout their 
lifetime (2,12,15). SCF participates in each stage of growth 
and differentiation of mast cells including differentiation, 
proliferation, chemotaxis, adhesion and survival (33). It has 
been suggested that this global influence of SCF results 
in the ubiquitous presence of mast cells (13). There are 
numerous growth and differentiation factors other than 
SCF, which have been shown to affect mast cell functions 
including several of the type 2 helper T cell cytokines (2).

Physiology 

In keeping with their role as important components 
of the immune system, mast cells increase in number 
at inflammatory sites in diseases, which may be atopic, 
inflammatory or malignant (20,34,35). Mast cells are present 
in urticaria, acute allergic reactions, rhinitis and asthma (20) 
and fight viral, bacterial and parasitic infections (20). Mast 
cells are present in inflammatory conditions such as 
rheumatoid arthritis, inflammatory bowel disease, psoriasis, 
pulmonary fibrosis, atherosclerotic cardiovascular diseases, 
cardiomyopathies and a number of malignancies (36-45). 
It is not clear if the role of mast cells in these diseases 
is regenerative, pathogenic or possibly both. Mast cell 
numbers increase significantly at multiple areas in the 
medical condition known as mastocytosis (46-48). Their 
actions in this disease process are responsible for the 
abnormal changes observed. Patients with mastocytosis 
suffer flushing, gastrointestinal cramps, hypotension, and a 
skin finding known are urticaria pigmentosa (49-52). 

In the study of mast cells, it has been unclear as to why 
they appear to have both physiologic and pathogenic actions. 
It is known that they are important in the body’s defense 
against infecting organisms and are key effector cells in 
both innate and acquired immunity, capable of inducing and 
amplifying both these responses (1,3,4). Mast cells are capable 
of identifying microbial products through surface pattern 
recognition receptors and are involved in the recruitment of 
other leukocytes for containing infections or enabling tissue 
repair (4,33,53). Mast cells can trigger increased intestinal 
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motility, bronchoconstriction and also epithelial sloughing, 
which have rid epithelial surfaces of infectious agents 
(4,54). Mast cells can stimulate fibroblast proliferation and 
collagen synthesis, thereby blocking and limiting the spread 
of infections (55-57). Mast cell numbers increase within 
uterine tissues during pregnancy and contribute to enhancing 
immunity through secretion of cytokines and proteases (58). 
Mast cells and T regulatory cells have been shown to mediate 
allograft tolerance in mice (59,60). 

Mast cells appear to have some functions that can yield 
detrimental outcomes including urticaria, asthma, rhinitis, 
and atopic dermatitis (43,61-63). Mast cells also play a 
significant role in allergic responses including the extreme 
response known as anaphylaxis (64-66). The overgrowth 

of mast cells can lead to the varying forms of mastocytosis 
(19,67,68). Mast cells have been noted for many years to 
be present within human atherosclerotic lesions although 
their function within these lesions is unclear (69). Mouse 
models suggest the promotion of atherosclerotic changes 
occurs through the release of pro-inflammatory cytokines 
and possibly proteases (70,71). Mast cells are observed in 
abundance in numerous autoimmune illnesses including 
multiple sclerosis and rheumatoid arthritis. In both 
these disease processes, mast cell deficient mice showed 
a reduction in pathologic processes that was reversed 
upon restoration of mast cells in the mice (72,73). Figure 1 
summarizes the role of mast cells in different processes 
including tumor biology, host defense, cardiovascular 

Figure 1 Newly identified protective (green) or detrimental (red) roles of mast cells and mast cell products in biological responses in mice. 
AAA, abdominal aortic aneurysm; CPA3, carboxypeptidase A3; ET-1, endothelin-1; IgE, immunoglobulin E; IL, interleukin; MC, mast cell; 
MCP, mast cell protease; NLN, neurolysin; NT, neurotensin; SMC, smooth muscle cell; TNF, tumor necrosis factor; Tpsb2, tryptase β2. 
[Reprinted with permission from Nature Immunology, New developments in mast cell biology 2008; 9: 1215-23.] 
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disease and tissue pathology [Reprinted with permission 
from Nature Immunology, New developments in mast cell 
biology 2008; 9: 1215-1223.].

Mast cells and disease

The tumor microenvironment is composed of immune 
cells, stromal cells, endothelial cells and other components 
and provides a supportive niche to promote the invasion 
and growth of tumors (74-78). This environment also 
creates a suppressive barrier to effective immune responses 
against tumors and is consequently emerging as a target for 
cancer immunotherapies (79). Mast cell (MC) accumulation 
in the tumor microenvironment is associated with a poor 
prognosis in aggressive cancers, however, high densities of 
intratumor T effector cells are associated with a favorable 
prognosis (79). The relation of mast cells in cancers seems 
diversified and not yet well understood. Current evidence 
supports the notion that MCs influence tumor angiogenesis, 
tumor invasion, immune suppression and contribute to 
the immune suppressive tumor microenvironment (79). 
Important future investigations will be to identify molecules 
that provide signals with MCs during the initiation of tumor 
growth, identify the molecules produced, and understand 
how these molecules influence the outcome of antitumor 
immune responses (79).

Gastric cancer 

It is known that gastric ulcers in humans cause an increased 
risk of gastric cancers. In a study designed to ascertain 
the relationship of mast cell density in gastric ulcers and 
cancer, Mukherjee et al. studied mass cell density (MCD) 
in patients with gastric ulcers, well-differentiated cancers 
and in poorly differentiated cancers (80). Biopsies were 
sectioned, stained and reviewed and MCD determined. 
It was concluded that the accumulation of mast cells in 
gastric ulcers is an inflammatory response. The MCD was 
increased in well-differentiated cancers and thought to be 
a mast cell mediated immune response and also possibly 
caused tumor angiogenesis and produced factors for tumor 
progression (80). In the poorly-differentiated cancer group, 
the mast cell mediated anti-tumor response was lacking, 
with no clear explanation (80). 

Ribatti et al. studied the role of mast cells in gastric 
cancer angiogenesis in an attempt to clarify their role (81). 
Correlation between microvascular density and tryptase- 
and chymase-positive masts cells with histopathological 

type in gastric cancer was utilized as the study substrate. 
Specimens of gastric adenocarcinomas were obtained 
from 30 patients who had curative gastrectomies (81). 
These specimens were stained with anti-CD3l antibody to 
stain endothelial cells and anti-tryptase and anti-chymase 
antibodies to stain mast cells. Stage IV gastric carcinoma 
has a higher degree of vascularization than earlier stages 
and mast cells were increased accordingly and thought to 
be highly correlated with the extent of angiogenesis (81). 
Further understanding the mechanisms of angiogenesis in 
this malignancy may contribute to the development of an 
antiangiogenic therapy (81).

Sinnomon et al. demonstrated in their study the 
protective role of mast cells in intestinal tumorigenesis and 
noted that mast cells have been observed in numerous types 
of tumors, however, their role in carcinogenesis has been 
poorly understood (82). Strangely, much epidemiologic 
evidence has suggested a negative association between 
the presence of mast cells and tumor progression in lung, 
colon and breast cancers. Murine studies carried out by 
these authors, however, found that mast cell deficient 
mice developed more benign and malignant tumors (82). 
They were able to show that masts cells act as upstream 
regulators of numerous inflammatory cells, which provided 
a protective, antitumor role of mast cells in early stage 
intestinal tumorigenesis (82).

Esophageal cancer 

Esophageal cancer in humans has historically been an 
aggressive disease with a poor prognosis. In a study 
aimed to identify new treatment modalities, Tinge et al. 
investigated the role of mast cells in esophageal cancer 
patients to determine whether a higher number of mast 
cells is associated with better survival and could possibly be 
a marker for further immunotherapeutic studies (83). At the 
conclusion of their study of the 61 patients in which tissue 
samples were stained and mast cell numbers quantified, it 
was found that there was no significant difference in survival 
found between patients with higher numbers of mast cells 
than those with the lower number (83). 

Colorectal cancer 

Colorectal cancer (CRC) is a common and potentially 
lethal malignancy (84-86). It has long been recognized 
that inflammatory bowel diseases cause an increased risk of 
colon cancer (87-89). Evidence from experimental animals 
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has now implicated the innate immune system in the 
development of adenomatous polyps, which are precursors 
to cancer. In the review of Heijmans et al. the interaction 
between the immune system and the adenoma to carcinoma 
sequence is focused on with an emphasis on mast cells 
and the role they play in adenoma development (90). In 
indicating that the “jury is still out,” this article points to 
the need for more studies in the field of mast cell biology as 
they influence the growth of pre-malignant polyps as they 
advance into fully developed malignancies (90). 

Tumor cells need an enriched blood supply to thrive 
and angiogenesis plays a critical role in several types of 
malignancies (91-93). In the study of colorectal cancer, 
Yodavudh et al. found that there is a significant correlation 
existing between increased microvessel density (MVD) and 
MCD. In relation to this, patients with tumors of low MVD 
and low MCD (counts) had significantly longer survival 
rates than those with high MVD and high MCD. The 
results of this study could possibly serve as a prognostic 
tool for patients with this malignancy (94). In addition 
to this, a multivariate Cox hazard revealed that MVD 
and distant metastasis were independent poor prognostic 
factors to survival in patients with colorectal cancer. Their 
studies have also shown that the patients with high MVD 
(hypervascular) tumors and distant metastasis had 1.9 
and 2.5 times higher death rates than the corresponding 
hypovascular and non-metastatic groups. This being 
said, the authors believe that thorough ascertainment 
of microvessel density in the invasive front of primary 
colorectal carcinoma could possibly serve as a prognostic 
tool for patients with this malignancy (94). 

Mast cells have been studied as possibly affecting 
the development of colonic polyps (95). Colon polyps 
classified as adenomatous are felt to be pre-malignant, 
ultimately undergoing neoplastic transformation if not 
discovered and removed (95). Recent data has suggested 
that the tumor stromal environment is implicated in the 
development of these polyps. Polyps are infiltrated with 
proinflammatory mast cells and their precursors (95). If 
these are depleted, a profound remission of existing polyps 
is observed. Based on this, the data suggests that mast cells 
are an essential hematopoietic component for preneoplastic 
polyp development and a possible target for therapeutic 
intervention (95).

Other studies of interest in the field of colon cancer 
and their relationship to mast cells include those in which 
patients with advanced stage cancers are the subjects. In the 
study by Xia et al., it was seen that mast cell count in the 

mucosa adjacent to the colon cancer was higher than in the 
stroma of the cancer (96). Also, there was no difference in 
mast cell counts observed between the stroma in metastatic 
lymph nodes and the lymph tissue adjacent to the metastatic 
nodes. Further, the mast cell count in the regional-
draining nodes not containing cancer cells was significantly 
higher than that of the stroma of lymph node metastasis 
and surrounding lymph tissue (96). It was not possible to 
conclude, however, that any of the mast cells were related 
to five-year survival. From this, the authors concluded that 
mast cells do not contribute to the progression of advanced 
colon cancer (96). In the study by Xianrui Wu, et al., the 
clinic and prognostic significance of tumor-infiltrating mast 
cells (TIM) in patients with CRC was investigated (97). 
TIM infiltration in 325 CRC specimens was quantified by 
immunohistochemistry. Multivariate Cox regression analysis 
showed that a high amount of TIM was a risk factor for 
overall survival as well as for disease-free survival (97). The 
authors postulated that high numbers of tumor-infiltrating 
mast cells can be a useful biomarker for predicting poor 
survival of patients with CRC (97).

Biliary and hepatocellular carcinomas 

Cholangiocarcinoma

Cholangiocarcinomas manifest from the epithelia of the bile 
ducts of the liver and also originate around the bile ducts 
(23,98-101). Although cholangiocarcinoma is an uncommon 
diagnosis in the United States, it tends to be a deadly cancer 
due to the advanced stage at its first presentation (23,98-
101). The term cholangiocarcinoma has been used to refer 
to bile duct cancers arising in the intrahepatic, perihilar, or 
extrahepatic biliary tree, exclusive of gallbladder or ampulla 
of Vater (102-104). Intrahepatic cholangiocarcinomas can 
manifest from either small intrahepatic ductules or large 
intrahepatic ducts proximal to the bifurcation of the right 
and left hepatic ducts (105-107). Tumors occurring in the 
proper hepatic duct bifurcation are referred to as Klatskin 
tumors (108,109). Cholangiocarcinomas are normally 
asymptomatic until they reach an advanced stage, at which 
point cholangiocarcinomas present symptoms such as 
painless jaundice when the tumor obstructs the biliary 
drainage system, pruritus, right upper quadrant abdominal 
pain and weight loss (102,110,111). The etiology of 
cholangiocarcinoma remains poorly understood (104,112).

In a study pertaining to the progression of growth of 
cholangiocarcinoma tumors, Francis et al. studied the 
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endogenous activity of histidine decarboxylase (HDC) 
which is an enzyme stimulating histamine synthesis (100). It 
was found that cholangiocarcinoma cells displayed elevated 
HDC and decreased monoamine oxidase B expression 
resulting in increased histamine secretion and increased 
expression of Hl-H4 histamine receptors. Inhibiting HDC 
and antagonizing HlHR decreased histamine synthesis. In 
vivo methods using a xenograft tumor model were utilized 
to measure tumor volume after treatment with histamine 
or inhibition of histamine synthesis by manipulation of 
HDC. Treatment with histamine increased proliferation 

and VEGF expression in cholangiocarcinoma tumors 
that were blocked by HDC inhibition and the HlHR 
antagonist (100). In nude mice, histamine increased tumor 
growth and VEGF expression whereas reducing HDC 
and inhibiting histamine synthesis ablated the autocrine 
stimulation of histamine on tumor growth (100). Therefore, 
a novel concept that an autocrine loop consisting of 
enhanced histamine synthesis by HDC, which sustains 
cholangiocarcinoma growth is proposed. While this study 
has important clinical implications, it did not address the 
potential role of mast cells in regulating cholangiocarcinoma 
growth. In unpublished work from Alpini & Francis et 
al., they demonstrated that cholangiocarcinoma tumors 
express increased levels of both chymase and tryptase  
when compared to non-malignant tissue (Figure 2). This 
suggests that mast cells potentially play a key role as part 
of the tumor microenvironment of cholangiocarcinoma 
and ongoing studies in these laboratories is underway to 
investigate this hypothesis. 

Hepatocellular carcinoma (HCC) 

HCC is a primary tumor of the liver, generally developing in 
the setting of chronic liver disease such as chronic Hepatitis 
B and C (113-116). The tumor grows silently until advanced 
(113-116). It has become common practice to monitor 
patients with chronic hepatitis in clinics with the use of imaging 
studies and lab tests which as a-fetoprotein, which begins to 
rise as a tumor develops and progresses (113,117-119). As with 
other GI malignancies mentioned above, there is active 
research in progress regarding the possible role of mast cells 
in hepatocellular carcinoma (120-123).

By studying mast cell actions in non-diseased liver 
tissue compared to that of hepatocellular carcinoma 
(HCC) neoplasms and intrahepatic cholangiocarcinoma 
(ICC) neoplasms, Terada and Matsunaga observed 
MC roles in carcinogenesis of these two diseases (124). 
Immunohistochemical studies demonstrated that densities 
of mast cells in HCC and ICC were significantly higher 
than those observed in non-diseased livers (124). Also, 
the density of mast cells in ICC was significantly higher 
than those found in HCC. In another study, the density 
of sinusoidal mast cells was much higher in HCC than 
in non-diseased livers (124). With these results, Terada 
and Matsunaga postulate that mast cell number increases 
during intrahepatic cholangiocarcinoma and hepatocellular 
carcinoma and mast cells may also play a role in fibrosis or 
tumor immunology in HCC and ICC (124).

Figure 2 Immunohistochemistry for chymase and tryptase 
in human tumor biopsies. Both proteases display increased 
immunoreactivity in cholangiocarcinoma samples compared to 
nonmalignant samples. *P<0.05 vs. nonmalignant. Data are mean ± 
SEM of 3 experiments. Org. magnification ×40. Unpublished 
observations from Alpini & Francis et al. 2010
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In the study from Ju et al., the relevance of peritumoral 
mast cells (MCs) and T regulatory cells to HCC outcomes 
was studied (122). Tryptase positive MCs and T-regulatory 
cells (Tregs) were studied using immunohistochemistry 
enumeration in tissues from 207 HCC patients. The 
higher peritumoral MCs were associated with poorer 
clinical outcomes and also related to increased 5-year 
recurrence incidence of malignancy (122). High density 
MCs were especially related to increased incidence of early 
reoccurrence, within 2 years. Also, Tregs were correlated 
with MCs in density and reversely related to HCC outcomes. 
Of interest, mast cells in combination with Tregs pointed to 
better prognostic outcomes than MCs alone (122). MCs were 
positively correlated to serum alanine aminotransferase, a 
liver enzyme that is an inflammatory marker for hepatic 
parenchymal damage. Peritumoral MCs could be used as 
prognostic parameters for HCC through inflammation 
response-related mechanisms and MCs and Tregs 
might cooperate with each other and result in a poorer 
prognosis (122). 

In a study by Grizzi et al., the density of MCs in HCC 
was studied to determine whether the MC density had 
any correlation with histologic grading, staging or basic 
characteristics (121). A tissue staining method was used to 
quantify the MCs within and around the neoplasm and data 
statistically analyzed. In this study, it was suggested that 
MC density did not correlate with the age, gender, or serum 
alanine aminotransferase or aspartate aminotransferase 
levels or the stage of grade of the HCC (121). No 
differences were seen between the MC density of lesions 
with and without hepatitis C infection but were significantly 
higher in specimens with marked sinusoidal capillarisation. 
The conclusion was that based on the above observations, 
there is no causal relationship between MC recruitment 
and HCC (121). However, as capillarisation proceeds 
along with development of the arterial blood supply during 
hepatocarcinogenesis, MCs may be considered to have an 
important role in the transition from sinusoidal to capillary-
type endothelial cells and growth of the HCC lesions (121).

An interesting study from Lampiasi, et al., examined 
the role of spontaneous histamine release from mast cell 
granules on the growth of human HCC cells (123). Two 
malignant HCC cell lines, HA22T/VGH and HuH-6 with 
differing characteristics, biological behavior and genetic 
defects were utilized in the study (123). Total mast cell 
releasate, exocytosed granules and histamine reduced 
cell viability in the HuH-6 cells. In the HA22T/VGH 
cells, granule remnants and histamine induced a weak but 

significant cell growth increase (123). Both the cells lines 
expressed H1 and H2 histamine receptors. The selective 
H1 antagonist terfenadine reverted the histamine-induced 
inhibition of HuH-6 cell growth whereas the selective H2 
antagonist ranitidine inhibited the histamine-induced cell 
growth of HA22T/VGH cells (123). Histamine down-
regulated the expression of beta-catenin, COX-2 and 
survivin in HuH-6 cells. This was associated with caspase-3 
activation and PARP cleavage. In contrast, in the HA22T/
VGH cells, expression of survivin and b-catenin increased 
after being treated with the granule remnants and histamine. 
The overall results suggested that mediators stored in mast 
cell granules and histamine may affect the growth of HCC 
cells. Mast cells and histamine appear to play different roles 
depending on the tumor cell features (123). It was suggested 
that histamine and histamine receptor agonists/antagonists 
might be considered as possible therapeutic drugs to inhibit 
liver tumor growth (123). 

Terada et al., performed a study of human mast cells divided 
into the tryptase only [MC(T)] and those with both tryptase 
and chymase inclusions [(MC(TC) ] (124). The authors 
studied MCs in non-diseased livers, HCC and ICC by double 
immunostaining and quantitative morphometry and found that 
in the non-diseased livers, MCs were located to a greater extent 
in portal tracts and found to a lesser extent in sinusoids (124). In 
HCC, mast cells were noted in the tumoral sinusoids and 
in the fibrous septa. In ICC, there were many mast cells 
present in the tumoral stroma. Morphometry demonstrated 
that the density of MCs was significantly higher in 
the cancerous lesions than in the non-diseased livers. 
Accordingly, it was concluded that MCs increase during 
carcinogenesis in HCC and ICC and may play a role in 
fibrosis or tumor immunology in these diseases (124). 

Pancreatic tumors

At the present time, pancreatic cancer is the fourth leading 
cause of cancer death in the United States with an overall 
five-year survival rate of less than 5% (125-127). It is known 
that chronic inflammation and a history of pancreatitis are 
significant risk factors for the development of this disease, 
increasing the risk 12-18 fold compared to the general 
population (128-130). Mast cells have been and are being 
extensively studied for their conducting role of allergic 
reactions and auto-immunity. In addition, mast cells have 
been increasingly recognized as crucial components of the 
tumor stromal microenvironment in a number of human 
malignancies (131-133). In pancreatic cancer, there has 
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only been one study, which examines the association between 
mast cells and angiogenesis (133). The authors of this study 
reported that mast cell infiltration in pancreatic cancer is 
associated with an angiogenic phenotype but they did not find 
a correlation with survival and did not evaluate the correlation 
between mast cell infiltration and other pathological variables 
such as tumor stage and grade (133). Patients with pancreatic 
cancer had elevated serum tryptase activity and in vitro, 
cultured pancreatic cells induced mast cell migration (133). 
Mast cell conditioned media induced pancreatic cancer cell 
migration, proliferation and invasion but had no effect on 
normal ductal cells. In vitro, the interaction between mast 
cells and pancreatic cancer cells promote tumor growth 
and invasion (133). The most important finds of this study 

established that (1) high numbers of tumor infiltrating mast 
cells are associated with higher grade tumors and decreased 
survival and (2) that mast cell infiltration was significantly higher 
in pancreatic cancer compared to normal pancreatic tissue (133). 
Figure 3 demonstrates the infiltration of mast cells in 
human pancreatic adenocarcinoma tumors [Reprinted with 
permission from Clinical Cancer Research, Crosstalk between 
mast cells and pancreatic cells contributes to pancreatic 
cancer progression 2010;16:2257-65.].

Mast cells in the tumor microenvironment might also 
be essential for pancreatic ductal adenocarcinoma (PDAC) 
tumorigenesis (134). Using a spontaneous mouse model of 
PDAC, the presence of inflammatory cells at various stages 
of PDAC development was determined. The study shows 

Figure 3 Mast cells infiltrate human pancreatic adenocarcinoma. Immunohistochemistry (magnification, ×400) for mast cell-specific tryptase 
(seen with dark red staining) in normal pancreas from a patient with a benign cystic neoplasm (A), an adjacent histologically normal area 
of pancreas from a patient with pancreatic adenocarcinoma (B), and pancreatic adenocarcinoma (C). (D) tryptase-positive mast cells were 
counted at 400× magnification in 12 pancreatic cancer specimens and compared with the adjacent normal pancreas and 10 normal areas of 
pancreas from patients with benign disease. Mast cell infiltration was greater in cancer versus adjacent normal (P<0.01) and in cancer versus 
benign normal (P<0.001). Mast cell infiltration was greater in adjacent normal versus benign normal (P<0.05). (E) serum tryptase activity 
was measured by a quantitative spectrophotometric assay in 36 patients with pancreatic cancer and compared with 10 patients with benign 
pancreatic disease (*, P<0.05; **, P<0.001). [Reprinted with permission from Clinical Cancer Research, Crosstalk between mast cells and 
pancreatic cells contributes to pancreatic cancer progression 2010;16:2257-65.]
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that in the spontaneous mouse model of PDAC, there was 
an early influx of mast cells to the tumor microenvironment 
(134). Although PDAC tumor growth was inhibited in mast 
cell-deficient mice, aggressive PDAC growth was restored 
when PDAC cells were injected into mast cell-deficient 
mice reconstituted with wild-type bone marrow-derived 
mast cells. The authors predicted that mast cells infiltrating 
into the tumor microenvironment may be a contributing 
factor towards PDAC’s poor prognosis, thus making mast 
cells a potential novel therapeutic target (134).

Concluding remarks

In closing, review of the scientific literature available on 
MCs presents a puzzling collection of information. While 
MCs are important components of the immune system, 
which is essential for the life of humans and other vertebrate 
organisms, they display characteristics and actions, which 
are both beneficial as well as harmful. They are essential to 
fight viruses, bacteria, parasites and other invaders at portals 
of entry of our bodies. They can be likened to an invading 
army in allergic reactions and can produce havoc with the 
release of their granules which cause problems ranging from 
swelling, hives, itching, running eyes and runny noses all the 
way to lethal anaphylactic shock. They have been observed 
to be present in auto-immune inflammatory diseases 
where they seem to have a detrimental role in increasing 
swelling, pain and dysfunction. They have further been 
observed in numerous malignancies and, as we have seen, 
play roles alone and in cooperation with other cells of the 
immune system. Their capabilities in angiogenesis, immune 
suppression, tumor growth, support of tumor metastases, 
and actions in the tumor microenvironment have been 
the subject of numerous sophisticated scientific studies. 
What can be observed from the studies being done in this 
field is that there are some consistent findings as well as 
some fragmented findings. Putting all the pieces together 
will be an exciting challenge to come. It does seem likely, 
however, that the knowledge existing at present as well as 
the scientific developments to come on the role of mast 
cells will contribute significantly to the understanding of 
the pathogenesis and treatment of human malignancies. 
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