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Abstract: Clinicians often believe that cachexia is caused by cancer and anorexia as a toxicity of 
chemotherapy or targeted anti-cancer agents. It is now recognized that chemotherapy and certain targeted 
agents cause sarcopenia which reduce physical function and quality of life. Pre-treatment sarcopenia 
predicts chemotherapy toxicity, reduced response, increased disability, poor anti-tumor response and 
survival. Though bioelectrical impedance and dual energy X-ray absorptiometry (DEXA) scans have been 
used in the past for body composition measurements, CT scan cuts at the level of the 3rd lumbar vertebral 
body with measurement of skeletal muscle and visceral and subcutaneous fat areas has become standard. 
Nonpharmacological approaches to reducing sarcopenia during chemotherapy includes resistance training 
and dietary counselling. Pharmacologic therapies include vitamin D replacement if depleted, omega-3 fatty 
acids, testosterone and selective androgen receptor modulators (SARMS) and ghrelin. A comprehensive 
multimodal and multiple drug approach is likely to be better than single modalities. However, this is yet to 
be proven. Finally, it is not known if intervening to prevent or reverse sarcopenia will have a clinical benefit 
in terms of better tolerance to cancer therapy, physical function, well-being, tumor response and survival. 
Reversing sarcopenia and improving objective outcomes should be the goal of therapy.
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Introduction

Weight is a common metric when evaluating a patient’s 
health. Cachexia by definition involves involuntary 
weight loss. Body mass index (BMI) is weight adjusted 
for stature (kg/m2), is used often for health assessment 
and nutritional status. Body surface area has been used to 
measure metabolic mass for chemotherapy administration 
(1). However, weight and weight per stature does not 
accurately assess body composition. The proportion of lean 
body mass (LBM), skeletal muscle and visceral fat as well 
as subcutaneous fat vary significantly between individuals 
with the same BMI. The increase in obesity within society 

may lead clinicians to misjudge the health of patients and 
grossly overestimate skeletal muscle mass. The appearance 
of classical cachexia has become much less apparent today. 
Patients may have critical skeletal muscle loss to a much 
greater extent than fat and remain overweight. Patients do 
not necessarily proportionally gain or lose fat and muscle 
at equal rates with a change in weight (2-4). This is also 
true for patients with cancer who may have widely varying 
skeletal muscle mass and fat mass as well as distribution of 
fat per weight which has a profound effect on tolerance to 
anti-tumor therapy, efficacy, drug limiting toxicities (DLT), 
progression free, and overall survival (5-10).
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Definition and measurement of sarcopenia

There are distinct differences when measuring sarcopenia 
in the elderly population and in cancer patients. The 
geriatrician focuses on function and disability, while the 
oncologist measures muscle mass and weight compared to 
a population standard. A recent sarcopenia definition in 
the geriatric literature is “a loss of muscle associated with 
loss of function” (11). Elderly individuals are screened by 
gait speed, the rate at which they can sit and stand several 
times or by hand grip strength or by a series of tests. Falling 
below population standards predicts frailty and mortality 
(12,13). However, there is a complex relationship between 
muscle mass, muscle loss and reduced function which is not 
linear. Muscle mass diminishes 0.5–1% per year beginning 
around the age of 40 which accelerates after the age of 65. 
Muscle strength diminishes 3–4% per year in men and 2.5–
3% per year for women around the age of 75 (14-16). 

Pre-sarcopenia can be defined as low muscle mass without 
loss of strength or physical disability or performance. 
Sarcopenia is defined as low muscle mass with either reduced 
muscle strength or reduced physical performance relative 
to population standards. Severe sarcopenia is defined as low 
muscle mass, reduced muscle strength and reduced physical 
performance relative to population standards. Dynapenia 
is age-associated loss of muscle strength not caused by 
neurologic or muscle diseases (17).

Oncologists and investigators interested in sarcopenia 
associated with cancer have largely used anatomical 
measurements of skeletal muscle mass as the initial screen. 
This is done through the use of bioelectrical impedance, 
dual energy X-ray absorptiometry (DEXA), and CT scan by 
the composition at a single cut through the level of the L3 
vertebral body (18-26). Bioelectrical impedance measures 
tissue resistance and capacitance but body composition is 
computed by equations derived from normal populations 
which are certainly less accurate than by direct measurement 
through CT scans. However, the phase angle which is a 
relationship of capacitance to resistance directly reflects 
muscle mass and cellular health (27,28). The advantages to 
bioelectrical impedance is that it is inexpensive, portable, 
can be repeated frequently and does not expose patients to 
radiation. DEXA scans measure appendicular muscle but 
are cumbersome and expose patients to radiation. Patients 
undergoing chemotherapy or targeted therapy are often 
restaged after a few cycles of therapy or periodically. The 
images can be used to measure tumor response, skeletal 
muscle mass, as well as visceral and subcutaneous fat mass.

CT scan body composition uses Hounsfield units  
(−29 to 150) to measure skeletal muscle area at a single 
L3 cross sectional area (4).  The L3 vertebral CT 
scan image includes 7 muscles; psoas, erector spinae, 
quadratus lumborum, transversus abdominis, external 
obliques, internal obliques, and rectus abdominis. 
Some studies used the cross section of the psoas 
alone (29).  Abdominal and subcutaneous fat mass 
area can be quantified. Gender specific norms have 
been established. For males normal muscle mass is 
greater than or equal to 52.4 cm2/m2 and for females  
38.5 cm2/m2. This has been correlated with whole body 
skeletal muscle mass and externally validated using mortality 
(4,7,30). There are several software programs that used to 
perform these measurements; MIMICS TM (Materialise 
HQ, Leuven, Belgium), SliceOmatic TM (Tomovision, 
Magog, CA), NIH IMAGEJ TM (http://IMAGEJgov/ij).

Causes of sarcopenia during chemotherapy and 
targeted therapy

There are four main causes of sarcopenia during 
chemotherapy; (I) impaired food intake with reduction 
in vitamin D; (II) omega 3 fatty acids and protein; (III) 
reduced physical activity secondary to fatigue; (IV) a direct 
effect of chemotherapy or targeted agents on muscle; (V) 
malabsorption secondary to mucositis or treatment related 
pancreatic insufficiency (31). 

Cisplatin, irinotecan, doxorubicin, and etoposide 
cause direct muscle loss through activation of the 
transcription factor NF kappa B which upregulates 
ubiquitin and proteasomes, increases proteolysis and 
inf lammatory cytokines  ( IL-1beta , IL6 and TNF 
alpha) which increases E3 ligases (atrogin-1) and 
increases ubiquitin protein binding for proteolysis (32).  
TNF alpha accelerates  catabol i sm (protein loss , 
insulin resistance), muscle contractile dysfunction, 
and disrupts myogenesis leading to muscle weakness  
(33-35). Cisplatin downregulates protein kinase B (AKT)/
mammalian target of rapamycin (mTOR)/leading to loss 
of myogenesis (36). Chemotherapy induces oxidative 
stress and increases reactive oxygen species (ROS) in 
muscle (36,37). Tumor growth factor (TGF) beta proteins 
are increased with chemotherapy which upregulates 
myostatin altering the balance of muscle metabolism 
toward catabolism (36,38,39). Combination chemotherapy 
causes mitochondrial damage which reduces cytochrome 
C needed for oxidative phosphorylation and peroxisome 
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proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1alpha), a protein transcriptional coactivator that 
regulates energy metabolism, mitochondrion biogenesis and 
muscle fiber type (40). Muscle wasting is associated with 
up-regulation of ERK1/2 and p38 MAPKs which impairs 
the AKT/mTor pathway leading to muscle atrophy (40).  
Chemotherapy causes reduction in muscle microvasculature 
through antiangiogenesis (41).

On the other hand, chemotherapy may counter cancer 
induced sarcopenia by reducing tumor burden. In a mouse 
model, 5FU reduced protein turnover by reducing one of 
the E3 ligases (atrogen-1) which would impair proteasome 
proteolysis. 5FU also increased muscle ribosomal activity 
and muscle metabolic capacity by increasing PGC-1alpha. 
Muscle autophagy is also reduced (42).

Outcomes associated with sarcopenia and 
sarcopenia obesity during cancer therapy

In a retrospective study of patients receiving neoadjuvant 
chemotherapy (NAC) for urothelial cancer, 14% had 
sarcopenia at the beginning of treatment as measured by CT 
scan body composition and 20% by bioelectrical impedance. 
There was no correlation between the presence of sarcopenia 
and a prognostic nutritional index using albumin and 
lymphocyte blood levels. After 3 cycles of NAC, skeletal mass 
decreased while fat mass increased suggesting that cisplatin 
NAC causes sarcopenic obesity (42). 

Several studies of foregut origin malignancies found 
a pre-treatment sarcopenia prevalence of 26–47% which 
increased after chemotherapy. Pre-NAC sarcopenia and 
the development of sarcopenia during chemotherapy 
correlated with an increased risk for neutropenic fever, a 
greater degree of dose-limiting toxicity (DLT), reduced 
successful surgical resections, and a shorter survival  
(43-45). A large study (n=225) of patients receiving NAC 
or palliative systemic chemotherapy also demonstrated a 
high prevalence of sarcopenia (40%) prior to treatment. In 
addition, close to half of patients had myosteatosis and 62% 
had cancer cachexia (involuntary weight loss of 5% or more 
over 6 months). Those on NAC lost 6.6 cm2 of skeletal 
muscle by CT scan body composition. Those on palliative 
chemotherapy lost on average 3.9% of the skeletal muscle 
mass by 100 days. Reduced muscle mass of >6% predicted 
reduced survival with a hazard ratio (HR) of 2.7 (46).  
In this study a high number of nutritionally vulnerable 
patients, with demonstrated abnormal body composition on 
CT analysis were misclassified by nutritional indices. The 

authors cautioned when categorizing the nutritional risk of 
oncology patients using nutritional tools only (47).

Two studies  involv ing the  e lder ly  undergoing 
chemotherapy have conflicting findings. A smaller study 
(n=103) involved patients with a mean age of 70. The authors 
found that hand grip strength predicted survival whereas 
CT scan body composition including the measurement of 
myosteatosis did not predict for drug toxicity or survival (48). 
An earlier study involved patients (n=131 with a median age 
of 72 years). Pre-sarcopenia was present in 48%, sarcopenia 
in 18.5% and severe sarcopenia in 7.7%. Severe sarcopenia 
was associated with loss of physical independence after 
chemotherapy with a HR of 5.95. Skeletal muscle mass in 
this study correlated with strength but not tests of physical 
function (49).

In a study which sequentially measured skeletal 
muscle mass through repeated CT scans during palliative 
chemotherapy for lung cancer, the mean reduction in skeletal 
muscle mass over time was 1.4 kg. Most who had objective 
response to chemotherapy had stable to improved muscle 
mass. Maintaining or gaining muscle mass predicted survival 
(10.7 vs. 5.8 months) (50). A second study in a similar group 
of patients used the phase angle as a measure of skeletal 
muscle mass. A phase angle less than 5.8 predicted a poor 
survival (HR 3.0) by multivariable analysis (18).

Even in patients undergoing a curative therapy, sarcopenia 
had clinical significance. In a group of patients undergoing 
curative treatment for large B-cell lymphomas, sarcopenia 
predicted a poorer 2-year survival (46% vs. 86%) with a HR 
of 3.22 for mortality (51). Patient who have pre-treatment 
sarcopenia undergoing curative resection for colorectal cancer 
have a shorter recurrence free survival and overall survival with a 
HR of 2.18 and 2.27 respectively (52). Post-surgical anastomotic 
leak occurred more frequently in sarcopenic patients (53).

These are only a few of the studies which have 
demonstrated the adverse effects of sarcopenia on the 
course of cancer. Sarcopenia predicts reduced survival 
in multiple cancers. Not only does sarcopenia predict 
reduced overall survival, but also increases a number of risks 
including postoperative infections, the need for inpatient 
rehabilitation, recurrent hospitalizations, hospital length 
of stay (54-58), respiratory and surgical complications, 
intensive care unit admissions, and days of enteral nutrition 
because of delays in gastric emptying (53,59-75).

Myosteatosis

Excessive levels of inter- and intra-muscular adipose tissue 
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and intramyocellular lipids adversely impacts metabolism 
and force generation with clinically relevant outcomes 
(76,77). Myosteatosis increases with aging, regardless 
of changes in body weight, which is more prevalent in 
diabetics and reflects insulin resistance, impaired secretion 
of adipokines and altered skeletal muscle blood flow (78,79). 
Myosteatosis of thigh muscles as measured by reduced 
Hounsfield units, is associated with an increased risk of hip 
fracture in the elderly and with reduced muscle strength, 
physical performance, and muscle mass (80). As discussed 
later, muscle depletion is associated with low plasma 
eicosapentaenoic (EPA) and docosahexaenoic (DHA) in 
cancer and supplementation with omega-3 fatty acids has 
been shown to ameliorate muscle loss and myosteatosis in 
clinical studies (81). In multiple studies, low attenuation 
of muscle on CT scans has been associated with reduced 
cancer survival with a HR of 1.36 to 2.5 (8,77,82-86).

Sarcopenic obesity

As mentioned previously, cisplatin has been associated with 
sarcopenic obesity. In a series of patients with lung cancer 
undergoing chemotherapy, after 4 months of chemotherapy, 
patients exhibited sarcopenia with decreased muscle and 
increased visceral adiposity relative to subcutaneous fat 
mass. This was not adequately mirrored by BMI and weight 
loss (87). In addition, cyclophosphamide, doxorubicin, 
vincristine and prednisone, used to treat non-Hodgkin’s 
lymphoma, has been associated with increased fat mass with 
stable LBM. Weight gain during chemotherapy, with an 
unfavorable change in body composition, misleads treating 
physicians to attribute weight gain as a sign of regaining 
health (88).

Sarcopenic obesity has an independent adverse effect 
on clinical outcomes. In a retrospective study of patients 
with pancreatic cancer, overall and recurrence-free survival 
rates in patients with a high visceral to subcutaneous fat 
ratio were significantly lower than those in patients with 
low ratio. Survival and relapse free survival rates of patients 
with sarcopenic visceral obesity were significantly lower 
compared with those without sarcopenic obesity. The 
ratio of visceral to subcutaneous fat was an independent 
risk factor for mortality with a HR of 1.58 suggesting that 
visceral fat mass plays a role in clinical outcomes (89). In a 
series of patients with pancreatic cancer, 18 had sarcopenic 
obesity, 44 had obesity without sarcopenia and 62 had 
sarcopenia alone. Obese sarcopenia was an independent 
risk predictor for mortality with a HR of 2.07. Multiple 

additional studies have demonstrated adverse cancer-related 
outcomes for those with sarcopenic obesity (1,6,7,42,90-98).

One question that arises when reviewing these studies is 
how much the increase in fat mass plays a role in predicting 
adverse outcomes relative to sarcopenia alone. A second 
question is whether it is the overall increase in fat mass or 
its relative distribution between subcutaneous versus visceral 
compartments (in addition to reduced skeletal muscle 
mass) that is the important clinical feature that defines 
sarcopenic obesity. It has been suggested that chemotherapy 
dosing paradigms should differ between the obese without 
sarcopenia and the sarcopenic obese. Chemotherapy doses 
perhaps should be limited to a 2 m2 BSA in the sarcopenic 
obese due to the increased risk for chemotherapy related 
toxicity (1).

Sarcopenia and targeted therapies

Certain targeted agents are associated with sarcopenia 
and the cancer outcomes of targeted therapy can be 
influenced by sarcopenia. The comparison was made 
between chemotherapy and targeted agents as to the 
prevalence of sarcopenia on therapy. Most patients were on 
epidermal growth factor receptor tyrosine kinase inhibitors. 
Sarcopenia was measured by CT scan body composition. 
Chemotherapy produced greater muscle loss relative to 
targeted agents. There was also greater variation in skeletal 
muscle loss or gains with chemotherapy. The authors 
attributed this to less anorexia with targeted agents as well 
as differences in toxicity (99).

Three classes of targeted agents have been shown to 
improve skeletal muscle mass: poly (adenosine diphosphate-
ribose) polymerase (PARP) inhibitors and the mitogen-
activated protein (MEK) inhibitor, selumetinib. PARP 
activation causes muscle mass loss and muscle dysfunction 
in animal models (100,101). Inhibitors of PARP reduce 
muscle oxidative stress, reduces muscle catabolism, enhances 
muscle metabolism and improves mitochondrion function 
and biogenesis (100,102-106). PARP inhibitors improve 
exercise capacity by boosting mitochondrion respiratory 
capacity in mice (103).

Selumetinib was studied in BALB/C mice implanted 
with C26 adenocarcinoma. Selumetinib reduced E3 ligases 
which are important to proteasome proteolysis. Selumetinib 
also enhanced the AKT/mTor pathway (107). Selumetinib 
increased muscle mass and weight in 80% of patients treated 
for biliary cancers and produced an objective response in 
12% suggesting that the anabolic benefits are independent 
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of anti-cancer activity (108,109).
Imatinib mesylate inhibits signaling from tyrosine 

kinase receptors, including PDGFR alpha, and has been 
used to treat CML. PDGFR alpha is expressed in muscle 
mesenchymal progenitors, when stimulated induces muscle 
fibrosis (110). Imatinib reverses the sarcopenia associated with 
gastrointestinal stromal tumors (GIST) (111).

There are targeted agents which have been either 
associated with sarcopenia or have outcomes are adversely 
influenced by sarcopenia. Sorafenib has the greatest evidence 
for inducing sarcopenia. Sorafenib activates the proteasome 
and calcium dependent proteolysis pathways (112).  
Sorafenib causes progressive loss of skeletal muscle mass 
over time, unrelated to cancer (113). On the other hand, 
pre-existing sarcopenia on sorafenib is associated with 
disease limiting toxicity (DLT) and a shortened survival 
(114-116). Sorafenib responses are diminished in individuals 
with sarcopenic obesity with increased visceral fat (117,118). 
However, there is a single study that suggests increased 
visceral fat in patients on endothelial growth factor-targeted 
therapy portends a better outlook and prognosis (119).  
Patients with sarcopenia have a significantly inferior 
progression free survival and overall survival compared to 
non-sarcopenic patients [PFS: 7.6 vs. 18.2 months (120)]. 
Sunitinib therapy in sarcopenic patients is associated with 
DLT with a 4-fold increased risk in grade 3 and vascular 
toxicities (121). Dose limiting toxicity is seen in half of 
patients at 6 months who are sarcopenic prior to starting 
sunitinib therapy. Those with sarcopenia and reduced 
fat mass have a 90% chance of experiencing DLT and an 
increased number of treatment related toxicities (5 vs. 2) (122).

Inhibitors of the mTor pathway have been associated 
with sarcopenia. The use of mTOR inhibitors significantly 
decreases skeletal muscle area and LBM but has no effect 
on adipose tissue or body weight (123). Skeletal muscle 
mass is an independent prognostic factor for patients with 
metastatic renal cell cancer treated with everolimus (21.9 vs. 
10 months for those with the highest to lowest L3 muscle 
cross section area) (124). 

Treatment of sarcopenia 

Reversibility and multimodality therapy

Patients with cancer have anabolic capacity. Sarcopenia can be 
reversed in older aged individuals, those that are deconditioned, 
and in those with multiple comorbidities (125). Serial studies 
have demonstrated that muscle protein synthesis can be 

stimulated in these individuals (126,127). However, it 
is likely that reversibility will depend on multimodality 
approaches. Pharmacologic trials have frequently been 
carried out without regard to adequate nutrition intake 
within the trial design. Failure to reverse sarcopenia 
may not be related to failure to generate anabolism but 
inadequate calorie intake (128,129).

Diet

Patients with cancer are often catabolic and the need 
for protein intake may not be adequately predicted by 
their BMI. At least 35% of patients with cancer have 
inadequate protein intake (less than 1 g/kg body weight per  
day) (19). Protein intake should be 1.2–1.5 g/kg per day for 
those with acute or chronic diseases (130,131). Leucine rich 
supplements have been shown to maintain or build muscle 
mass (132,133). Leucine was found has beneficial effects 
on body weight, BMI, and LBM in older persons prone to 
sarcopenia, but does not improve muscle strength (134).  
Healthy elderly men can take in 500 mg/kg per day without 
an increase in ammonia. A more conservative approach 
would be an intake of 351 mg/kg per day (135).

Beta-hydroxy beta-methyl butyrate (HMB) supplements 
have been used to build muscle mass. HMB enhances 
sarcoplasmic reticulum thus improves to peak contraction 
force in vitro (136). HMB improves the proliferation of 
muscle stem cells in fast twitch muscles in mice which 
increases muscle mass (137). So it is rational to think 
that HMB might increase muscle mass and function. In a 
randomized trial involving individuals over the age of 65, 
HMB improved strength and muscle quality independent of 
resistance exercises (138). Seven randomized trials involving 
287 patients found that patients gain muscle mass without 
improved function or strength (139). There is no study that 
the authors could find which addressed the use of HMB 
during chemotherapy. Studies are needed to address the 
specific effectiveness of HMB in attenuating muscle wasting 
in various muscle-wasting disorders (140).

Besides improving protein intake overall and the types 
of protein consumed, the amount of simple carbohydrates 
should be reduced with the emphasis on whole foods 
rather than processed foods and high fiber intake  
(141-143). One caveat though is that patients who develop 
dysgeusia on chemotherapy might not find protein palatable 
(144,145). Dronabinol reduces the chemosensory changes 
that occur on chemotherapy and allows patients to increase 
protein intake (146).
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Vitamin D

We recommend checking vitamin D levels and replacing 
vitamin D if low which has a low risk and potential benefits 
(133,147). Prolonged deficiency is reported to produce both 
muscle loss and weakness (147-149). The muscle losses are 
particularly severe for type II muscle which are prevented 
by maintaining levels 25 hydroxyvitamin D >20 ng/mL  
(149,150). In addition, to low 25 hydroxyvitamin D, high 
parathyroid hormone levels (PTH) levels (≥4.0 pmol/L)  
are associated with an increased risk for sarcopenia (151). 
Replacement of vitamin-D increases muscle fiber size 
and lowers extremity proximal muscle strength (152,153). 
Vitamin D deficiency is defined as a 25 hydroxyvitamin D3 
level of <20 ng/mL, insufficient when 21–29 ng/mL. The 
prevalence of vitamin D deficiency is 36–47% during the 
winter in the general population and is likely to be higher 
in patients with cancer who have insufficient intake and 
insufficient light exposure (154).

Vitamin D (1 alpha, 25 dihydroxyvitamin D3) binds 
to vitamin-D receptors (VDR) which are transported to 
the nucleus where they interact with 9-cis-retinoid acid 
receptors and form a heterodimer. The heterodimer 
modulates the FOXO subfamily which is responsible for 
myoblast maturation. The end result is downregulation of  
myostatin (155). Besides atrophy of type II muscle fibers, 
vitamin D deficiency is associated with myosteatosis and loss 
of satellite cells necessary for muscle regeneration (156-158).

Omega 3 fatty acids

Myosteatosis and sarcopenia have been associated with low 
plasma levels of omega-3 fatty acids (OMF). And conversely, 
supplementation of diets with OMF ameliorate sarcopenia 
and reverse myosteatosis in clinical studies (81,159).

OMF improves muscle mass by several different 
mechanisms. OMF increases mTor ribosomal activity through 
phosphorylation and inhibits mTOR translocation into 
lysosomes (160,161). Muscle anabolic responses to insulin and 
amino acid infusion are greater in the presence of OMF (162). 
Another mechanism involves increases in uncoupling protein-2 
by mitochondrion which reduces reactive oxygen species and 
down-regulates proteasome proteolysis (163,164).

 A series of small studies have been done where 
omega-3 fatty acid supplementation has been given during 
chemotherapy. A dose finding study found that 6 g of 0MF 
per day was the maximum tolerable dose. OMF improved 
appetite and fatigue. Participants in this study had advanced 

lung cancer and a systemic immune-metabolic syndrome 
(chronic systemic inflammatory syndrome) (165). A group 
of patients who were receiving palliative chemotherapy for 
visceral breast cancer metastases were randomized between 
the OMF docosahexaenoic acid (DHA) 1.8 g daily or 
placebo. Chemotherapy responses occurred in 88% of those 
on DHA versus 44% of those treated with anthracycline-
based chemotherapy alone. Those with the highest plasma 
DHA levels had a significantly longer survival (34 vs.  
18 months) and less chemotherapy toxicity (166). A trial of 
patients undergoing palliative chemotherapy for lung cancer 
(n=92) randomized patients (n=112) between the omega-3 
fatty acid eicosapentaenoic acid (EPA) and an isocaloric diet. 
All patients received paclitaxel and cisplatin/carboplatin 
chemotherapy. EPA randomized patients followed a 
standardized menu and two containers (237 mL each) 
per day of ProSure® (Abbott Nutrition, Columbus, Ohio, 
USA). Calorie and protein consumption in the control 
group decreased during the two cycles of treatment (P=0.08 
and P=0.04 respectively), while in the experimental group 
dietary intake of calories and protein were maintained. The 
EPA group had increased energy, protein, carbohydrate 
and fat intake when including oral supplement compared 
with control group. The EPA group had an increased 
global health status while the control group did not. LBM 
decreased in the control group but increased in the EPA 
group by the second cycle of chemotherapy. There were no 
differences in tumor response or survival (167). 

In a small randomized trial (n=40), 2.2 g of EPA during 
chemotherapy for lung cancer resulted in less muscle and 
weight loss and less myosteatosis than patients who were 
not supplemented (168). Sixty-nine percent of patients in 
the EPA group gained or maintained muscle mass while 
only 29% of patients in the control group did. Fat mass was 
unchanged between groups. A second study by the same 
group found that 2.5 gms of EPA daily improved response 
rate and clinical benefit of chemotherapy for lung cancer. 
Eighty percent of those on EPA had a clinical benefit to 
chemotherapy versus 42% of those in the control group. 
The trial was small with only 46 patients and thus was under 
powered. Survival at 1 year was 60% for those receiving the 
supplement versus 39% of those on standard care though 
this was not significantly different (P=0.15) (159).

There are multiple randomized trials demonstrating 
benefits to EPA and DHA supplementation during 
chemotherapy but trial populations were small and most 
were phase II designs. Large randomized trials will be 
needed to confirm these promising findings.
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Testosterone

Men with cancer often have low testosterone levels which 
could lead to sarcopenia. Women may benefit from 
testosterone during chemotherapy in attempts to maintain 
muscle mass. A small randomized trial (n=24) of patients 
with cervical and head and neck cancer used testosterone 
enanthate 100 mg weekly for 7 weeks during therapy. 
Appendicular skeletal muscle mass was maintained and 
body weight increased on average by 1.3 kg. Quality of life 
improved but physical well-being, strength and performance 
were not improved (169).

Selective androgen receptor modulators (SARMS)

Androgens promote growth hormone release, stimulate 
appetite, increase LBM and regulate energy homeostasis 
but also increase the risk for cardiovascular disease, 
depression, aggression and sleep disordered breathing (170).  
SARMS have been developed to take advantage of the 
anabolic effects of androgen receptor agonists while 
avoiding the adverse effects of androgen on prostate, heart, 
and liver (171,172). Selectivity occurs through different 
interactions with the androgen receptor leading to distinctly 
different receptor conformation, and interactions with 
coactivators and corepressors resulting in differences in 
recruitment of nongenomic signaling and gene regulation 
(173,174). SARMS have been used in both genders to 
improve bone health and increase LBM, countering 
osteoporosis, sarcopenia and cachexia (175,176).

Enobosarm is a hyper-myo-anabolic SARM with high 
oral bioavailability and preclinical safety. It is not subject 
to peripheral aromatase or 5-alpha reductase metabolism 
and thus is not converted to an estrogenic or androgenic 
metabolite (177). In a phase 2 study patients with cancer 
who were treated with enobosarm had improvement in 
LBM and stair climbing power. There was no reduction in 
free testosterone levels (129). However, two phase III trials 
involving patients receiving chemotherapy for lung cancer 
found that enobosarm improved LBM but failed to improve 
stair climbing power which was a co-primary outcome of 
the study (178,179).

Ghrelin

Ghrelin is a growth hormone secretagogue receptor 
agonist which increases appetite by up-regulating 
neuropeptide Y and agouti-related protein in the 

hypothalamus (180). Ghrelin also has skeletal muscle 
anabolic effects even though muscle lacks growth hormone 
secretagogue receptors (36). Experimentally ghrelin 
reverses the adverse effects of cisplatin and cancer on 
skeletal muscle. Cisplatin and tumor down-regulate the 
AKT pathway, MyoD and myogenin while up-regulating 
E3 ligases responsible for proteasome proteolysis. In 
addition, cisplatin up-regulates myostatin. Ghrelin reverses 
this (36). In animals, cisplatin causes muscle necrosis with 
associated inflammatory cell infiltrates which is prevented 
by ghrelin. In animals ghrelin not only prevents sarcopenia 
but improves muscle strength (181).

Anamorelin, a growth hormone secretagogue receptor 
agonist, has been used in several chemotherapy trials 
to decrease sarcopenia and improve muscle strength. 
In these studies patients had advanced lung cancer and 
cachexia. Appendicular muscle was measured by DEXA 
scans and muscle strength by hand grip. Similar to 
enobosarm, anamorelin improved muscle mass but not 
the functional co-primary functional outcome, hand grip 
strength (182-184).

Resistance training

Some type of resistance training should be recommended. 
Resistance training increases type II muscle, improves 
strength, and directs protein intake toward muscle 
production. Resistance training forestalls age-related 
changes in mobility, improves gait speed, balance, and 
reduces fall risk in the elderly (185). There are differences 
in physiologic effects between aerobic and resistance 
training. Aerobic training alters mitochondrial and cytosolic 
enzyme activities, resistance exercise training increases 
contractile protein mass (186). It may be reasonable, 
therefore, to consider cross training between aerobic and 
resistance exercises. However, resistance training appears to 
be the most important element to an exercise program for 
patients undergoing therapy for their cancer. Early-stage 
breast cancer patients on adjuvant chemotherapy have a 
high risk of sarcopenia and dynapenia. Resistance training 
is superior to aerobic training in reversing both sarcopenia 
and dynapenia (187). Breast cancer patients undergoing 
hormone therapy have increased fat mass by 6 months, 
resistance training significantly increases LBM and fat free 
body mass (188). Resistance training decreases sarcopenia, 
reduces body fat, improves muscle strength and quality 
of life in hypogonadal prostate cancer patients, but not 
physical function (189).
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Combination therapy

Combinations of medications or combinations of 
medications with resistance training has been reported. 
OMF supplementation of 2–4 g/day has been combined 
with resistance training. Both muscle strength and 
mass improved (190-193). These studies have almost 
exclusively been done in geriatric populations. The 
combination overcomes anabolic resistance that occurs 
in older individuals (194). A combination of vitamin D 
supplementation and a metabolite of leucine, calcium 
β-hydroxy β-methyl butyrate (CaHMB), improves muscle 
strength, grip and gait speed in randomized trials. It was 
most effective in patients with mild to moderate sarcopenia 
but not severe sarcopenia (195). This finding suggests that 
prevention approaches or early interventions are likely to 
be more successful. Vitamin D supplementation and whey 
protein rich in leucine increases appendicular skeletal 
muscle mass. Benefits are best seen in those with higher 
serum vitamin D levels (196). Whey protein should not 
be the only protein source. A combination of HMB, whey 
protein, vitamin D and exercise has improved muscle mass 
and strength in the elderly. Lasting impact will depend on 
baseline nutritional status, severity of sarcopenia prior to 
the intervention, and adherence to the intervention (197). 
In a small underpowered study of patients with lung cancer 
the combination of OMF and a cyclooxygenase inhibitor 
improved body weight, muscle strength and reduced 
C-reactive protein. The combination was better than OMF 
alone (165).

Summary

Sarcopenia is present at the beginning of chemotherapy 
in a subgroup of patients, and worsens or develops during 
neoadjuvant chemotherapy or palliative chemotherapy. 
Clinical outcomes are adversely influenced by the presence 
of sarcopenia prior to treatment or with the development 
of sarcopenia during therapy. Certain targeted agents cause 
sarcopenia while others may prevent or reverse sarcopenia. 
To treat and prevent sarcopenia, patients need adequate 
protein intake and resistance exercises. Patients should be 
screened for vitamin-D deficiency and vitamin-D should 
be replaced if deficient or insufficient. OMF 2–6 g/day 
should be considered as a supplement since toxicity is low 
and there are potential benefits. Large randomized trials 
are needed to validate the findings from small studies. Both 
anamorelin and enobosarm are unlikely to be approved 

to treat or present sarcopenia in cancer since neither one 
improved function. Combinations of protein supplements, 
OMF, HMB and exercise are promising but largely untested 
in cancer.
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