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Introduction

Coronary artery disease (CAD) is one of the leading 
causes of morbidity and mortality worldwide (1). Despite 
tremendous progress in diagnosis and treatment, it remains 
an important public health issue. Especially in China, the 

incidence of CAD continues to rise, causing more than 
40% of deaths (2). CAD is usually caused by atherosclerotic 
lesions and causes myocardial ischemia (3). Coronary 
heart disease (CHD) is a general term for coronary 
atherosclerotic lesions caused by multiple factors (4). As a 
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common cardiovascular disease (CVD), CHD has become 
a major health problem for the general population in the 
past few decades. More specifically, CHD is a dynamic 
process of the interaction between endothelial dysfunction 
and inflammatory response (5). Its diagnosis and treatment 
methods are inconvenient, have low specificity, and are 
accompanied by complications such as organ failure, 
diabetes and depression. Therefore, a multi-target, multi-
path treatment is urgently needed.

Endothelium, a monolayer of endothelial cells, separates 
the vascular wall from circulation, regulates vascular tension, 
and maintains a homogenous balance of blood vessels (6). 
However, endothelial dysfunction limits the production 
of various vascular protective molecules. CVD begins 
with progressive impairment of endothelial function and  
integrity (7). Currently, there is little strong evidence 
supporting a link between endothelial dysfunction and the 
pathogenesis of CVD. Inflammation has been revealed 
to be one of the causes of CHD (8), and the expression 
of inflammatory factors such as IL-6, TNF-α, and IL-1 
in patients with CHD may be related to the pathogenesis 
of CHD. Previous reports suggest that suppressing 
inflammation helps treat CHD (9). If the internal 
environment of blood vessels is imbalanced, atherosclerotic 
plaques may be formed in the vasculature under the 
influence of inflammation and risk factors (10), leading to 
the occurrence of CHD (11).

Andrographis paniculata is a Chinese herbal medicine 
used to treat diseases such as laryngitis, diarrhea, and 

rheumatoid arthritis (12). Andrographolide (Andro) is 
a bicyclic diterpene lactone isolated from Andrographis, 
which exhibits anti-cancer (13), hepatocyte protection (14), 
and anti-inflammatory activity (15). It has been confirmed 
that Andro can improve endotoxemia in rats by inhibiting 
inducible nitric oxide (NO) synthase to reduce NO 
production (16). In addition, Xia et al. found that Andro 
covalently bound cysteine 62 of p50, blocking the NF-κB-
activated inflammatory response (17).

Although the protective effect of Andro has been 
reported in vitro, its role in vivo, especially in CHD, is 
unclear. In this study, we evaluated the therapeutic role 
of Andro in a mouse model of CHD and its underlying 
mechanisms. We also investigated the effects of Andro on 
endothelial dysfunction and inflammation.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/apm-20-960).

Methods

Main materials and chemicals

Andrographolide (molecular formula: C20H30O5, molecular 
weight: 350.45) was obtained from Shanghai Standard 
Technology Co., Ltd. (Shanghai, China). All antibodies 
were obtained from Abcam (Cambridge, UK) in Table 1.

Animal model

Healthy male C57BL/6 mice (8 weeks old) were obtained 
from Zhejiang Chinese Medicine University Laboratory 
Animal Research Center (Hangzhou, China). All mice were 
housed in a comfortable environment (22 ℃, humidity 
of 55% and light/dark cycle for 12 h) with free access to 
food and water. All animal protocols were conducted in 
accordance with the institute guidelines for the care and 
use of animal, and approved by the ethics committees of 
Chengdu University of Traditional Chinese Medicine (No. 
SYXK-20200046). According to a previous description (18),  
a high-fat diet model of mouse CHD (19) was established. 
Mice were randomly divided into five groups (n=10): sham, 
Andro (50 mg/kg), CHD, CHD + Andro (10 mg/kg),  
and CHD + Andro (50 mg/kg). The mouse model was 
established by intraperitoneal injection with vitamin D3 
(600,000 U/kg), while other groups received an equal 
volume of sterile saline. Then, 42 days later, mice were 
sacrificed and heart tissues and serum samples were 

Table 1 The details of antibodies used in this experiment

Protein
Molecular weight 

(kDa)
Dissolution 

ratio
Source

t-PA 63 1/1,000 ab157469, Abcam

PAI-1 45 1/500 ab66705, Abcam

Caspase-3 34 1/500 ab13847, Abcam

Bax 21 1/1,000 ab32503, Abcam

Bcl-2 26 1/500 ab59348, Abcam

PPARα 40 1/300 ab23673, Abcam

p65 64 1/1,000 ab16502, Abcam

p-p65 60 1/2,000 ab86299, Abcam

IκBα 35 1/1,000 ab32518, Abcam

p-IκBα 40 1/10,000 ab133462, Abcam

β-actin 42 1/5,000 ab179467, Abcam
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immediately collected and stored at −80 ℃ for follow-up 
experiments. 

Hematoxylin and eosin (HE) staining

In short,  mouse cardiac t issues were f ixed in 4% 
paraformaldehyde buffer for 2 h. The specimens were 
continuously cut into 4 μm thick slices after embedding 
in paraffin. Next, slices were stained with hematoxylin for  
5 min, and eosin for 3 min. Finally, the slices were 
dehydrated and blocked for pathological diagnosis.

Determination of blood lipid

The levels of triglycerides (TG), total cholesterol (TC), 
low-density lipoprotein cholesterol (LDL-C) and high-
density lipoprotein cholesterol (HDL-C) in serum were 
measured using a fully automatic biochemical analyzer 
(BS-220, Mindray, Shenzhen, China) according to the 
commercially available kit instructions (Lai Er Bio-
Tech, Hefei, China), samples were transferred into a 96-
well microplate for colorimetric analysis of absorbance 
at 500 nm. 

Enzyme-linked immunosorbent assay (ELISA) assay

After andrographolide treatment as described above, serum 
was collected after centrifugation for 10 min (4 ℃, 2,000 g).  
Serum levels of related proteins were detected using 
enzyme-linked immunosorbent assay (ELISA) kits (MskBio, 
Wuhan, China). The operational steps were performed 
according to the manufacturer’s instructions, and the results 
at 450 nm were recorded. The average absorbance values 
of repeated standard and samples were determined. By the 
best fitting curve, the sample concentration was calculated 
for data analysis.

Flow cytometry

After mice were sacrificed, the heart tissue was quickly 
removed and placed in ice-filled PBS. The heart tissue was 
minced and digested, and the mixture was centrifuged at 
500 g for 5 min at 4 ℃, then the supernatant was removed 
and the cells were resuspended in 1 mL of ice staining 
buffer. The cells were divided into three parts according to 
the cell count, and each part contained about 106 live cells 
for flow cytometry. Next, the isolated cells were coupled 
with macrophage-conjugated primary antibodies on ice 

incubate for 30 min. Subsequently, the cell samples were 
cleaned twice and then analyzed by a CytoFLEX flow 
cytometer (Beckman Coulter, CA, USA). F4-80+/CD86+ 

(pro-inflammatory) and F4-80+/CD206+ (anti-inflammatory) 
as the macrophage phenotypes. APC-CY5.5 conjugated 
CD86, APC-CY7 conjugated CD206 and R-PE-CY5 
conjugated F4/80.

Immunohistochemistry 

Mouse heart tissue was fixed in 10% formalin solution. 
After embedding paraffin, the tissues were cut into 4 μm 
thickness. Next, the sections are hydrated and endogenous 
peroxidase activity was blocked with hydrogen peroxide 
blockers. The antigen was repaired in citrate heated buffer 
for 10 min, and then the sections were incubated with 
anti-caspase-3 antibody overnight at 4 ℃. Next day, the 
second antibody was incubated at room temperature for  
1 h. Samples were stained with a DAB kit (Sangon Biotech, 
shanghai, china). Finally, the sections were cleaned and the 
images were captured under a confocal microscope (Leica, 
Wetzlar, Germany).

Western blotting

Total protein were lysed with RIPA Lysis and Extraction 
Buffer (Thermo Fisher Scientific, Waltham, USA), 
incubated on ice for 15 min, and centrifuged at 10,000 g 
for 10 min. A bicinchoninic acid assay (BCA) kit (Abcam, 
Cambridge, UK) was used to measure the protein 
concentration. Afterwards, protein samples were split 
by 12% SDS-PAGE, then transferred to polyvinylidene 
difluoride (PVDF) (Thermo Fisher Scientific, Waltham, 
USA) membrane. Next, the membranes were blocked 
with 5% non-fat milk at 37 ℃ for 1 h, and subsequently 
incubated with the matching primary antibody at 4 ℃ 
overnight. β-actin was represented as the internal control. 
After being fully washed 3 times, the membranes were 
incubated with goat anti-rabbit antibody coupled with 
horseradish peroxidase (HRP) for 2 h at 37 ℃. Finally, 
the protein blotting was visualized with enhanced 
chemiluminescence (ECL) reagent (Beyotime, Haimen, 
China). 

Statistical analyses

All operations are repeated at least 3 times, and the results 
are represented as mean ± SD (standard deviation). Data 
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Figure 1 Effect of Andro on cardiac injury and serum lipid profiles. (A) HE staining of myocardial tissue; representative micrographs 
were magnified at 400×; (B,C,D,E) the serum contents of TC, TG, LDL-C, and HDL-C as detected by ELLSA assay. Data values are 
presented as mean ± SD; n=10. *, P<0.05, **, P<0.01 vs. sham group; #, P<0.05, ##, P<0.01 vs. CHD group. Andro, andrographolide; TC, total 
cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; CHD, coronary 
heart disease.

were analyzed using SPSS 21.0 (IBM, Armonk, NY, USA). 
Comparisons between the two groups were performed 
using Student’s t-test, while comparisons among multiple 
groups were conducted using one-way analysis of variance 
(ANOVA) followed by Dunnett’s post hoc test. P values <0.05 
were considered statistically significant.

Results

Andrographolide preserved cardiac injury and improved 
the serum lipid profiles after CHD

To investigate the effect of Andro on myocardium after 
CHD, we observed the pathological changes of heart tissue 

by hematoxylin and eosin (HE) staining. As shown in  
Figure 1A,  there was no signif icant difference of 
morphology and structure in the sham group. Whereas, cell 
edema, necrosis and neutrophil infiltration occurred in the 
CHD group. Excitingly, compared with the CHD-induced 
group, myocardial tissue damage was gradually repaired 
with Andro (10 and 50 mg/kg). In addition, we tested the 
blood lipid profile (TC, TG, LDL-C, HDL-C) by ELISA 
assay, and the results showed that the serum contents of 
the TC, TG, and LDL-C in the CHD group were higher 
than those in the sham group, while HDL-C was lower, 
and there was no significant change in Andro 50 mg/kg  
(Figure 1B,C,D,E). Compared with the CHD group, the 
levels of TC, TG, and LDL-C in the CHD + Andro (10 and  
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50 mg/kg) groups were significantly decreased, while that of 
HDL-C was increased (Figure 1B,C,D,E). The results show 
that Andro could protect myocardial injury and normalize 
lipid disorder by improving blood lipid profiles.

Andrographolide mitigated endothelial dysfunction and 
fibrinolytic activity after CHD

Changes in NO and ET-1 can cause vascular endothelial 
dysfunction (20), and prostaglandin I2 (PGI2) and 
thromboxane A2 (TXA2) are 2 important active factors in 
the vascular system (21). Therefore, we tested NO, ET-1, 
PGI2, and TXA2 serum levels by ELLSA assay. As expected, 
compared with sham group, the levels of ET-1 (Figure 2A)  
and TAX2 (Figure 2B) were significantly increased in 
CHD-induced mouse serum, while the serum levels of NO  
(Figure 2C) and PGI2 (Figure 2D) were decreased. 
Interestingly, Andro treatment reversed this trend. The 
results of serum NO, ET-1, TXA2, and PGI2 indicated 
that Andro had a protective effect on vascular endothelial 
dysfunction caused by CHD. In addition, compared 
with the sham group, the level of t-PA was significantly 
decreased and PAI-1 was increased in the CHD group. 
Conversely, Andro (10 and 50 mg/kg) increased the content 
of t-PA and decreased PAI-1, compared with the CHD 
group (Figure 2E,F). Western blot results of t-PA and PAI-
1 were consistent with ELLSA (Figure 2G), indicating that 
Andro improved fibrinolytic function and reduced blood 

coagulation.

Andrographolide switched the macrophage phenotype and 
ameliorated myocardial inflammation

Treatment with Andro (10 and 50 mg/kg) significantly 
decreased CD86+ cells number and rose CD206+ cells 
number (Figure 3A). Notably, as shown in Figure 3B, 
compared with sham, the ratio of CD86+/CD206+ was 
decreased in macrophages post Andro treatment. Previous 
reports have shown that inflammatory response is associated 
with the progression of CHD (22). Here, we analyzed the 
expression of inflammatory factors in myocardial tissue 
and serum. ELISA assay showed that Andro treatment at 
different concentrations decreased the levels of TNF-α 
(Figure 3B), MCP-1 (Figure 3C), hs-CRP (Figure 3D), 
and IL-1β (Figure 3E) in serum. Together, these results 
indicated that Andro shifted the phenotype macrophage 
from pro-inflammatory subset to anti-inflammatory subset 
and ameliorated the expression of inflammatory factors.

Andrographolide inhibited cardiac apoptosis and regulated 
the protein activities of PPARα and NF-κB

As shown in Figure 4A, the expression of caspase-3 was 
decreased, compared with control (P<0.05). However, the 
levels caspase-3 were reversed after Andro treatment (10 
and 50 mg/kg). In addition, Figure 4B showed that the 
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Figure 2 Effect of Andro on endothelial dysfunction and fibrinolytic activity. (A,B,C,D) The serum levels of NO, TXA2, ET-1, and PGI2,as 
detected by ELLSA assay; (E,F) the plasma levels of t-PA and PAI-1 as detected by ELISA assay; (G) the protein levels of t-PA and PAI-1 as 
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group. Andro, andrographolide; NO, nitric oxide; CHD, coronary heart disease.
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Figure 3 Effect of Andro on myocardial inflammation. (A) The distribution of CD86 and CD206 macrophages was detected by flow 
cytometry; (B,C,D,E) the inflammatory factor TNF-α, MCP-1, hs-CRP, and IL-1β were as by ELLSA assay. Data values are presented as 
mean ± SD; n=10. **, P<0.01 vs. sham group; #, P<0.05, ##, P<0.01 vs. CHD group. Andro, andrographolide; CHD, coronary heart disease.

value of Bcl-2/Bax was increased with Andro treatment. 
To elucidate the underlying mechanism of Andro, we 
detected the expression of related proteins by western 
blot. Our results revealed that PPARα protein expression 
was significantly lower while the phosphorylation levels of 
p65 and IκBα were remarkably higher in the CHD group 
compared with the sham group. On the contrary, Andro 
reversed the change of PPARα, p65, and IκBα protein 
(Figure 4C).

Andrographolide attenuated CHD through suppressing 
PPARα pathway

To confirm whether PPARα signaling is involved in Andro’s 
protective effect on CHD, we injected PPARα antagonist 
GW6471 (1 nM) into the jugular vein of rats, and rats were 
randomly separated into five groups: sham group, CHD 
group, CHD + GW6471 (1 nM) group, and CHD + Andro 
(50 mg/kg) group, and GW6471 + Andro group. As shown 

in Figure 5A, the protein level of PPARα was significantly 
decreased and the expression of p-p65 and p-IκBα were 
dramatically increased compared with sham, and the 
addition of GW6471 made this trend more obvious. After 
GW6471 + Andro treatment, this trend was removed. In 
addition, we also tested the expression of ET, NO, TXA2, 
TNF-α, MCP-1, hs-CRP, and IL-1β by ELISA. The 
expression of ET, TXA2, TNF-α, MCP-1, hs-CRP, and 
IL-1β were significantly increased, while the expression 
of NO was dramatically decreased compared with sham 
group. Andro remarkably decreased the proteins levels of 
ET, TXA2, TNF-α, MCP-1, hs-CRP, and IL-1β, while it 
increased the protein level of NO compared with CHD. 
GW6471 significantly aggravated the changes in these 
proteins when compared with CHD. Moreover, GW6471 
+ Andro treatment weakened the levels of ET, TXA2, 
TNF-α, MCP-1, hs-CRP, and IL-1β and elevated the level 
of NO compared with the CHD + GW6471 group (Figure 
5B,C,D,E,F,G,H). 
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Figure 4 Effect of Andro on cardiac apoptosis and the activation of PPARα and NF-κB. (A) The expression of caspase-3 was examined by 
immunohistochemistry, representative graphs were magnified at 200×; (B) the protein levels of Bcl-2 and Bax were examined by WB; (C) the 
expression of PPARα, p65, p-p65, IκBα, and p-IκBα as detected by Western. Data values are presented as mean ± SD; n=10. **, P<0.01 vs. 
sham group; #, P<0.05, ##, P<0.01 vs. CHD group. Andro, andrographolide; CHD, coronary heart disease.

Discussion

In recent years, CHD has become a major health problem 
for the general population. Previous studies have found 
that an inflammatory response is related to the progression 
of CHD (23). Consequently, inflammatory factors and 
endothelial function can be viewed as available indicators for 
assessing and treating CHD (10). In this study, we explored 
the therapeutic effect of Andro on CHD mice. The results 
showed that Andro treatment reduced the serum levels 
of TNF-α, MCP-1, hs-CRP, and L-1β, attenuated the 
endothelial dysfunction, and impeded cardiac apoptosis in 
CHD rats. Andro therapy improved the CHD process of 
mouse model by regulating PPAR α and NF-κB signals.

Endothelial dysfunction is the initial stage of CHD, 

which is characterized by decreased endothelial-dependent 
vasodilation, NO synthesis, and vascular motility factor 
disorders (24). PGI2 and NO have been considered as 
the two main components of endothelial-derived relaxing 
factors and play an important role in regulating vascular 
movement (21,25). In addition, endothelial cells also 
produce a variety of vasoconstriction factors, such as ET-1 
and TXA2, which can stimulate leukocyte adhesion (26)  
and promote platelet aggregation (27), respectively. 
Endothelium-derived imbalance can cause endothelial 
dysfunction. This study showed that Andro significantly 
promoted the up-regulation of PIG2 and NO and inhibited 
the expression of ET-1 and TXA2, suggesting that Andro 
improved microcirculation function by maintaining balance 
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Figure 5 Effect of Andro on CHD in the presence of GW6471. After adding PPARα antagonist GW6471. (A) The protein levels of PPARα, 
p65, p-p65, IκBα and p-IκBα were detected by Western blot; (B,C,D,E,F,G,H) The expression of ET, NO, TXA2, TNF-α, MCP-1, hs-
CRP, and IL-1β as detected by ELISA assay. Data values are presented as mean ± SD; n=10. *, P<0.05, **, P<0.01 vs. sham group; #, P<0.05, 
##, P<0.01 vs. CHD group; &, P<0.05 vs. CHD + GW6471 (1 nM). Andro, andrographolide; NO, nitric oxide; CHD, coronary heart disease.

between endothelial cells.
Inflammation is one of the most common symptoms 

in patients with acute CHD (28). Li et al. found that 
transient reduction of TNF-α in children’s serum was an 
important biological indicator for monitoring children with 
congenital heart disease (29). IL-1β accelerates endothelial 
permeability and stimulates the release of chemokines, 
leading to the accumulation of inflammatory cells including 
neutrophils and macrophages (30). In addition, MCP-
1 specifically regulates the migration and activation of 
monocytes and macrophages, affecting the growth and 
stability of atherosclerotic plaques (31). Particularly, Andro 
has been shown to have anti-inflammatory effects (15-17). 

In line with these studies, we found that Andro switched 
the polarization of macrophages from pro-inflammatory 
subset to anti-inflammatory subset, decreased the levels of 
TNF-α, MCP-1, and hs-CRP, IL-1β, indicating that Andro 
suppressed myocardial inflammation in rats with CHD.

NF-κB is a pleiotropic transcription-inducing factor, and 
activation of NF-κB is related to cardiac cell apoptosis and 
cytokine release (32). IκBs will rapidly phosphorylate and 
degrade after activation of NF-κB, leading to the transfer 
of p50/p65 heterodimers to the nucleus, stimulating the 
transcription of multiple target genes, thereby regulating 
the inflammatory factors VIL-1 (IL-1b, IL-6, and TNF-a) 
and cytokines/chemokines (32,33). Xia et al. reported 
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that Andro prevented allergic lung inflammation in 
vivo by inhibition of NF-κB activation (17). Wang et al. 
found Andro inhibited NF-κB activation and attenuated 
neointimal hyperplasia in arterial restenosis (15). 

In this study, our results showed that Andro inhibited 
the phosphorylation of p65 and IκBα. PPARα, as a major 
transcriptional regulator of energy metabolism (34), is 
expressed in multiple organs such as the liver, kidney, 
and heart. It is essential for regulating inflammation 
and angiogenesis. PPARα levels were reported to be 
downregulated in animal models or patients with heart 
failure (35,36). In our rat model, PPARα levels were 
significantly downregulated, which is consistent with 
previous reports. Inhibition or reduction of PPARα 
expression may cause a decrease in the abil ity of 
cardiomyocytes to oxidize fatty acid substrates, leading to 
a decrease in ATP during heart failure (37). In addition, 
in the pig model, PPARα ligand was found to inhibit the 
proliferation and migration of endothelial cells and reduce 
angiogenesis. In addition to generating energy, PPARα can 
also regulate apoptosis, which is an important contributing 
factor to heart failure (38). Due to its cardioprotective 
effect, PPARα can be used as a target for the treatment 
of heart failure. To further explore the regulatory effect 
of Andro on PPARα, we added the PPARα antagonist 
GW6471. Compared with the CHD group, GW6471 
significantly inhibited the expression of PPARα, while 
Andro and GW6471 co-treatment increased the protein 
level of PPARα. In parallel fashion, we also found that 
GW6471 exacerbated the inflammatory response in a rat 
model, while Andro eliminated the GW6471 stimulation of 
inflammation.

In conclusion, our study demonstrated the protective 
effect of Andro on CHD, which was mediated via PPAR 
and NF-κB signaling pathways. Furthermore, as Andro 
alleviated myocardial injury, inhibited cardiac apoptosis, 
mitigated endothelial dysfunction and fibrinolytic activity, 
and ameliorated myocardial inflammation, it may thus be a 
candidate for the treatment of CHD.
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