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Unexpected sudden cardiac death in the young (SCDY) is 
tragic occurrence and causes terrible grief for the parents, 
families, school members, and friends of the stricken 
individuals. In study of a Caucasian population, it was found 
that 75% of SCDY cases were not caused by coronary 
artery disease, which is main cause of sudden cardiac death 
in adults. Most of these incidents, rather, are caused by 
inheritable sudden arrhythmic death syndrome (SADS) 
or genetic cardiomyopathy (GCM), and the prevalence of 
these diseases ranges from 1/1,000 to 1/10,000.

SADS includes long QT syndrome (LQTS), short 
QT syndrome, Brugada syndrome (BrS), catecholamine 
polymorphic ventricular tachycardia, and many kinds 
of cardiomyopathies. LQTS, for example, is an inborn 
and inheritable heart disease of a structurally normal 
heart but entails an increasing risk of life-threatening 
arrhythmia, such as torsade de pointes (TDP, a form of 
irregular heartbeat that originates from the ventricles). 
The condition is so named because of the appearance of 
a prolonged QT interval on the electrocardiogram. The 
prevalence of long QT syndrome is close to 1:2000 with 
the mean age of onset around 10±20 years old. The patients 
with LQTS can present with palpitations, syncope, and 
sudden death due to ventricular tachycardia/fibrillation (1). 
In 1957, Jervell and Lange-Nielsen described the first cases 
of autosomal-recessive LQTS with concomitant bilateral 
sensorineural deafness, providing the first description of 
an inherited arrhythmia syndrome associated with sudden 
cardiac death in structurally normal hearts (2). In 1963 and 
1964, Drs. Romano and Ward described the autosomal-

dominant version of LQTS with an isolated cardiac 
phenotype (3,4). No LQTS-causal gene was discovered 
until 1995 when Mark Keating’s research team used linkage 
analysis with single-strand conformation polymorphism and 
DNA sequence analyses to identify the KCNH2-encoded 
Kv11.1 potassium channel and the SCN5A-encoded Nav1.5 
sodium channel in families with LQTS (5,6). Two and a 
half decades later, 14 more minor LQTS-susceptibility 
genes have been discovered. All 17 genes account for 
nearly 70–80% of disorders (7) which indicates that LQTS 
is typically inherited as an autosomal-dominant trait, is 
rarely inherited recessively, is and characterized by a severe 
cardiac phenotype and sensorineural hearing loss (8,9). Due 
to the limitations in genetic technology, it took nearly four 
decades before the first LQTS gene was discovered. BrS 
was reported in 1992 (10), and the first gene, SCN5A, was 
identified in 1998 (11). The history of genetic discovery 
in BrS is shorter than that of LQTS because of the 
improvement of genetic molecular technology.

In the past decades, Sanger sequencing was used 
for genetic screening of single-gene diseases and was 
considered the gold standard for DNA sequencing (12). 
However, it is laborious and time-consuming. The more 
recently developed high-throughput next-generation 
sequencing (NGS) is able to screen hundreds to thousands 
of genes in a week, a capacity which greatly outstrips that 
of Sanger sequencing. In addition, NGS can detect single-
nucleotide variants in medium- to large-sized regions 
with high accuracy and reduced cost (13-17). Thus, novel 
genes can be discovered at a greater speed possible than 
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with Sanger sequencing (13,18-22). The main challenge in 
the rapidly growing field of NGS technologies is to cope 
with the analysis of a vast sequencing database through 
advanced bioinformatics tools (23,24). An important 
advantage of sequencing data is its quality, robustness, and 
low noise. It should be noted that a successful NGS project 
requires expertise both in the wet lab and in the realm of 
bioinformatics in order to produce high quality data and 
data interpretation. 

According to 2011 American/European Heart Rhythm 
guidelines, genetic testing has become part of standard 
care in clinical practice (class I recommendation) for SADS 
and GCM. This is because the inheritable mode of these 
diseases is mainly autosomal dominant, which means the 
genetic mutation of parents with SADS has a 50% chance of 
being transmitted to parents’ children. For example, from a 
clinical testing standpoint, any patient with a strong clinical 
index of suspicion for a LQTS diagnosis or an asymptomatic 
patient with an unequivocal prolonged QTc (>480 ms during 
prepuberty, >500 ms during adulthood) in the absence of 
other clinical conditions should be offered clinical LQTS 
genetic testing (25,26). As a further illustration, the 2013 
HRS/EHRA/APHRS expert consensus recommended that 
comprehensive or BrS1 (SCN5A)-targeted genetic testing 
could be useful for patients in whom a cardiologist has 
established a clinical index of suspicion for BrS based on the 
patient’s clinical history, family history, and the expressed 
electrocardiographic (resting 12-lead electrocardiography 
and/or provocative drug challenge testing) phenotype (27).  
Since disease penetrance of BrS is incomplete and age-
related, genetic testing may be used for diagnostic 
purposes and for the screening of at risk family members. 
In summary, for patients, genetic testing can help doctors 
make a diagnosis, adjust medications, and predict prognosis. 
For family members, genetic testing can provide early 
identification of those family members at risk, and possibly 
allow early treatment, preventing unnecessary anxiety. 
Although genetic testing is helpful for SADS patient 
care, testing genes for which sufficiently strong scientific 
evidence for disease causation is lacking entails a risk of 
misinterpreting the genetic information and potentially 
under/over diagnosing SADS in the patient and family 
members. Furthermore, ancestral differences may also 
impact the interpretation of the pathogenicity classification 
of a variant (28). Consequently, patients may be subjected to 
unnecessary anxiety and physical consequences. Thus, genes 
with disputed or limited evidence for causation of these 
diseases are currently not recommended for diagnostic 

purposes through routine testing (29-31). 
In conclusion, as we enter the era of genomics, the 

application of high-throughput NGS technology may 
discover an array of novel genetic variants or genes 
in inherited diseases, which could revolutionize the 
understanding of these disease mechanisms. However, the 
infrastructure of whole genome or whole exome sequencing 
for clinical practice is not yet mature enough to support a 
practical understanding in both physicians and patients, who 
must still struggle with interpreting vast tracts of genetic 
data. 
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