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Original Article

Tumor necrosis factor receptor-associated factor 6 (TRAF6) 
inhibition modulates bone loss and matrix metalloproteinase 
expression levels in collagen-induced rheumatoid arthritis rat
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Background: Rheumatoid arthritis (RA) is a main characterized by persistent synovitis, systemic 
inflammation, and autoantibodies. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 
ubiquitin ligase and is a crucial cytoplasm signal adaptor that can regulate critical biological processes. 
This research aims to explore the function of TRAF6 on bone loss and matrix metalloproteinase (MMP) 
expression in collagen-induced RA rats.
Methods: The RA model in rats (Sprague Dawley rat, 5–6 weeks old, weight 246.88±8.31 g) was set up via 
using collagen-induced RA. The shRNA-TRAF6 knockdown efficiency was tested using real-time reverse 
transcription-polymerase chain reaction (qRT-PCR) and western blot, respectively. The rats were divided 
into four groups: the control group, RA group, RA + shRNA-NC group, and RA + TRAF6-shRNA group. 
The tartrate-resistant acidic phosphatase (TRAP), hematoxylin and eosin (H&E), and Saffron O staining 
were employed to test the bone injury. The mRNA and protein expressive of Osteoclast-associated receptor 
(OSCAR), TRAP, Osterix (OSX), Collagen type I alpha 1 (COL1A1), Distal-less homeobox2 (Dlx2), tissue 
inhibitor of metalloproteinase (TIMP), matrix metalloproteinase-1(MMP-1), Cyclooxygenase 2 (COX2) and 
qRT-PCR performed MMP-13 and western blot, respectively.
Results: The mRNA and protein expression levels of TRAF6 were down-regulated in the RA + TRAF6-
shRNA group. After the levels of TRAF6 were inhibited, the levels of bone volume/total volume (BV/TV), 
trabecular bone thickness (Tb.Th), and trabecular bone number (Tb.N) were increased, while the levels of 
trabecular bone space (Tb.Sp), Osteocalcin and ALP were deceased. The mRNA and protein expression 
levels of OSCAR, TRAP, MMP-1, COX2, and MMP-13 were reduced obviously in the RA + TRAF6-
shRNA group compared with the RA + shRNA-NC group, while the levels of TIMP-1, OSX, CoL1A1, and 
DLx2 were enhanced obviously. 
Conclusions: Inhibition of TRAF6 reduces bone loss and MMP expression levels in collagen-induced RA 
rat, and supplies an alternative treatment method in RA. 
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Introduction

Rheumatoid arthritis (RA) is a main characterized 
by persistent synovitis, systemic inflammation, and 
autoantibodies. Women, smokers, and those with a 
family history of the disease are most often affected (1). 
Methotrexate is the drug of choice to treat RA, sometimes 
combined with biological agents, including tumor necrosis 
factor (TNF) inhibitors (2). However, even with these 
treatment options, including disease-altering anti-rheumatic 
drugs and available biological agents, many patients still 
cannot adequately control their disease (3). Radiation 
synovial replacement, synovectomy, or axial correction with 
tendon transfer are essential methods for surgical treatment 
of RA in earlier stages (4). Many recent advancements 
in pharmacologic therapy have improved RA outcomes 
significantly, and many further patients can be treated. 
However, the improvement of RA results is accompanied by 
substantial financial costs (5). In traditional RA treatment, 
due to the short biological half-life and poor bioavailability, 
high doses and frequent doses is require. These anti-RA 
medications may cause serious side effects on extra-articular 
tissues. Studies have shown that nanotechnology has become 
a promising tool for the development of new drug delivery 
systems for the treatment and diagnosis of intractable 
diseases such as rheumatoid arthritis (6,7). At present, RNA 
interference (RNAi) is a powerful endogenous process 
initiated by short double-stranded RNAs, which results in 
sequence-specific posttranscriptional gene silencing. The 
possibility of blocking the expression of any protein carries 
huge expectations for potential therapeutic applications 
in a wide range of diseases (8). Therefore, improving the 
treatment of RA is an integral part of our future research.

Tumor necrosis factor receptor-associated factor 6 
(TRAF6) is a significant binding protein in the TRAF 
family and can regulate the TNF receptor superfamily. 
The interleukin 1 receptor/Toll-like receptor family, and 
is considered a vital participant in regulating inflammation 
and immunity (9-11). TRAF6 is necessary for many 
biological processes, including the chronic innate immune 
signaling with myelodysplasia (12), anti-myeloma and anti-
bone resorptive (13), tumor angiogenesis (14), and cancer 
metastasis (15,16). Notably, the overexpression of TRAF6 

in the synovium is related to the increase of compensatory 
bone formation. Therefore, TRAF6 is engaged in the 
pathogenesis of bone metabolic imbalance via regulating the 
synovial inflammation of RA (17). Sinomenine suppresses 
expression levels of differentiation factor 88 (MyD88) and 
TRAF-6 in RA-Fibroblast-like synoviocytes (FLSs) (18). 
Tomatidine inhibits osteoclast production and reduces 
bone loss caused by estrogen deficiency by regulating 
TRAF6-mediated signal transduction (19). However, down-
regulation of TRAF-6 plays the role is not reported in 
osteoclast, osteoblast, and chondrocyte.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/apm-20-1894).

Methods

Animals

Sixty Sprague Dawley (SD) rats (5–6 weeks old, weight 
246.88±8.31 g) were retrieved from the Shanghai 
Laboratory Animal Center, Chinese Academy of Sciences 
(Shanghai, China). All animal care and handling were 
performed considering the National Institutes of Health 
(NIH) Guidelines for the Care and Use of Laboratory 
Animals and were approved by the People’s Hospital of 
Ningxia Hui Autonomous Region. The research was 
reviewed and approved by the Ethics Committee for 
Experimental Animal Management and Animal Welfare of 
People’s Hospital of Ningxia Hui Autonomous Region. Rats 
were housed individually in stainless steel cages with glass 
water bottles. Rats were held for adaptation for 14 d before 
collagen-induced RA. Rats were kept in a room under the 
following conditions: temperature of 23±1 ℃, the humidity 
level of 50–60%, and the 12 hours light/dark cycle.

RA model rats

Of the sixty rats, 15 rats were randomly selected as the 
control group, and the remaining 45 rats were selected as 
the RA group. The RA model in rats was set up via using 
collagen-induced RA. So rats were divided randomly into 
four groups: control group, RA group, RA + shRNA-
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NC group and RA + shRNA-TRAF6 group. Type II 
bovine collagen was dissolved in 0.05 mol/L acetic acid 
at a concentration of 2 mg/mL and then emulsified in 
an equal volume of complete Freund’s adjuvant (CFA; 
Jon Drex, Washington, USA). Rats were immunized 
intracutaneously with 200 µL emulsion divided into four 
points symmetrically along the back. After seven days, a 
similar amount of bovine collagen type II emulsified into 
CFA injected intracutaneously as a booster dose (20). The 
severity of collagen-induced RA was assessed using a scoring  
system (21). Through this method, we judge whether the 
RA was set up successfully. 

shRNA-mediated TRAF6 knockdown

Following manufacturer’s instructions, peripheral 
blood mononuclear cells (PBMC) were retrieved from 
the peripheral blood in the RA patients and healthy 
controls. In short, Ficoll immediately isolated PBMC 
(TBD Science, Tianjin, China), and then resuspended at 
a cell concentration of 105/mL in RPMI-1640 medium 
containing 10% fetal bovine serum (FBS). HANBIO 
Company designed the effective TRAF6-shRNA sequence. 
The HANBIO Company synthesized the TRAF6-
shRNA lentiviral vector (Shanghai, China). An shRNA-
NC was used as a control for all experiments. After  
24 hours, TRAF6-shRNA and shRNA-NC lentiviral 
vector were transfected into PBMC with lipofectamine 
3000 reagents (Life Technologies Corporation) considering 
the manufacturer’s instructions. The shRNA knockdown 
eff ic iency was evaluated using Real-t ime reverse 
transcription-polymerase chain reaction (qRT-PCR) and 
western blot.

qRT-PCR

According to manufacturers’ protocol, total RNA was 
isolated by employing the TRIzol reagent kit (Invitrogen, 
Beijing, China). The total RNA concentration was 
measured by adopting the Gene Quant ProRNA/DNA 
Calcula-tor (Amersham Pharmacia Biotec, UK). The 
PrimeScript RT reagent Kit (TakaRa, Dalian, China) was 
used to perform reverse transcription. The 2 SYBR Premix 
Ex Taq™ II (TakaRa, Dalian, China) was employed to 
assemble the reaction system of qRT-PCR. The reaction 
system is carried out in the Bio-Rad CFX-96 (Bio-Rad, CA, 
USA). GAPDH was used for normalizing. The qRT-PCR 
data were analyzed using the 2–ΔΔCt method to calculate the 

relative expression levels of mRNA. Primer sequences were 
used in this study in Table 1.

Western blot assay

The RIPA lysis buffer (Beyotime Institute of Biotechnology, 
Shanghai, China) was employed to extract proteins in the 
bone homogenate following the manufacturer’s protocol. 
The BCA Protein Assay Kit were retrieved from Biyuntian 
Biological Technology Co., Ltd. (Shanghai, China) and 
were employed to measure the protein concentrations. 
Primary antibody (Table 2) were integrated with the targeted 
protein with incubation at room temperature for 1 hour. 
Secondary antibodies conjugated with goat anti-rabbit 
IgG horseradish peroxidase (HRP)-conjugated secondary 
antibodies for one hour. The band densities were decided 
and analyzed with an automatic digital gel image analysis 
system Bio-Rad CFX-96 (Bio-Rad, CA, USA).

Bone morphometry

Rat femurs were dissected free of soft tissue, fixed in4% 
paraformaldehyde for 24 hours, and scanned under 
micro-computed tomography (µCT). The morphometry 
of trabecular bones was assessed by high-resolution 
Inveon microtomography (Siemens, Munich, Germany). 
Parameters included bone volume/total volume (BV/TV), 
trabecular bone thickness (Tb.Th), trabecular bone number 
(Tb.N), and trabecular bone space (Tb.Sp).

Histological examination

Bone samples were fixed with 10% neutral buffered 
formalin. Samples were then decalcified in diethyl-
pyrocarbonate treated 0.2 M ethylenediaminetetraacetic 
acid (EDTA), embedded in paraffin wax, cut into sections 
(5 µm-thick), and stained with tartrate-resistant acidic 
phosphatase (TRAP), hematoxylin and eosin (H&E), and 
Saffron O staining.

Statistical analysis

Each experiment in this study was conducted three times. 
The data were presented as mean ± SD. Statistical analyses 
between two groups were conducted using Student’s 
t-tests and SPSS 25.0 software (IBM, Armonk, USA). The 
significance of differences between treatment groups was 
studied using a one-way analysis of variance (ANOVA). A P 
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value of <0.05 was showing statistical significance.

Results

TRAF6 expression in collagen-induced RA rat

Considering previous research, TRAF6 plays a direct role 
in the proinflammatory effects and proliferation of RA 
FLSs (22). As shown in Figure 1, the mRNA and protein 
expression levels of TRAF6 were up-regulated, obviously in 
the RA group compared with the control group (P<0.05). 
TRAF6 in RA was inhibited using Lentiviral-TRAF6-

shRNA transfection. The mRNA and protein expression 
levels of TRAF6 were down-regulated, obviously in the RA 
+ TRAF6-shRNA group compared with the RA + shRNA-
NC group (P<0.05).

Effect of down-regulation of TRAF6 on bone-specific 
indicators

As shown in Figure 2, the levels of BV/TV, Tb.Th and 
Tb.N were deceased in the RA group compared with the 
control group, while the levels of Tb.Sp, Osteocalcin, and 
ALP were increased (P<0.05). However, after the levels of 
TRAF6 were inhibited, the levels of BV/TV, Tb.Th and 
Tb.N were increased in the RA + TRAF6-shRNA group 
compared with the RA + shRNA-NC group (P<0.05), while 
the levels of Tb.Sp, Osteocalcin, and ALP were decreased 
(P<0.05). In summary, inhibition of TRAF6 might break 
the balance between osteoclast and osteoblast production.

Effect of down-regulation of TRAF6 on osteoclast 
production

As shown in Figure 3A, TRAP staining detected osteoclast 
production. The result showed that the number of 
osteoclasts was increased significantly in the RA group 
compared with the control group. However, after the 
levels of TRAF6 were inhibited, the number of osteoclasts 

Table 1 Primer sequences

Gene Forward Reverse

Tumor necrosis factor receptor-
associated factor 6 (TRAF6)

5'-CAG TGG TCG TAT CGT GCT TA-3' 5'-CCT TAT GGT TTC TTG GAG TC-3'

Osteoclast-associated receptor 
(OSCAR)

5'-CCC AGC TTC ATA CCA CCC TA-3' 5'-GAA GAG AAG GGG AGC GAT CT-3'

Triiodothyronine receptor auxiliary 
protein (TRAP)

5'-TCA CCC TGA CCT ATG GTG C-3' 5'-GCC GGA CTC CAA TGT TAA AGC-3'

Osterix (OSX) 5'-CCT CTG CGG GAC TCA ACA AC-3' 5'-AGC CCA TTA GTG CTT GTA AAG G-3'

Collagen type I alpha 1 (COL1A1) 5'-CCT GGA TGC CAT CAA AGT CT-3' 5'-AAT CCA TCG GTC ATG CTC TC-3'

Distal-less homeobox2 (Dlx2) 5'-CTC TGC CTG CCT CAT AAG G-3' 5'-ATC GTA AGA ACA GCG CAA CC-3'

Tissue inhibitor of metalloproteinase 
(TIMP)

5'-CAA CTG CGG AAC GGG CTC TTG-3' 5'-CGG CAG CGT AGG TCT TGG TGA A-3'

Matrix metalloproteinase-1 (MMP-1) 5'-CAG ATG GGC ATA TCC CTC TAA GAA-3' 5'-CCA TGA CCA AAT CTA CAG TCC TCAC-3'

Cyclooxygenase 2 (COX2) 5'-CAC GCA GGT GGA GAT GAT CTA C-3' 5'-ACT TCC TGG CCC ACA GCA AAC T-3'

MMP-13 5'-CAT GCC AAC AAA TTC CCT GCT GTG GT-3' 5'-TCT CCT CCC TGC ACC TCC AGA TTT-3'

Table 2 Antibody information

Antibody Antibody information

anti-TRAF6 1:1,000, #8028, Cell Signaling

anti-OSCAR 1:1,000, sc-34233, Santa Cruz Biotechnology

anti-TRAP 1:1,000, #15094, Cell Signaling

anti-OSX 1:1,000, ab209484, abcam

anti-COL1a1 1:1,000, #39952, Cell Signaling

anti-DLx2 1:5,000, ab272902, abcam

anti-TIMP 1:1,000, #8946, Cell Signaling

anti-MMP-1 1:1,000, #54376, Cell Signaling

anti-COX2 1:1,000, #12282, Cell Signaling

anti-MMP13 1:1,000, #69926, Cell Signaling
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was decreased significantly in the RA + TRAF6-shRNA 
group compared with the RA + shRNA-NC group. Also, as 
shown in Figure 3B,C, the mRNA and protein expression 
levels of OSCAR and TRAP were enhanced obviously in 
the RA group compared with the control group (P<0.05). 
However, after the levels of TRAF6 were inhibited, the 
mRNA and protein expression levels of OSCAR and TRAP 
were reduced in the RA + TRAF6-shRNA group compared 
with the RA + shRNA-NC group (P<0.05). In summary, 
inhibition of TRAF6 might suppress osteoclast production.

Effect of down-regulation of TRAF6 on osteoblast 
production

As shown in Figure 4A, HE stains showed that osteoblast 
loss was observed in the RA group compared with the 
control group. However, after the levels of TRAF6 were 
inhibited, HE stains showed that osteoblast loss was 
recovered in the RA + TRAF6-shRNA group compared 
with the RA + shRNA-NC group. The osteoblast 
production was detected by Saffron O staining. The result 
showed that the number of osteoblasts was suppressed 
significantly in the RA group compared with the control 
group. However, after the levels of TRAF6 were inhibited, 
the number of osteoblasts was elevated significantly in 
the RA + TRAF6-shRNA group compared with the RA + 
shRNA-NC group. The contents of cartilage (Figure 4B) 
and trabecular bone (Figure 4C) were markedly decreased 

in the RA group compared with the control group, but 
were increased after the levels of TRAF6 were inhibited 
in the RA + TRAF6-shRNA group compared with the RA 
+ shRNA-NC group (P<0.05). The mRNA and protein 
expression levels of OSX, CoL1A1, and DLx2 were 
detected by qRT-PCR and western blot (Figure 4D,E). The 
mRNA and protein expression levels of OSX, CoL1A1, and 
DLx2 were reduced in the RA group compared with the 
control group (P<0.05). However, after the levels of TRAF6 
were inhibited, The mRNA and protein expression levels 
of OSX, CoL1A1, and DLx2 were enhanced obviously in 
the RA + TRAF6-shRNA group compared with the RA + 
shRNA-NC group (P<0.05). In brief, inhibition of TRAF6 
might promote osteoblast production.

Effect of down-regulation of TRAF6 on MMPs

As shown in Figure 5, the mRNA and protein expression 
levels of TIMP-1, MMP-1, COX2, and qRT-PCR detected 
MMP-13 and western blot (Figure 5A,B). The mRNA 
and protein expression levels of TIMP-1 were reduced 
obviously in the RA group compared with the control group 
while increasing the mRNA and protein expression levels of 
MMP-1, COX2, and MMP-13 (P<0.05). However, after the 
levels of TRAF6 were inhibited, The mRNA and protein 
expression levels of TIMP-1were enhanced obviously in 
the RA + TRAF6-shRNA group compared with the RA + 
shRNA-NC group, while decreasing mRNA and protein 

Figure 1 TRAF6 expression in collagen-induced rheumatoid arthritis rat. (A) The mRNA expressive level of TRAF6 was performed by 
qRT-PCR; (B) the expressive protein levels of TRAF6 were performed by western blot. *, P<0.05 compared with the control group; #, 
P<0.05 compared with the RA + shRNA-NC group. TRAF6, tumor necrosis factor receptor-associated factor 6; qRT-PCR, real-time 
reverse transcription-polymerase chain reaction; .
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expression levels of TIMP-1, MMP-1, COX2, and MMP-
13 (P<0.05). In summary, inhibition of TRAF6 might 
improve MMPs production.

Discussion

There are three significant players directly responsible for 
the pathogenesis of rheumatoid joint destruction, including 
the Synovial mesenchymal cells, matrix metalloproteinases 
(MMPs), and osteoclasts (23). The BV/TV value reflects the 
distribution density of trabecular bone and is an important 
index used to evaluate trabecular bone microstructure. 
In our research, the levels of BV/TV, Tb.Th and Tb.N 
were decreased in the RA group, while the levels of Tb.Sp, 
Osteocalcin, and ALP were increased. However, after the 
levels of TRAF6 were inhibited, the levels of BV/TV, Tb.Th 
and Tb.N were increased in the RA + TRAF6-shRNA group 

compared with the RA + shRNA-NC group, while the levels 
of Tb.Sp, Osteocalcin, and ALP were decreased. These 
results suggested that inhibition of TRAF6 broke the balance 
between osteoclast and osteoblast production.

It is widely known that osteoclasts have a unique ability 
to destroy bone and play a vital function in homeostatic 
bone remodeling and arthritic bone erosion. Osteoclasts are 
immune cells, not only mediating the bone destruction but 
also are involved in immune response (24). Recently, it was 
demonstrated that Osteoclasts play a critical role in bone 
destruction in RA. RA synovial tissue provides a suitable 
microenvironment for the differentiation of monocyte-
macrophage lineage cells into osteoclasts is the main reason. 
Simultaneously, the formation of osteoclasts is induced by 
nuclear factor receptor activator kappa B ligand (RANKL) 
plays a critical regulatory role in the bone destruction of 
RA (25). Importantly, TRAF6 ubiquitin ligase is necessary 
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Figure 2 Effect of down-regulation of TRAF6 on bone-specific indicators. The statistical analysis of (A) BV/TV, (B) Tb.Th (mm), (C) 
Tb.N (mm), (D) Tb.Sp (mm), (E) osteocalcin (ng/mL) and (F) ALP (U/L). *, P<0.05, vs. control group; #, P<0.05, vs. RA + shRNA-NC 
group. TRAF6, tumor necrosis factor receptor-associated factor 6; BV/TV, bone volume/total volume; Tb.Th, trabecular bone thickness; 
Tb.N, trabecular bone number; Tb.Sp, trabecular bone space.
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for RANKL signaling and differentiation of osteoclast (26). 
Previous research has demonstrated an association between 
a genetic variant of TRAF6 and low bone mineral density 
(BMD) among patients with RA (27). 

Elevated synovial expression of TRAF6 is related to the 

severity of synovitis and density of CD68+ cell, and takes 
part in the pathogenesis of RA synovitis and differentiation 
of osteoclast (28). In our research, the down-regulation of 
TRAF6 significantly decreased the number of osteoclasts 
in TRAP staining. Also, after the levels of TRAF6 were 

Figure 3 Effect of down-regulation of TRAF6 on osteoclast production. (A) TRAP staining detected the osteoclast production. 
Magnification 400×; (B) the mRNA expressive levels of OSCAR and TRAP were performed by qRT-PCR; (C) the expressive protein levels 
of OSCAR and TRAP were performed by western blot. *, P<0.05, vs. control group; #, P<0.05, vs. RA + shRNA-NC group. TRAF6, tumor 
necrosis factor receptor-associated factor 6; TRAP, tartrate-resistant acidic phosphatase; OSCAR, osteoclast-associated receptor; qRT-PCR, 
real-time reverse transcription-polymerase chain reaction.
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Figure 4 Effect of down-regulation of TRAF6 on osteoblast production. (A) HE stains. The osteoblast production was detected by Saffron 
O staining. Magnification 400×. The relative area of collagen (B) and trabecular bone (C) were analyzed using Image J software. (D) The 
mRNA expressive levels of OSX, CoL1A1, and DLx2 were performed by qRT-PCR. (E) The expressive protein levels of OSX, CoL1A1, 
and DLx2 were performed by western blot. *, P<0.05, vs. control group; #, P<0.05, vs. RA + shRNA-NC group. TRAF6, tumor necrosis 
factor receptor-associated factor; OSX, osterix; COL1A1, Collagen type I alpha 1; Dlx2, Distal-less homeobox2; qRT-PCR, real-time 
reverse transcription-polymerase chain reaction.
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inhibited, the mRNA and protein expression levels of 
OSCAR and TRAP were reduced obviously in the RA + 
TRAF6-shRNA group compared with the RA + shRNA-
NC group. Recently, a study has exhibited that OSCAR-
collagen signaling in monocytes plays a proinflammatory 
role and facilitates monocytes differentiation into osteoclasts 
and bone resorption and contributes to the pathogenesis 
of RA (29,30). The TRAP isoform 5b is a potential serum 
marker for osteoclastic activity (31). These results suggested 
that inhibition of TRAF6 suppressed osteoclast production 
in the development process of RA.

Bone homeostasis lies with the absorption of bone by 
osteoclasts and the formation of bone by osteoblasts. This 
imbalance in the tight coupling process can bring about 

diseases, including osteoporosis. Together, osteoblasts 
produce cytokines to regulate the differentiation and 
formation of osteoclasts. Also, osteoclast progenitor cells 
can reduce the sensitivity to osteoblast-induced apoptosis 
through the Fas-Ligand (FasL)/FAS pathway (32). 
Research has exhibited B cells restrain bone formation 
in RA by inhibiting osteoblast differentiation (33). The 
pathogenesis of RA is related to the inhibition of osteoblast 
differentiation. Restoring the function of osteoblasts plays 
a vital function in the treatment of RA. Interleukin (IL)-35 
stimulates the differentiation of basal and TNF-activated 
osteoblasts via regulating the Wnt/catenin signaling 
pathway. Therefore, IL-35 has essential significance in the 
treatment of RA bone loss drugs and drug applications (34). 

Figure 5 Effect of down-regulation of TRAF6 on MMPs. (A) The mRNA expressive levels of TIMP-1, MMP-1, COX2, and MMP-13 was 
performed by qRT-PCR; (B) the expressive protein levels of TIMP-1, MMP-1, COX2, and MMP-13 were performed by western blot. *, 
P<0.05, vs. control group; #, P<0.05, vs. the RA + shRNA-NC group. TRAF6, tumor necrosis factor receptor-associated factor; MMP, matrix 
metalloproteinase; qRT-PCR, real-time reverse transcription-polymerase chain reaction.
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OSX is an osteoblast-specific transcription factor, 
which is essential for osteoblast differentiation and 
bone formation. It is worth noting that OSX is the 
upstream regulator of Special AT-rich sequence-binding 
protein 2 (Satb2) during bone formation (35). CoL1A1-
driven transgenic markers are in the osteoblast lineage  
progression (36). DLX2 can induce Wnt1 transcription 
and regulate Wnt/catenin signaling pathway to accelerate 
the osteogenic differentiation of human bone marrow 
mesenchymal stem cells (hBMSCs) (37). In our research, 
HE stains showed that osteoblast loss was observed in 
the RA group. However, after the levels of TRAF6 were 
inhibited, HE stains showed that osteoblast loss was 
recovered in the RA + TRAF6-shRNA group compared 
with the RA + shRNA-NC group. The result showed that 
the number of osteoblasts was suppressed significantly 
in the RA group. However, after the levels of TRAF6 
were inhibited, the number of osteoblasts was elevated 
significantly in the RA + TRAF6-shRNA group compared 
with the RA + shRNA-NC group. The contents of cartilage 
and trabecular bone were markedly decreased in the RA 
group, but were increased after the levels of TRAF6 were 
inhibited in the RA + TRAF6-shRNA group compared 
with the RA + shRNA-NC group. The mRNA and protein 
expression levels of OSX, CoL1A1, and DLx2 were reduced 
in the RA group. However, after the levels of TRAF6 were 
inhibited, the mRNA and protein expression levels of OSX, 
CoL1A1, and DLx2 were enhanced obviously in the RA + 
TRAF6-shRNA group compared with the RA + shRNA-
NC group. These results suggested that inhibition of 
TRAF6 promoted osteoblast production.

Cartilage degradation is put down to metalloproteinases 
(MPs) belonging to the MMP family; further, integrins 
and metalloproteinases with thrombospondin type 1 motifs 
produced by inflamed joint tissues (38). The expression 
of MMPs was detected in the joint ligaments, tendons, 
and cartilage tissues. They are known to contribute to the 
development, remodeling, and maintenance of healthy 
tissues through their ability to lyse various extracellular 
matrix substrates. Their role has been extended to cell 
growth, migration, differentiation, and apoptosis (39). 
Chondrocytes play a role in the development of RA 
through TMEM147-mediated NF-κB activation and 
propose a treatment strategy for RA (40). Previous results 
have revealed that siTRAF6 can attenuate arthritis in mice 
with collagen-induced arthritis, as have evidenced by the 
reduction of serum anti-CII, MMP-1, MMP-3, and MMP-9  

and the decreasing of histological damage. It is worth 
noting the blockade of TRAF6 inhibited the migration and 
invasion of human RA-FLSs with IL-1β-stimulated (41). 
The correlation between TIMP-1 baseline levels and peri-
articular bone loss over one year suggests that TIMP-1 can 
be used as a biomarker of peri-articular bone loss in the 
early stage of RA (42).

Interestingly, RA synovial fibroblasts promote TREM-1  
expression in monocytes via COX-2/prostaglandin E2 
(PGE2) pathway (43). Kaempferol suppresses synovial 
fibroblast proliferation and the production of and MMPs, 
COX-2, and PGE2 in RA (44). In our research, the mRNA 
and protein expression levels of TIMP-1 were reduced 
obviously in the RA group, while increasing the mRNA and 
protein expression levels of MMP-1, COX2, and MMP-13.  
However, after the levels of TRAF6 were inhibited, 
The mRNA and protein expression levels of TIMP-
1were enhanced obviously in the RA + TRAF6-shRNA 
group compared with the RA + shRNA-NC group, while 
decreasing mRNA and protein expression levels of TIMP-1,  
MMP-1, COX-2 and MMP-13 (P<0.05). These results 
suggested that inhibition of TRAF6 improved MMPs 
production.

In conclusion, the down-regulation of TRAF6 restored 
the balance of osteoclasts and osteoblasts and improved 
the expression of MMP, which plays a vital role in the 
recovery of RA.
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