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Introduction

The anterior cruciate ligament (ACL) of the knee is one of 
the most commonly injured structures in musculoskeletal 
medicine (1). The ACL provides rotatory stability to the 
knee and functions as a restraint to anterior translation 
of the tibia with respect to the femur (2). The important 
role the ACL serves in knee stability and function explains 
why individuals with ACL tears can experience debilitating 
instability, particularly with cutting and pivoting activities, 
which often requires surgical reconstruction (1).

Several studies have previously analyzed the macroscopic 
biomechanics of the whole human ACL, however, tissue 
level analyses have been limited by preparation techniques 
and imaging technology (3-9). Previously, characterizations 
of ACL tissue properties have even been based on 
constitutive models derived from experiments using animal 
ligaments (10-12). 

A novel imaging technique has recently been applied to 
the ACL called quantitative polarized light imaging (QPLI) 
which has enabled the simultaneous measurement of full 
material properties of human ACL regions compensating 
for these previous measurement deficits. This polarized 
light technique enables quantification of the microstructural 
and fiber alignment properties of the tissue in a dynamic 
setting (13,14). This review will summarize recent 
developments in the field related to the anatomy, histology, 
and material properties of the human ACL.

General anatomy of the ACL

The ACL is located in the femoral notch of the knee 
connecting the femur and the tibia. It functions, along with 
the posterior cruciate ligament, as an instantaneous center 
of rotation for the knee controlling knee kinematics. The 
ACL originates from the lateral wall fossa of the notch on 
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the femur and attaches in the anterior aspect of the middle 
tibia beneath the transverse meniscal ligament. This 
positioning also allows the ACL to contribute to rotational 
stability. The average ACL length is 32 mm (range,  
22–41 mm) and its width ranges from 7 to 12 mm (15).

There is significant debate in the literature regarding 
whether the ACL is a single construct of tissue or if it is 
composed of more than one bundle of tissue. Anatomic 
dissections have demonstrated that the ligament consists 
of two, three and even four distinct bundles, while other 
studies have described the ACL as a continuum of numerous 
multiple bundles or fascicles (9,16-19). From a macroscopic 
anatomical position, most studies agree there are two main 
anatomic bundles of the ACL; the anteromedial (AM) 
bundle and the posterolateral (PL) bundle (Figure 1) (20). 
These names are derived from the bony attachments of 
the ligament. The AM bundle becomes tight in flexion and 
functions mainly to resist anterior translation while the PL 
bundle becomes tight in extension and is a greater restraint 
to rotatory motion (16,21). 

Histology of the ACL

The two bundles are oriented in a helical formation, which 
adds to the unique and complex ligament structure and 
function. This formation is believed to contribute to the 
ability to resist forces in multiple directions in such a large 

joint (16). The ACL is a dense collagenous connective tissue 
and is covered in a synovial membrane. 

Ferretti et al. performed an anatomic and histologic 
analysis of 40 fetal ACLs which supported the theory 
that the ACL is two main bundles (20). They found that 
the bundles were highly cellular and separated by a tissue 
septum, with connective tissue that differed in density from 
the femur to the tibia. In a recent study by Beaulieu et al., 
a histologic assessment of the tissue properties of the ACL 
at the bony attachments, using 15 adult human cadaveric 
ACLs sectioned into four regions, found differences 
between the AM and PL bundles (22). The AM bundle 
had 33% more calcified fibrocartilage and 143% more 
uncalcified fibrocartilage. Additionally, the AM fibers 
attached to the femur at a greater angle compared to the PL 
bundle. These differences, when compared to the findings 
in the Ferretti et al. study, demonstrate that the ACL 
undergoes histologic changes with loading and age. 

Petersen and Tillmann [1999] found that the major 
collagen composition of the ACL is Type I collagen while the 
loose connective tissue is Type III collagen. They also found 
that the AM and PL bundles were composed of different 
cells on histologic sections. The AM bundles, especially 
where it contacts the cartilage of the notch in extension, has 
more chondroid cells that secrete Type II collagen (23). The 
differences between the bundle regions on histologic analysis 
have also been studied with regard to biomechanics. 

Biomechanics 

Butler et al. performed some of the first macroscopic 
biomechanical analyses of the ACL and found that the AM 
bundle has greater failure load than the PL bundle (3,4). 
A recent study by Skelley et al. (24), utilizing QPLI to 
quantify mechanical properties and collagen organization 
in the ligament simultaneously, supported these findings. 
The AM bundle possessed greater collagen tensile strength 
under load compared to the PL bundle. 

In this study, sixteen human ACLs were dissected 
into AM and PL bundles based on previous dissection 
techniques in the literature. Three samples were taken from 
each bundle in an ordered sequence from AM (region 1 AM 
bundle) to PL (region 6 PL bundle) (Figure 2). Each sample 
was tested in uniaxial tension, using QPLI to quantify 
collagen fiber alignment. After preconditioning, samples 
were subjected to a stress-relaxation (SR) test followed by 
quasi-static ramp-to-failure (RF). Peak and equilibrium 
stress values were computed from the SR test and modulus 

AM PL

Figure 1  A right human knee dissection demonstrating the 
anteromedial (AM) and posterolateral (PL) bundles of the ACL after 
removing the medial femoral condyle, surrounding soft tissues, and 
synovium over the ACL. 
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quantified in the toe- and linear-regions of the RF. QPLI 
values describing collagen orientation (AoP = angle of 
polarization) and strength of alignment (DoLP = degree 
of linear polarization) were computed for the SR test and 
at points corresponding to the zero, transition point, and 
linear region of the RF. 

With regards to the microstructural fiber alignment, the 
AM bundle demonstrated greater fiber alignment during 
the RF than the PL bundle. The AM samples also exhibited 
larger peak/equilibrium stresses and less stress-relaxation 
during a 300-s hold compared to PL samples (25). The 
AM bundle demonstrated stronger and more uniform 
collagen fiber alignment (i.e., higher DoLP) values and less 
distributed AoP values compared to the PL bundle, and 
larger changes in alignment strength during the hold. These 
biomechanical and microstructural analyses led the authors 
to conclude that the AM bundle was composed of more 
aligned and stronger tissue. Essentially, the AM bundle was 
the “dominant” bundle.

These studies, however, did not assess the relative 
uniformity of tissue properties nor elucidate overall 
regional variation across the ligament. Such an analysis 
is important to demonstrate whether the ACL is truly 
composed of two discrete bundles with distinct properties, 
or whether properties vary in a gradient-like manner, 
suggesting a continuity of material properties across the 
ligament. Therefore, in a follow-up study to the Skelley et 
al. study, the 6 regions were further analyzed to determine 
if the mechanical and structural properties changed within 
the three AM regions and within the three PL regions. In 
this manner, the properties could be measured across the 
tissue bundles of the ligament (26). Toe- and linear-region 
modulus values decreased from region 1 to 6. Slopes of 
regression lines increased for average DoLP during RF, 
with significant linear variation across the ACL regions at 

higher strains. Standard deviation AoP values decreased 
during RF, indicating tighter distribution of orientation 
angles, with significant correlations at all points of the RF. 
During SR, stress values uniformly decreased, but did not 
show significant linear regression by region. Average DoLP 
and the standard deviation of AoP values changed slightly 
during SR, and demonstrated significant linear variation by 
region at both peak and equilibrium points (26).

The authors found that the microstructural and material 
properties evaluated appear to follow a linear gradient across 
the ACL, rather than varying just by bundle (26). This AM-
to-PL variation provides a more accurate description of 
functional tissue anatomy. This also supports that on a tissue 
level, the ACL may not be just two discrete bundles. It may 
instead be a continuum of smaller tissue regions that differ 
throughout the ACL and the bundles are more related to 
anatomic attachment sites and tissue orientation. 

Summary

Recent studies have focused on the anatomy, histology, 
microstructure, and biomechanical properties of the human 
ACL. Novel polarization imaging techniques have assisted 
in the analysis of the ACL on this microstructure level. 
Results have demonstrated that the AM and PL bundles 
exhibit significantly different properties. Most notably, the 
AM bundle is stronger/stiffer and has more strongly aligned 
collagen fibers when loaded. However, the more clinically 
relevant finding is that the material and microstructural 
human ACL properties follow a linear gradient across the 
ligament, rather than grouping by distinct bundle. This 
information provides a greater understanding of the native 
properties of the human ACL and serves as a guide for 
surgical approaches to reconstruct this ligament.
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