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Introduction

Congenital upper limb anomalies (CULA) include a wide 
spectrum of structural abnormalities caused by perturbation 
in the morphogenesis of the upper limb, which affect 
approximately 1 per 500 live births (1,2). About 20% to 30% 
of babies with CULA has at least one associated non-limb 
anomaly (2), and approximately 10% to 20% of all congenital 
anomalies has upper limb involvement (3). This condition 
exhibits an extreme heterogeneity of presentations with 
different grades of severity. Although some of them result 
in mild functional consequences, they can also bring 
psychological problems for children (4).

So far, there are two commonly used classification 
schemes in clinical settings, i.e., the Swanson Classification 

and the Oberg-Manske-Tonkin (OMT) Classification. The 
Swanson Classification was proposed in 1964 and utilized 
the anatomical understanding and the surgical perspective 
on management (5). Although the Swanson Classification 
is satisfactory in several criteria, it does not include the 
knowledge acquired in the last 50 years (2). The OMT 
Classification combines more recent knowledge about 
limb development and the pathogenesis of limb anomalies 
using dysmorphology terminology (6) and provides a more 
practical and easily utilized scheme.

The pathogenesis of CULA remains poorly understood. 
A limited number of studies provide evidence in linking 
exposure to environmental chemicals and CULA, including 
persistent organic and air pollution (7). Interestingly, 
chorionic villus sampling has been identified as a risk factor 
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of syndromic and non-syndromic CULA (8). In contrast, 
the observation of familial CULA cases highlighted the 
contribution of genetic factors in CULA. Novel approaches 
such as single nucleotide polymorphism (SNP) array, 
comparative genomic hybridization-array (array-CGH) and 
next generation sequencing (NGS) enable the identification 
of numerous causative genes of CULA. Unravelling the 
genetic background of syndromic CULA helps to broaden 
the spectrum of causative genes, identify the pathways 
required for normal limb organogenesis and explain the 
mechanism underlying the cooccurrence of CULA and 
non-limb anomalies. In this review, we first introduce the 
developmental process of the upper limbs and the involved 
signaling pathways. Then, we provide an overview of the 
genetic basis of syndromic CULA according to the related 
pathways of the causal genes.

Development of the upper limbs

The development of vertebrate limbs during embryonic life 
is a multi-stage process, which is orchestrated by complex 
interactions between signaling centers. In humans, the 
development of the limb bud initiates at around the fourth 
week of gestation with the appearance of a small bud from 
the lateral body wall. The limb bud consists of an inner 
mesenchymal core and an outer ectodermal cap (9). Following 
the limb bud emergence is the formation of three axes: 
the proximal-distal (PD), the anteroposterior (AP) and the 
dorso-ventral (DV) axes. Mesenchymal fibroblast growth 
factor 10 (FGF10), bone morphogenetic proteins (BMP) 
signaling induce the formation of the apical ectodermal 
ridge (AER), which is located at the DV interface. AER 
mainly mediates PD patterning through the regulation of 
FGF and WNT signals (10). Besides FGF from AER, DV 
axis is also defined by retinoic acid (RA) signaling from the 
lateral walls (9). Zone of polarizing activity (ZPA) locates 
in the posterior limb bud mesenchyme and is controlled 
by Sonic Hedgehog (SHH) signaling. SHH secreted by 
ZPA diffuse along the limb bud to form a gradient, which 
control the formation of AP axis. Multiple signals including 
TBX, HAND2, RA, HOXD and GLI3R are involved in 
the regulation of SHH expression and further influence 
AP patterning.  SHH from ZPA and FGF from AER form 
an epithelial-mesenchymal feedback loop that governs 
the formation of PD and AP axis. WNT family member 
7A (WNT7A), produced by the presumptive dorsal limb 
ectoderm, is considered to be the organizer of DV axis. The 
specific expression of LIM-homeodomain transcription 

factor 1 beta (LMX1B) in the dorsal mesenchyme of the 
limb bud is induced by WNT7A (6). LMX1B is a necessary 
and sufficient factor in guidance of the dorsal limb 
patterning (11). The signal transduction of SHH, WNT 
and BMP is critically coordinated by the primary cilium, 
which is a microtubule-based organelle that emerge from 
the cell surface of most vertebrate cell types (10).

Genetic advances in syndromic CULA

Aat)Non-limb anomalies associated with syndromic CULA 
include a broad range of presentations, e.g., genitourinary, 
cardiovascular, nervous, facial, etc. (11). Syndromic CULA 
contribute to 20% to 30% of all CULA (1,2), and about 
10% to 20% of all congenital anomalies have upper limb 
involvement (3). Associated non-limb anomalies can be life 
threatening and thus require more attention from clinicians 
and parents.

Both genetic mutations and genomic rearrangements can 
lead to syndromic CULA (summarized in Table 1). Many 
genes involved in the pathogenesis of syndromic CULA 
can be attributed to several biological pathways. Here, 
we introduce roles of Cohesin proteins, WNT signaling, 
Hedgehog signaling, FGFs, FGFRs and PI3K-AKT1-
mTOR signaling in the pathogenesis of syndromic CULA.

Cohesin proteins and Cornelia de Lange 
syndrome

Cohesin proteins are important Structural Maintenance of 
Chromosomes (SMC) protein containing complexes. By 
mediating the chromatin organization and long-distance 
chromatin interaction, the cohesion proteins can affect gene 
expression (12). Several disorders originate from mutations 
in cohesin subunits and its key regulators are termed as 
cohesinopathies. Cornelia de Lange syndrome (CdLS; 
MIM: 122470), a prominent member of cohesinopathies, 
is a dominantly inherited disorder characterized by 
dysmorphic features, CULA, global developmental 
retardation and gastrointestinal system involvement. NIPBL 
load the cohesin complex onto DNA and is required for 
topological movements of DNA (13). Mutations in NIPBL 
are responsible for a significant proportion of CdLS (12). 
Currently there are six cohesins-related genes have been 
implicated in CdLS, i.e., HDAC8 (MIM: 300882), RAD21 
(MIM: 614701), NIPBL (MIM: 122470), SMC1A (MIM: 
300590), BRD4 and SMC3 (MIM: 610759) (14). Among 
them, HDAC8, BRD4 and NIPBL are key regulators of 
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Table 1 Known syndromes associated with CULA

Syndrome Locus
Inheritance 

mode
MIM ID Main limb presentations Related pathway

Robinow syndrome, autosomal dominant 2 DVL1 AD 616331 Brachydatyly WNT signaling 

Cardiospondylocarpofacial syndrome MAP3K7 AD 157800 Syndactyly, polydactyly WNT signaling 

Focal dermal hypoplasia PORCN XLD 305600 Syndactyly, polydactyly WNT signaling 

Robinow syndrome, autosomal dominant 1 WNT5A AD 180700 Brachydatyly WNT signaling

Fuhrmann syndrome WNT7A AR 228930 Polydactyly, syndactyly, 
oligodactyly

WNT signaling

Schinzel phocomelia syndrome WNT7A AR 276820 Hypoplasia of the ulna and 
fibula

WNT signaling

Proteus syndrome AKT1 S 176920 Macrodactyly PI3K-mTOR-AKT

CLAPO syndrome PIK3CA S 613089 Macrodactyly PI3K-mTOR-AKT

CLOVE syndrome, PIK3CA S 612918 Macrodactyly PI3K-mTOR-AKT

Greig cephalopolysyndactyly syndrome GLI3 AD 175700 Polydactyly, syndactyly Hedgehog signaling

Pallister-hall syndrome GLI3 AD 146510 Polydactyly Hedgehog signaling

Laurin-Sandrow syndrome LMBR1 AD 135750 Syndactyly, polydactyly Hedgehog signaling

Nail-patella syndrome LMX1B AD 161200 Limited elbow movements Hedgehog signaling

Basal cell nevus syndrome PTCH2 AD 109400 Polydactyly Hedgehog signaling

Basal cell nevus syndrome PTCH1 AD 109400 Polydactyly Hedgehog signaling

Robinow syndrome, autosomal recessive ROR2 AR 602337 Brachydatyly Hedgehog signaling

Basal cell nevus syndrome SUFU AD 109400 Polydactyly Hedgehog signaling

Joubert syndrome 32 SUFU AR 617757 Polydactyly Hedgehog signaling

LADD syndrome FGF10 AD 149730 Clinodactyly, polydactyly FGF-FGFR

Multiple synostoses syndrome 3 FGF9 AD 612961 Synostoses FGF-FGFR

Pfeiffer syndrome FGFR1 AD 101600 Broad thumb, syndactyly FGF-FGFR

Apert syndrome FGFR2 AD 101200 Syndactyly FGF-FGFR

LADD syndrome FGFR2 AD 149730 Clinodactyly, polydactyly FGF-FGFR

Pfeiffer syndrome FGFR2 AD 101600 Broad thumb, syndactyly FGF-FGFR

Saethre-chotzen syndrome FGFR2 AD 101400 Syndactyly FGF-FGFR

LADD syndrome FGFR3 AD 149730 Clinodactyly, polydactyly FGF-FGFR

Cornelia de Lange syndrome 5 HDAC8 XLD 300882 Clinodactyly, oligodactyly Cohesin protein

Cornelia de Lange syndrome 1 NIPBL AD 122470 Clinodactyly, oligodactyly Cohesin protein

Cornelia de Lange syndrome 4 RAD21 AD 614701 Clinodactyly, oligodactyly Cohesin protein

Cornelia de Lange syndrome 2 SMC1A XLD 300590 Clinodactyly, oligodactyly Cohesin protein

Cornelia de Lange syndrome 3 SMC3 AD 610759 Clinodactyly, oligodactyly Cohesin protein

Thrombocytopenia-absent radius syndrome 1q21.1 AR 274000 Radial aplasia –

2p15-p16.1 deletion syndrome 2p15-p16.1 AD 612513 Camptodactyly –

Table 1 (continued)



Page 4 of 10 Annals of Joint, 2019

© Annals of Joint. All rights reserved. Ann Joint 2019;4:30 | http://dx.doi.org/10.21037/aoj.2019.06.03

Table 1 (continued)

Syndrome Locus
Inheritance 

mode
MIM ID Main limb presentations Related pathway

2q37 deletion syndrome 2q37 AD 600430 Brachydactyly –

EEC syndrome 7q11.2-q21.3 AD 129900 Ectrodactyly –

Trichorhinophalangeal syndrome, type II 8q24.11-q24.13 AD 150230 Syndactyly –

Smith-Magenis syndrome 17p11.2 AD 182290 Brachydatyly –

Rubinstein-Taybi syndrome 1 16p13.3 AD 610543 Broad thumb –

Acrofacialdysostosis1,Nagertype SF3B4 AD 154400 Thumb hypoplasia/aplasia, 
triphalangeal thumb

–

Baller-Gerold syndrome RECQL4 AR 218600 Radial aplasia –

Bardet-Biedl syndrome 1** BBS1 AR 209900 Polydactyly –

Bardet-Biedl syndrome 10 BBS10 AR 615981 Polydactyly –

Beals syndrome FBN2 AD 121050 Arachnodactyly, 
camptodactyly

–

Catel-Manzke syndrome TGDS AR 616145 Hyperphalangy –

Holt-Oram syndrome TBX5 AD 142900 Triphalangeal thumb –

Larsen syndrome FLNB AD 150250 Spatulate thumb –

Leri-Weilldyschondrosteosis SHOX/SHOY PAD 127300 Madelung deformity –

Multiplesynostoses syndrome 1 NOG AD 186500 Synostoses  –

Multiplesynostoses syndrome 2 GDF5 AD 610017 Synostoses  –

Multiplesynostoses syndrome 4 GDF6 AD 617898 Synostoses  –

Otopalatodigital syndrome, type I FLNA XLD 311300 Short hallux, short thumb –

Otopalatodigital syndrome, type II FLNA XLD 304120 Short hallux, short thumb –

Roberts syndrome ESCO2 AR 268300 Tetraphocomelia –

Saethre-chotzen syndrome TWIST1 AD 101400 Syndactyly –

Townes-Brocks syndrome 1 SALL1 AD 107480 Triphalangeal thumb, 
polydactyly

–

Ulnar-mammary syndrome TBX3 AD 181450 Ulna hypoplasia/aplasia –
*, these syndromes are considered to be most relevant with CULA; **, there are more than 10 subtypes of Bardet-Biedl syndrome have 
been discovered. Only two utmost mutated genes are listed here. AD, autosomal dominant; AR, autosomal recessive; XLD, X-linked 
dominant; XLR, X-linked recessive; S, somatic; NA, not available. 

cohesin proteins while SMC1A. SMC3 and RAD21 are 
structural components of the cohesin ring (13,15). 

NIPBL induce histone deacetylation through recruiting 
histone deacetylase (HDAC) and regulate gene expression. 
In a zebrafish model with Nipbl knockdown, the size 
reductions and patterning defects of pectoral fin (forelimb) 
were observed along with impaired expression of several key 
limb development genes including fgfs, hand2 and multiple 

hox genes (16), which suggests that the limb malformations 
in CdLS can be attributed to the impact of Cohesin proteins 
upon the expression of critically limb development genes.

WNT signaling 

WNT signals comprise a diverse group of secreted 
proteins that mediates crucial developmental processes 
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including embryonic axis patterning, cell fate specification, 
proliferation and migration (17). Genes coding for a variety 
of signaling molecules involved in Wnt signaling pathway have 
been identified in Mendelian inherited syndromic CULA. 
Recessively inherited WNT7A mutations were described 
in individuals with Schinzel phocomelia syndrome (MIM: 
276820) and Fuhrmann syndrome (MIM: 228930) (18). Both 
syndromes have limb deformities, but Schinzel phocomelia 
syndrome comprise a broader set of phenotypes including 
severe anomalies of upper and lower limbs with hypoplastic 
pelvis and genitalia. There are many other genes in 
Wnt signaling pathway which have been associated with 
syndromic CULA. Cardiospondylocarpofacial syndrome 
(CSCF; MIM: e157800) is characterized by cardiac septal 
defects, vertebral synostosis, brachydactyly with carpal-
tarsal fusion and dysmorphic facial features. CSCF is caused 
by heterozygous mutation in MAP3K7 gene. MAP3K7 
act as an upstream kinase regulating several pathways 
including WNT, NF-κB and p38 MAPK (19). Focal dermal 
hypoplasia (MIM: 305600), caused by mutations in PORCN, 
is a X-linked dominant syndrome with in utero lethality in 
males. Common features of this syndrome include distinct 
skin manifestations, digits malformations (mainly comprise 
syndactyly and polydactyly), oral and ocular anomalies. 
PORCN is essential for the acetylation and secretion 
of WNT ligands in mice and humans (20). Given the 
crucial role of Wnt signaling in human development, it is 
not surprised to find out these Wnt signaling associated 
syndromic CULA display complex phenotypes commonly 
affecting multiple organs and systems. 

Robinow syndrome is a genetically heterogeneous 
severe skeletal dysplasia characterized by mesomelic 
limb shortening, dysmorphic features including midface 
hypoplasia, hypoplastic genitalia and vertebral anomalies 
(21,22). Mutations of several genes involved in the WNT 
signaling pathway have been implicated in different subtypes 
of Robinow syndrome. WNT5A is involved in both the 
canonical and noncanonical Wnt signaling pathway (23). 
Dominantly inherited WNT5A mutations have been 
associated with autosomal dominant Robinow syndrome-1 
(DRS; MIM: 180700) and homozygous Wnt5a null mice 
presented with anatomical defects resembling individuals 
with autosomal DRS (24). ROR2, a tyrosine kinase-like 
orphan receptor, interacts with WNT5A both functionally 
and physically (23). The binding of WNT5A with ROR2 
lead to phosphorylation of ROR2, resulting in Rho GTPase 
dependent activation of the WNT-JNK and WNT 
calcium pathway, i.e., the noncanonical WNT pathway. 

Recessive and dominant mutations of ROR2 have also 
been implicated in autosomal recessive Robinow syndrome 
(RRS; MIM: 268310) and brachydactyly type B1 (BDB1; 
MIM: 113000), respectively. Interestingly, not all patients 
carrying heterozygous null mutations in ROR2 exhibited 
brachydactyly. By measuring steady-state protein model 
levels as well as surface location in ROR2 variant-expressing 
cell lines, Schwarzer et al. presented a hypothesis that the 
phenotypic outcome can be explained by the equilibrium 
between intracellular retention and cell surface expression 
rather than a simple loss-or gain-of-function model (25). 
Dishevelled (DVL): 13 is intracellular protein Tinvolved 
in the canonical and non-canonical WNT signaling (26). 
The binding of DVL to the cell membrane facilitates 
the binding of Axin and GSK3β, which subsequently 
phosphorylate LRP5/6 and thereby preventing degradation 
of β-catenin. The accumulation of β-catenin in the nucleus 
activates WNT responsive genes (26). In the non-canonical 
WNT pathway, DVL plays key role in regulating polarity 
and cytoskeletal determination by acting as a branchpoint for 
activation of Rho, Rac and Cdc42 (26). Heterozygous DVL1 
and DVL3 mutations have been shown to lead to autosomal 
dominant Robinow syndrome-2 (MIM: 616331) and autosomal 
dominant Robinow syndrome-3 (MIM: 616894) (27). Together, 
these evidences suggest that WNT signaling pathway play 
an important role in the pathogenesis of a wide spectrum of 
hypoplastic disorders including CULA. 

Hedgehog signaling

The Hedgehog (HH) signaling pathway has many roles in 
controlling of the cell proliferation, embryonic patterning 
and limb development (9). Gli-kruppel (GLI) genes 
encode transcription factors involved in SHH signaling 
pathway. GLI1, GLI2 and GLI3, members of GLI family, 
have been associated with multiple human diseases including 
both syndromic and non-syndromic CULA. GLI3 is a 
transcription factor and act as a modulator for SHH pathway 
with either facilitative and suppressive function (28). SHH 
pathway inactivation constitutively transforms GLI3 to 
GLI3R isoform, which is translocated into the nucleus 
and negatively regulates SHH target genes (29). Activated 
SHH inhibits GLI3R isoform formation and induces 
the formation of GLI2A and GLI3A (GLI activators). 
Subsequently, GLI activators promotes the expression 
of SHH targeted genes. Besides ROR2, GLI3 is another 
gene that have been implicated in both syndromic and 
non-syndromic CULA. Heterozygous mutations in GLI3 
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gene can lead to Greig cephalopolysyndactyly syndrome 
(GCPS; MIM: 175700), Pallister-Hall syndrome (PHS; 
MIM: 146510), postaxial polydactyly type A1 and B (PAP; 
MIM:174200) and preaxial polydactyly type IV (PPD; 
MIM: 174700) (28). GCPAS and PHS are allelic syndromes 
with distinct clinical entities (30). GCPS is mainly 
characterized by polysyndactyly, macrocephaly with frontal 
bossing and hypertelorism (31). Preaxial of the feet and 
postaxial in the hands are most commonly identified forms 
of polydactyly (31). Typical phenotypes of PHS include 
central polydactyly, pituitary malfunction, hypothalamic 
hamartoma and visceral malformations (30). The genotype-
phenotype correlations of GLI3 associated disorders are 
well characterized (28). The N-terminal part of the GLI3 
protein contains the zinc finger domain. Mutations in the 
zinc finger domain mostly result in GCPS through a haplo-
insufficiency mechanism. The middle part of the GLI3 
protein encompasses the protein cleavage site. Patients 
with PHS usually carry mutations in the middle part. The 
C-terminal of contains the transactivating domains 1 and 2. 
Mutations in the C-terminal part lead to distinct phenotypes 
including GCPS, PAP and PPD (28). Nevertheless, the 
mechanism underlying the distinct phenotype spectrum 
needs further studies.

SUFU, acronym for Suppressor of Fused, plays a critical 
role in primary cilia. SUFU acts as the main negative 
regulator of the SHH pathway through forming a complex 
with GLI3 and GLI2 in primary cilia (32). Transportation 
of SUFU to primary cilia is potentially governed by 
GLI activators but not suppressors (33). Recessive and 
dominant mutations of SUFU were known to cause 
Joubert syndrome 32 (MIM: 617757) and basal cell nevus 
syndrome (BCNS; MIM: 109400), respectively (32). Joubert 
syndrome 32 is characterized by congenital ataxia, post-
axial polydactyly, cerebellar vermis hypoplasia and cranio-
facial dysmorphisms. While postaxial syndactyly is relatively 
rare in BCNS (32). Heterozygous mutations in PTCH1 
and PTHC2 can also lead to basal cell nevus syndrome. 
Basal cell nevus syndrome is a familial cancer predisposing 
syndrome which comprises a broad spectrum of systemic 
manifestations, the most characteristic symptoms of which 
are basal cell carcinomas, jaw keratocytes and cerebral 
calcifications (34). PTCH1 and PTCH2, encoding members 
of the patched family, suppress SHH signaling through 
inhibition of SMO. Loss-of-function of PTCH1 and 
PTCH2 result in aberrant increase in SHH signaling (34). 

The ZPA regulatory sequence (ZRS), a long-range 
limb-specific enhancer of the SHH, is located in intron 5 

of LMBR1 (35). Recently, a missense mutation in p-ZRS 
(pre-ZRS), a noncoding sequence 500 bp upstream 
of the ZRS, have been associated with triphalangeal 
thumb-polysyndactyly syndrome (MIM: 174500) in a 
multigenerational family (36). Transgenic mice carrying this 
mutation showed ectopic SHH expression (36). Although 
regulatory effects of ZRS upon Shh have been well 
characterized (37), further study is still needed to determine 
the role of pZRS in Shh limb expression.

Fibroblast growth factors (FGFs) and FGFRs

FGFs are a family of proteins that regulates many 
developmental processes in the early stage of embryonic 
development. FGFs carry out their functions through binding 
to the fibroblast growth factor receptors (FGFRs). Currently 
there are four FGFRs (FGFR1 to FGFR4) known to interact 
with FGFs in an HSGAG-dependent manner (38). Either 
increasing and decreasing of FGF signaling can cause 
human diseases. For example, gain-of-function mutations 
of FGFR2 lead to Apert syndrome (MIM: 101200) (39), a 
developmental disorder characterized by craniosynostosis, 
midface hypoplasia and severe syndactyly with fusion 
tendency. Studies have revealed that about two-thirds 
of Apert syndrome is caused by the S252W mutation in 
FGFR2, and the rest one third is caused by the P253R 
mutation in FGFR2 (40). Syndactyly in hands and feet 
was likely to be more severe in patients carry the P253R 
mutation, while cleft palate was more frequently observed 
in patients carrying the P252W mutation (40). Prolyl 
isomerase peptidyl-prolyl cis–trans isomerase interacting 1 
(PIN1) is a crucial regulator of FGFR signaling and Pin1+/− 
mice displayed delayed closure of cranial sutures (41). By 
crossing Pin1+/− mice with Fgfr2S252W/+ mice, a mouse model 
of Apert syndrome, the downregulation of Pin1 function 
attenuated premature cranial and frontal-nasal suture 
fusion. Although other phenotypes like syndactyly was 
not rescued by the reduced dosage of Pin1, this approach 
do provide novel therapeutic insights in alleviating other 
phenotypes in Apert syndrome. Gain-of-function mutations 
of FGF10 is responsible for Lacrimoauriculodentodigital 
syndrome (LADD syndrome; MIM: 149730) (42), a 
congenital disorder mainly involving lacrimal glands and 
duct, ears, teeth and digits. Activating mutations in FGFR2 
and FGFR3 can also lead to LADD syndrome (43). FGFR2 
interacts with FGF10 and conditional knockout of Fgfr2 in 
mice leads to limb and digit malformations (43). Mutations 
in FGFR3 gene are now associated with at least10 human 
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disorders, involving skeletal dysplasia, skin malformation 
and cancer (44). Attenuation of the chondrocytes are 
responsible for the FGFR3-related skeletal dysplasia (44). 
Recently, Bosakova et al., found that the sustained and 
transient activation of FGF signaling result in shortening 
and elongation of primary cilia, respectively (45). The 
SHH signaling is subsequently influenced by the impaired 
cilia function (45), providing insights into the pathogenic 
mechanism underlying the limb phenotypes of FGFR-
related disorders.

PI3K-AKT1-mTOR

PI3K-AKT-mTOR signaling mediates cell proliferation, 
survival and metabolism, activating of this pathway is 
commonly involved in tumorigenesis. PIK3CA and AKT1 
are frequently mutated gene in human tumors (46,47). 
Somatic mosaicism of PIK3CA and AKT1 can both lead 
to overgrowth syndromes. Genetic mosaicism refers to a 
process occurring postzygotically that result in the presence 
of genetically distinct cells within one individual. Advent of 
the deep NGS facilitated the discovery of developmental 
disorders caused by mosaic mutations. Proteus syndrome 
(MIM: 176920),  caused by mutations in AKT1 ,  is 
characterized by cerebriform connective tissue nevi and 
patchy overgrowth most commonly involving limbs. Most 
patients with Proteus syndrome carried a hotspot gain of 
function mutation c.G49A in AKT1 (47). Somatic mosaicism 
of PIK3CA is responsible for a wide spectrum of disorders 
named as PIK3CA related overgrowth syndrome, including 
congenital lipomatous overgrowth, vascular malformations, 
epidermal nevi and skeletal/scoliosis/spinal abnormalities 
(CLOVE syndrome; MIM: 612918), capillary malformation 
of the lower lip, lymphatic malformation of the face and 
neck, asymmetry and partial/generalized overgrowth 
(CLAPO syndrome; MIM: 613089), megalencephaly-
capillary malformation (MCAP, MIM: 602501). Focal 
forms of PIK3CA related overgrowth include macrodactyly, 
epidermal nevi,  infiltrating lipomatosis lymphatic 
malformations and venous malformations (48). The most 
frequently observed limb component of these disorders is 
macrodactyly and the degree of overgrowth is variable. 

CNVs

Several well-characterized CNVs underlying syndromes 
with limb involvement have been identified. Typically, 
thrombocytopenia-absent radius syndrome (TAR syndrome; 

MIM: 274000), a syndrome with multiple anomalies 
affecting the blood circulation of the upper limb, is caused 
by compound heterozygosity for a 1q21.1 deletion involving 
the RBM8A gene and a noncoding SNP in RBM8A (49). 
The impact of a rare null variant and a noncoding common 
SNP was also observed in TBX6-associated congenital 
scoliosis (TACS) (50,51). A common TBX6 hypomorphic 
allele in trans with a rare 16p11.2 deletion or TBX6 loss-of-
function variant lead to TACS (52). Mouse models of TBX6 
compound heterozygosity display vertebral malformations 
and provide further evidence supporting the gene dosage 
model (51,52). Blood system anomalies encompass 
reduction in the number of platelets in blood and reduced 
number of megakaryocytes and platelet precursor cells in 
bone marrow. The severity of the upper limb involvement 
ranges from the absence of the radius to the absence of 
the most part of upper limbs, but thumbs are always well-
preserved. Malformations in spine, lower limbs are less 
common. 

Another well-characterized CULA associated syndrome 
is 2p15-p16.1 microdeletion syndrome (MIM: 612513) (53). 
This syndrome has a wide spectrum of phenotypes and 
about 80% patients present with hand anomalies, mainly 
consisting of camptodactyly (54). The size of the deletions 
(ranging from 0.1 to 9.5 Mb) and breakpoints vary 
dramatically. Recently, XPO1, REL and BCL11A have been 
identified as candidate genes for 2p15-p16.1 microdeletion 
syndrome (54). 

There are other recurrent CNVs associated with 
syndromic CULA, e.g., including 2q37 (MIM: 600430), 
7q11.2-q21.3 (MIM: 129900), 16p13.3 (MIM: 613458) and 
17p11.2 (MIM: 182290). In a large cohort of individuals 
with non-syndromic congenital limb malformation, high 
resolution CNV analysis identified that 10% individuals 
harbored disease relevant CNVs (55). Among CNVs 
identified in that study, 57% affect the noncoding cis-
regulatory genome, suggesting the contribution of non-
coding regions to non-syndromic CULA. 

Conclusions

The last decade has witnessed dramatic progress in the 
genetic and genomic sequencing technologies. With the 
improvements in molecular genetics in past few years, the 
field of CULA genetics is progressing very rapidly. These 
improvements have allowed a detailed genotype-phenotype 
and genotype-prognosis correlation for CULA-associated 
syndromes. More precise diagnosis and managements 
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can be adopted utilizing this knowledge. Moreover, the 
association between limb phenotypes and specific genetic/
genomic variants has led to the identification of genes 
indispensable in the limb development and subsequently to 
a better understanding of the mechanisms regulating limb 
development. This knowledge gained from syndromes with 
CULA will help us decipher the genetic basis of CULA also 
in non-syndromic individuals.
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