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Introduction

Comprehensive knowledge of the in vivo  loading 
environment of the elbow joint is essential in understanding 
the biomechanical causes associated with elbow diseases 
and injuries, and in finding appropriate treatments. 
Computational models can enhance experimental 
measurements by predicting quantities that cannot be 
directly measured and by providing insight into the 
interactions of the different tissues. Computational 
simulations have become an important tool in understanding 
ligament injury, tissue damage, and prosthetic design. 
Computational models of the knee and hip joints have been 
used extensively, however they have been underutilized 
in elbow biomechanics. The uncompromised elbow joint 
is one of the most stable joints in the body through the 

interactions of bone geometries, ligament constraints, and 
muscular contractions (1-3). Deficit in any one of these 
structures can have significant negative effects on normal 
joint function. The elbow joint is also the most commonly 
dislocated joint with 49% of these dislocations being 
complex (dislocation associated with a fracture) which 
often result in long-term loss of function, chronic stiffness, 
instability, and post-traumatic osteoarthritis (1,4). Elbow 
injuries are particularly common in children accounting for 
at least 10% of all pediatric fractures and are associated with 
higher complication rates than other common fractures. 
Children participating in organized sports are also at 
risk for chronic overuse injuries such as “Little Leaguer’s 
Elbow” and Osteochondritis Dissecans (5,6). Total elbow 
arthroplasty was originally used to treat patients with 
arthritis but as the techniques have evolved, the indications 
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have been expanded to include other disorders and thus 
the number of elbow replacement surgeries performed is 
increasing. However, the complication rates remain much 
higher than arthroplasty of other joints such as the knee 
and hip (7). Survival rates at ten years for hip and knee 
replacements are between 94–99% whereas for elbow 
replacements there is a 27% complication rate and 15-year 
survivorship is only 70% (7-9). Based on our experience of 
using computational models for the knee and hip joints, it 
is easy to see that validated computational models of the 
elbow joint would be beneficial in addressing some of the 
aforementioned conditions.

Computational approaches

Finite Element (FE) models

There are two main computational methodologies in 
biomechanics, the FE method and the Multibody (MB) 
method. The FE method is a numerical discretization 
and solution technique that provides a systemic approach 
for determining the response of complex systems from 
the individual contributions of the elements (10). The 
FE method is the ideal approach when studying contact 
mechanics and tissue deformations of the complex 
geometries often seen in biomechanics.  In elbow 
biomechanics, one of the first FE models was created 
by Merz et al. (11) to study the effects of humero-ulnar 
incongruity. Their model was two-dimensional (2D) and 
constructed from a plane section through the longitudinal 
ridge of the trochlear notch following the long axis of the 
ulna shaft. The cartilage was modeled as a homogeneous 
isotropic elastic material with a Young’s modulus of 15 MPa. 
Their FE predictions were compared to experimental 
measurements using Fuji film. Their model demonstrated 
bicentric, ventro-dorsal distribution of contact pressure 
under compressive loads. Wake et al. (12) used a similar 
2D FE model to study the mechanism of elbow fracture-
dislocations by compressive forces. The FE model was 
created from a lateral radiograph of a normal elbow. This 
model included cortical bone, cancellous bone, subchondral 
bone and cartilage. The cartilage was assigned a constant 
thickness of 3 mm. All material properties were assumed to 
by linearly elastic and isotropic. Axial loads were applied at 
different flexion angles. According to the model, high stress 
area was concentrated in the coronoid process in low flexion 
angles and in the base of the coronoid process for flexion 
angles above 30 degrees. Although this study demonstrated 

that stress concentration areas depend on the flexion 
angle, the absence of the radial head and any ligamentous 
stabilizers restricts the interpretation of the results. Both 
of the above-mentioned models are 2D thus ignoring any 
effect of supination-pronation.

More recently 3D FE models were published by Kim 
and Carl Miller (13) and Willing et al. (14). Kim and Carl 
Miller developed a FE model to predict contact stress 
and contact area of the native humeroradial joint and the 
predictions were validated using Fuji pressure sensitive film 
and cadaveric elbows. The 3D model was created from 
computed tomography (CT) scans of a 46-year-old female 
cadaveric left elbow at 90 deg flexion and neutral supination/
pronation. Bones were modeled as elastic material with 
Young’s modulus of 400 MPa and Poisson’s ratio of 0.3. 
Simulations where the bone was modeled as all cortical 
(orthotropic) material were also examined and compared. 
Cartilage was modeled as elastic material with Young’s 
modulus of 10 MPa and Poisson’s ratio of 0.4. Simulations 
were also run with the cartilage modeled as a neo-Hookean 
hyperelastic material with shear modulus of 6.8 GPa and 
compared to the elastic model. Compressive loads of 50, 
100, and 200 N were applied on the distal surface of the 
radial head in the direction of the longitudinal axis. This 
model also included the annular ligament and the radial 
collateral ligament modeled as linear springs. Maximum 
contact stress and contact area in the humeroradial joint 
predicted by the FE model were within the 95% confidence 
interval of the measured values. Comparing the choice 
of bone material produced little difference in those two 
outcomes. Similarly using hyperelastic versus elastic 
model for the cartilage produced very little difference in 
the results. Varying cartilage thickness resulted in 7.5% 
increase in maximum contact stress and a decrease of 3.5% 
in contact areas as the thickness of the radial cartilage was 
reduced from 1.1 to 0.9 mm. Willing et al. used similar 
methods to model the humero-ulnar articulation. Their 
3D FE model was validated experimentally in terms of 
contact areas determined using a casting method on 
cadaveric specimens. Cartilage was modeled as neo-
Hookean hyperelastic material with varying thickness 
determined from the medical images. Parametric analyses 
were performed to evaluate the model’s sensitivity to bone 
and cartilage material properties and on cartilage thickness 
geometry. Varying bone material properties had little effect 
on the predicted contact area and mean contact stress. 
However, modeling cartilage as a nearly-incompressible 
material caused a decrease in contact area (30.4%) and 
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an increase in mean contact stress (82.4%). The nearly-
incompressible assumption simulates the dynamic response 
of cartilage (15). The assumption of uniform cartilage 
thickness had a large effect on contact area. Another study 
by Renani et al. (16) used magnetic resonance imaging (MRI) 
derived geometries for the ulna, radius, humerus, and 
their corresponding cartilages. The FE predictions were 
compared to experimental measurements using a Tekscan 
tactile sensor inserted into the joint (Figure 1). Multiple 
axial loading conditions were performed experimentally 
and in silico at 20 degrees of elbow flexion. Bones were 
modeled as rigid bodies and cartilages were modeled as 
Moony-Rivlin hyperelastic materials. The sensitivity of the 
FE models to variations of Young’s modulus and Poisson’s 
ration of the cartilage was also investigated (Figure 2). Peak 
contact pressure is sensitive to changes in Poisson’s ratio 
whereas mean contact pressure and contact area are less 
sensitive. Variation of Young’s modulus resulted in small 
changes in all outcomes.

All of these studies highlight the areas of importance in 
elbow FE models. The choice of bone properties results 
in minimal effects on contact stress and contact areas 
however, the choice of material properties and uniform 
cartilage thickness can have significant effects. All elbow 
FE models developed, investigated static axial compression 
conditions and there is a need to investigate the effects of 
load duration, dynamics, and load direction. Soft tissues 
surrounding the joint are not included in these models and 
even though they may not affect contact behavior under 
static loading conditions, including those structures in 
dynamic conditions may be necessary.

MB models

While FE models are very useful when studying joint 
stresses and contact areas, they are computationally 
very expensive and in general have not been used under 
dynamic conditions. MB models are computationally 
very efficient and can incorporate muscle dynamics in the 
formulation of the model. Rigid body dynamic theory 
forms the foundation for both static and dynamic MB 
models. Frequently, MB musculoskeletal models are 
simplified by constraining the degrees of freedom of the 
joints and disregarding the effects of the ligaments and/or 
articular contact. Recently, 3D MB models were created 
where significant advances in overcoming these deficiencies 
were made. Buffi et al. (17) used a forward dynamics MB 
model to study muscle, and ligament contributions to 

elbow varus moment during baseball pitching. Their 
study demonstrated how important MB models can be in 
understanding muscle, ligament, and joint interactions 
during dynamic activities. By increasing the muscle forces 
they were able to show that the load on the ulnar collateral 
ligament was reduced. Fisk and Wayne (18) created a model 
of the elbow and forearm with the joint behavior dictated 
by articular contact, ligamentous constraints, muscle 
loading and external perturbations. The musculoskeletal 
model was constructed by segmentation of the bony 
geometries from CT scans. Muscles and ligaments were 
modeled as forces acting along a line of action from origin 
to insertion points and articular contact was represented by 
reaction forces applied to the point of contact between the 
articulating surfaces. Several ligament bundles around the 
elbow joint and the interosseous membrane were included. 
Contact forces were computed by applying reaction forces 
perpendicular to the region of overlap between interfering 
geometries through a penalty function. The magnitude of 
the contact force is determined as:

( ),e dgF kg f c d
dt

 = +  
 

 [1]

and it depends on the contact stiffness (k), the penetration 
depth (g), the exponent (e), the penetration velocity and 
the damping coefficients c and d. The triceps brachii, 
biceps brachii, and the brachialis insertions were used to 
apply forces thus inducing elbow flexion. Results were 
compared to published elbow range of motion data. A 
similar MB model was used by Spratley and Wayne (19) to 
study complex varus instability. Validation was conducted 
by comparing to cadaveric experiments in which the 
significance of coronoid process fractures, lateral ulnar 
collateral ligament ruptures, and radial head resection on 
varus stability was quantified. The MB model accurately 
reproduced the trends seen in the experiments. Cartilage 
contact pressure and contact area distributions can be 
incorporated into a MB model by discretization of the 
cartilage geometries into smaller rigid bodies and defining 
contact forces for each of the discrete rigid bodies. This 
method was demonstrated and validated in knee models 
(20-27). A similar method was used to investigate the effects 
of ligament deficiencies on articular contact pressure in the 
elbow joint (28-30). Another improvement in these models 
was the incorporation of nonlinear properties for the 
ligaments (31) and wrapping of the ligaments around the 
bony structures (Figures 3,4). The nonlinear force-length 
relationship for ligaments can be described by:
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Figure 1 Experimentally measured and FE-computed contact pressure distribution across three different loading conditions. FE, Finite 
Element.

Figure 2 Percent changes in peak contact pressure, average contact pressure and contact area due to changes in Poisson’s ratio and Young’s 
modulus.
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where k is a stiffness parameter and ϵ is the ligament 
engineering strain. The spring parameter ϵl is a constant 
value and assumed to be 0.03 (32). The relation between 
force and ligament length described above highlights the 
parabolic transition region from the zero-strain region 
to the linear region. An extremely important parameter 
in determining the correct ligament force is the zero-
load length of the ligament. Experimental methods on 
determining this zero-load length have been described in 
the case of knee ligaments (33), however in the case of the 
elbow joint these values are not known. Rahman et al. (30) 
used a similar experimental method to determine those 
lengths for the lateral ulna collateral, the radial collateral 
ligament, and the medial collateral ligament. 

Determination of the appropriate stiffness and 
exponent values to use in the contact force model is also 
not established. Rahman et al. (30) used simplified elastic 
foundation theory to determine the contact stiffness 
whereas Renani et al. (34) used a previously validated FE 
model to calibrate the contact force parameters for humerus 
cartilage discretizations of 3×3 and 5×5 mm cross-sectional 
areas. The contact parameters were optimized so that the 
MB model predicted contact pressure was in agreement 

to the FE model. The study indicated that it is possible 
to accurately predict contact pressure and contact areas 
if the discretization is sufficiently small and with the proper 
choice of parameters (Figures 5,6). MB models employing 
similar methods in terms of ligament representation have 
been deployed to study posteromedial rotatory instability in 
coronoid and ligament deficient elbows (35,36). The predictive 
ability of these models was demonstrated by comparison to 
experimental data and to known clinical conditions. 

Currently MB models are capable of concurrent 
prediction of ligament, and articular contact forces and can 
be used to explore elbow joint behavior under different 
dynamic loading scenarios and ligament deficient conditions. 
Understanding the effects of muscle forces on ligament and 
contact forces is important, especially when studying injury 
biomechanics. This necessitates resolution of the muscle 
redundancy problem. Simply stated, muscle redundancy 
means that there are more unknown muscle forces than 
equations available from rigid body MD dynamics, leading 
to an infinite number of muscle solutions for a specific 
activity. There are primarily three approaches to solving 
the muscle redundancy problem: optimization methods, 
electromyography (EMG) driven methods, or reduction 
of the problem into a muscle length tracking problem and 
using a controls systems approach. All of these methods 
have been used in models of the lower extremity successfully 
(26,27,37-42) but concurrent muscle, ligament, and 
contact force simulations in the elbow joint are scarce (43).  
In the study of baseball pitching biomechanics by Buffi  
et al. (17) used computed muscle control algorithm (38) 
which is an optimization approach, while Rahman et al. (43) 
used a controls approach to simulate bicep curls.

Figure 3 MB model with ligament wrapping of the lateral 
collateral ligament complex. LUCL, lateral ulnar collateral 
ligament; RCL, radial collateral ligament; AL, annular ligament; 
MB, multibody.

Figure 4 Discretized humerus cartilage geometry. MB, multibody.
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Figure 5 Contact area in FE and MB models with discretization of 3×3 and 5×5 mm. FE, Finite Element; MB, multibody; FEA, finite 
element analysis.

Figure 6 Average contact pressure and contact area of FE and MB models under different axial loads. FE, Finite Element; MB, multibody; 
FEA, finite element analysis.
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Discussion

Imagine a world where orthopaedic interventions, surgical 
planning and execution are custom tailored to the patient 
using patient-specific computational models. These models 
will take into account the individual patient’s bone and 
soft tissue geometries, movement, expected outcome and 
long-term goals and through simulation can determine 
the best treatment options. Computational models are at 
the forefront of creating such a future. Models can be used 
in treatment planning by providing an objective method 
to evaluate treatment options. As computer algorithms 
and computing power continue to improve, models of 
increasing complexity can be created that can incorporate 
elements from both the FE and MB approach. For 
example, deformable bodies can be implemented in the 
MB framework by using modal analysis. It is even possible 
to created workflows where muscle and ligament forces 
along with kinematics from a MB simulation can be used as 
boundary and loading conditions to an FE model if detailed 
stress and strain analysis is necessary. Model validation 
is a significant barrier in accepting model use in clinical  
practice (44). Most FE elbow models have been evaluated 
under static conditions and constant muscle forces, and 
most MB models have been validated in terms of kinematics. 
A concerted effort among the modeling community is 
necessary to advance elbow models to the same level of 
relevance as other joints (knee and hip). In the case of knee 
models the ASME Grand Challenge Competition to Predict 
in Vivo Knee Loads (44,45) provided a comprehensive data 
set from which different modeling approaches could be 
validated for accuracy in terms of predicting the in vivo loads 
on an instrumented knee prosthesis under various dynamics 
conditions. Competitors used a variety of methods to deal 
with muscle redundancy, contact, and ligament forces. 
Teams used static and dynamics optimization, proportional-
integral-derivative (PID) control, and EMG driven models 
to determine muscle forces. In terms of contact forces, 
deformable models (FE) and elastic foundation models were 
used, while others used simpler penalty methods. A similar 
rigorous approach to model validation needs to happen in 
the case of elbow models to increase clinical applicability.
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