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Introduction

Prosthesis reconstruction of the elbow commonly refers 
to one of several surgical procedures involving either 
hemiarthroplasty or total joint arthroplasty, each for 
treating a different condition. While these reconstructions 
can be effective treatment options to reduce pain and 
restore mobility to elbow joints suffering from moderate to 
severe arthritis or trauma in the majority of patients, poor 
outcomes remain a concern (1-3). 

Elbow reconstruction with a prosthesis can result in 
different biomechanical consequences having negative 
impacts on joint contact mechanics, elbow kinematics, 
joint stability, and cartilage and/or implant articular wear, 
which may be a contributing factor to the relatively high 
complication rate and occurrence of poor patient outcomes. 

This narrative review explores the biomechanical 
consequences associated with several elbow prosthesis 
reconstruction techniques, briefly summarizes their clinical 
impacts and patient outcomes, and discusses recent studies 
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that investigate the biomechanical reasons for these 
resulting consequences. It also discusses how these issues 
are impacted by variables such as prosthesis design, surgical 
positioning, material selection, and soft tissue status, as well 
as hypothesizes how future research and development can 
attempt to improve the current state of elbow arthroplasty. 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/aoj-20-72). 

Methods

This narrative review is based on the authors’ combined 
engineering expertise in these areas, consultation with 
leading orthopaedic surgeons, and literature review. Our 
literature search was performed in PubMed for supporting 
data, available as of February 2020, using relevant keywords; 
however, this was not a systematic review and does not 
comprehensively cover all published literature on this topic. 

Discussion

Elbow hemiarthroplasty reconstruction

Elbow hemiarthroplasty is a procedure whereby only one 
side of the joint is replaced, often to alleviate pain and restore 
function following trauma to one of the articular surfaces of 
the elbow. Generally, hemiarthroplasty is preferred over total 
joint arthroplasty whenever damage is isolated to only part 
of a joint, as these procedures preserve more native bone, 
require simpler surgical procedures, and can reduce costs. 

Distal humeral hemiarthroplasty (DHH)
Distal humerus fractures account for 1% of all fractures. 
They can occur at any age, but are more frequent in 
pediatric patients, patients in their second decade, elderly 
patients, and especially in females (4). Treatment of distal 
humerus fractures with open reduction and internal fixation 
(ORIF) and non-operative treatment may result in poor 
outcomes related to intolerance for joint immobilization, 
particularly in the context of comminuted fractures of 
osteoporotic bone in elderly patients, and studies have 
reported high incidences of complications following ORIF, 
such as non-union, elbow stiffness, and ulnar neuropathy 
(5,6). An alternative to ORIF for distal humerus fractures is 
DHH (Figure 1). 

DHH replaces the native distal humeral articular 
surface with a metallic implant that articulates with 
the remaining native radial and ulnar cartilaginous 
surfaces. The articular component of the prosthesis is 
supported by a humeral stem that is implanted into the 
canal of the distal humerus. There are several different 
DHH prostheses commercially available; however, only 
limited clinical outcomes are available. A systematic 
review including 116 patients reported good to excellent 
results in 76.5% of non-fracture patients and only 
67.4% of fracture patients, with one third of all patients 
experiencing a complication (1). In vitro experimental 
data is also lacking; particularly how the contact area and 
contact stress distributions in the proximal ulna cartilage 
layer change following DHH. How this potentially 
relates to cartilage erosion, is also not well understood.

Native Radial head
hemiarthroplasty

Distal humeral
hemiarthroplasty

Total elbow 
arthroplasty

Figure 1 Examples of elbow arthroplasty reconstruction techniques with radial head hemiarthroplasty, distal humeral hemiarthroplasty, and 
total elbow arthroplasty (from left to right).
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Radial head hemiarthroplasty (RHH)
Radial head fractures account for about 4% of all fractures, 
and are a common injury of the upper limb, comprising 
about one third of all fractures involving the elbow (7). 
In the case of unreconstructible radial head fracture, 
radial head excision can be performed, which removes 
the unrepairable radial head leaving the elbow without 
any radiocapitellar or radioulnar articulation. Excision 
of the radial head can result in valgus or posterolateral 
instability and the potential for ulnohumeral arthrosis (7).  
An alternative to radial head excision in the case of an 
unreconstructible fracture is RHH (Figure 1). 

RHH replaces only the native radial head, with a 
prosthesis that articulates with the intact capitellum and 
ulna. There are several RHH implants currently available 
commercially. The radiocapitellar articulation of the 
majority of RHH implants are axisymmetric about the 
radial axis, however there are several that employ a non-
axisymmetric geometry. The RHH is supported by a 
stem inserted into the radial canal, with some implants 
using a loose-fit, while others accomplish a tight fit with 
some including bone ingrowth surfaces. Other bipolar 
designs permit rotation of the radial head component 
relative to the fixation structure using a ball in socket 
articulation. A report of 26 patients who received a 
metallic RHH showed that 50% had excellent, 17% 
had good and 25% had fair results at two year follow 
up, with the remaining 8% having poor results (2).  
Furthermore, 19% exhibited mild osteoarthritis on the 
remaining native articular cartilage. 

Consequences of elbow hemiarthroplasty prosthesis 
reconstruction
Changes to cartilage contact mechanics
Elbow hemiarthroplasty continues to present challenges 
in terms of joint contact mechanics, resulting in reduced 
joint contact area and increased joint contact stress. This is 
due to the substitution of a stiff, metallic hemiarthroplasty 
implant in place of the native cartilage surface that has a 
stiffness several orders of magnitude lower (8-10). These 
changes in contact mechanics can result in post-operative 
cartilage erosion on native countersurfaces, osteoarthritis 
and implant failure, resulting in pain or the need for re-
operation (11-16). 

A review of recent advances in understanding articular 
cartilage tribology emphasized several factors which may 
contribute to cartilage erosion in hemiarthroplasty (17), 

which are primarily related to incompatible prosthesis 
stiffness and reduced geometric conformity resulting in 
changes in cartilage contact stresses (14,18,19). Biochemical 
processes may also contribute to cartilage degeneration, 
because abnormal stresses may promote the secretion of 
degenerative enzymes which cause softening and reduced 
elasticity of articular cartilage (20). 

When comparing the intact state to a metallic DHH 
implant using a combined cadaveric and computational 
model on 8 cadaveric elbows, Lapner et al. (21) reported a 
significant decrease in cartilage contact area of 44% and 4% 
for the ulnohumeral and radiocapitellar joints, respectively. 
The effect of changes in DHH implant geometry and 
sizing on opposing cartilage contact mechanics has also 
been the focus of several studies. Desai et al. (22) showed 
in a cadaveric DHH study that optimally sized implants 
produced the greatest joint congruency with the ulna, 
with the oversized and undersized implants producing less 
congruency. In an effort to further improve DHH contact 
mechanics, anatomically derived designs reverse-engineered 
from the shape of the native distal humerus have been 
investigated. Although reverse-engineering the shape of the 
implant to match the native bone was experimentally shown 
to have a similar detrimental effect on cartilage contact area 
as off-the-shelf implants (23), computational modelling 
has shown that contact stresses are improved somewhat by 
these patient-specific designs; even more so when the shape 
accounts for the native cartilage thickness distribution (24).  
Subsequent computational work has shown that these 
designs can be further optimized by using the native bone 
shape as a starting point, and then uniformly increasing in 
size (by less than 1 mm) to compensate for the cartilage 
layer (25). It is worth noting, however, that reverse-
engineered implants likely require accurate surgical 
positioning, and a study by Abhari et al. (26) found the 
contact mechanics were sensitive to varus-valgus positioning 
of the implant. 

Similar results have been reported with regards to RHH 
implants, whereby modifications to implant geometry have 
been shown to alter the magnitude of changes relative to the 
intact state; however, all RHH implants have a significant 
negative impact on cartilage contact mechanics. Sahu  
et al. (27) tested axisymmetric and anatomically designed 
metallic radial head implants in 6 cadaveric elbows, and 
reported that while both RHH geometries significantly 
altered cartilage contact mechanics relative to the native 
state, the anatomically designed implant resulted in smaller 
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reductions in contact area (−25% vs. −70%) and increases 
in mean contact stress (+29% vs. +230%) compared to 
the axisymmetric design. Similar results were reported in 
terms of peak contact stress. In an in vitro cadaveric study 
of 8 cadaveric elbows, Shannon et al. (28) showed that 
axisymmetric, quasi-anatomic, and patient specific RHH 
implants all significantly reduced contact area compared 
to the native radial head. Interestingly, they found that the 
general location of contact on the native radial head or 
RHH implant was not significantly different for any of the 
scenarios investigated. In a finite element contact analysis 
study of 15 cadaveric elbows, Langohr et al. (29) compared 
an axisymmetric and a non-axisymmetric RHH developed 
based on native radial head geometry. They found that, 
while the more anatomic design could significantly increase 
contact area and reduce maximum contact stress in certain 
rotational orientations compared to an axisymmetric RHH, 
there were also orientations that had significantly lower 
contact area and higher maximum contact stress. Since 
the radial head rotates with pronation and supination, it 
was deemed unlikely that the implant could be positioned 
such that these unfavorable orientations could be avoided 
completely.

The amount of allowable rotational degrees of freedom 
of RHH implants has also been shown to impact cartilage 
contact mechanics. Rotational freedom can be permitted 
by altering the type of implant fixation used, which varies 
from fixed (no rotation) to a loose over-reamed fit (increased 
rotational freedom). Szmit et al. (30) investigated the effect 
of RHH stem fit, ranging from fixed to three progressively 
loose fits, on cartilage contact mechanics in a finite element 
contact study of 10 cadaveric elbows. They reported that a 
moderately loose (1 to 2 mm over-reamed) fit produced the 
best cartilage contact mechanics for an axisymmetric RHH 
implant, decreasing the maximum cartilage contact stress 
by an average of 31%, even though mean cartilage contact 
area decreased as the fit was loosened. It was hypothesized 
that this was due to the ability of the loose fit to permit the 
implant to find its own optimal position based on articular 
contact, thus alleviating areas of impingement. Bipolar 
RHH designs, which incorporate a limited angle spherical 
joint to permit rotation of the articular component relative 
to the stem, also act in a similar way to allow the radial 
head prothesis to rotate to its optimal position, although 
Sahu et al. (27) also reported that bipolar RHH implants 
had similar joint contact area and mean contact stresses 
compared to standard monopolar fixed RHH implants 

in an in vitro cadaveric study. However, they did find that 
the bipolar RHH implant significantly reduced the peak 
cartilage contact stress by an average of 17% compared to 
the monopolar fixed design. 

The resulting reduction in cartilage contact area and 
increase in contact stress following hemiarthroplasty in the 
elbow is clear, and while alterations in DHH and RHH 
implant design and geometry can affect the magnitude 
of these changes, even reproducing the exact cartilage 
geometry of the side of the joint being replaced results in 
significant negative consequences on contact mechanics. 
This is likely the result of replacing a soft cartilaginous 
surface with a stiff, typically metallic surface. The use 
of more compliant materials in elbow hemiarthroplasty 
has the potential to further improve the performance of 
these implants by further reducing the alterations in post-
operative cartilage contact stress, and possibly producing 
similar contact mechanics as the intact state. 

In a computational study of 7 cadaveric elbows, 
Berkmortel et al. (31) investigated cartilage contact 
mechanics following RHH using implants made from 
cobalt chrome [CoCr, Young’s modulus (E) =230,000 MPa], 
pyrolytic carbon (E =20,000 MPa), polyetheretherketone 
(PEEK, E =3,700 MPa), ultra-high molecular weight 
polyethylene (UHMWPE, E =690 MPa), and three grades 
of polycarbonate urethane (PCU) including Bionate 75D 
(stiff, E =290 MPa), Bionate 55F (mid, E =39 MPa), and 
Bionate 80A (soft, E =20 MPa). They showed that for all 
materials tested, the two most compliant types of PCU 
had significantly higher contact area and lower maximum 
contact stress than all other materials investigated, 
suggesting that elbow hemiarthroplasty could benefit from 
the use of an implant material having a Young’s modulus of 
less than 300 MPa. This was thought to be a direct result of 
the improved ability of the material to deform under load 
like that of the cartilaginous surface it is replacing, which 
has an aggregate stiffness of approximately 0.8 MPa (32), 
although the long-term wear and fatigue performance of 
such compliant materials still need to be assessed. Ajdari 
et al. (33) found similar results during in vitro testing of 
CoCr, ceramic, and PCU against five levels of osteoarthritic 
cartilage, and found that CoCr produced the most damage 
followed by the ceramic, while the PCU produced the least 
amount of damage.
Alterations to elbow kinematics
The replacement of the native distal humerus during 
DHH has also been shown to alter elbow kinematics due 
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to the modification of the articular contact surfaces of the 
elbow. In a cadaveric study, Desai et al. (34) reported that 
following DHH reconstruction, both varus angulation 
under varus loading, and valgus angulation under valgus 
loading increased by up to 3° in the direction of loading 
compared to the native state. Interestingly, they reported 
that oversized implants more closely reproduced the 
angulation of the native elbow compared to the other sizes 
investigated. These changes in kinematics may further 
exacerbate changes in cartilage contact mechanics due to 
changes in load transmission at the joint. Interestingly, Sabo 
et al. (35) reported in a cadaveric study, that DHH of just 
the capitellum (and not the entire distal humerus) restored 
varus valgus and external rotation stability following 
capitellar excision. This procedure is much simpler and 
spares more of the native anatomy, and as such, this may 
have contributed to the elimination of alterations in elbow 
kinematics. 

Total elbow arthroplasty (TEA)

When joint injury or degeneration has progressed beyond 
that which can be addressed using more conservative 
treatments, or when both sides of the joint are damaged, 
total joint arthroplasty is indicated. 

TEA prosthesis reconstruction
TEA (Figure 1) is considered a successful procedure for 
restoring motion, improving function, and alleviating pain 
for a wide range of indications, including distal humeral 
nonunion, instability, established and inflammatory arthritis, 
and acute intra-articular comminuted fracture in selected 
older patients (36). It is estimated that approximately six 
thousand TEA procedures were performed in the US in 
2015 (37). This is significantly lower than the number 
of lower extremity total joint arthroplasty procedures 
[estimated at 380 thousand primary total hips and 925 
thousand primary total knees in 2015 (38)], partially due to 
contraindications for use in young patients because of the 
anticipated high rate of early failure (39). 

The first TEA implants were rigid hinge designs 
with linked humeral and ulnar components. This design 
suffered from high rates of loosening, believed to be a 
result of high stresses at the bone-implant interface due 
to the constrained nature of the articulation, and has since 
been abandoned. Modern TEA implants feature metal on 
UHMWPE articulations with linked semi-constrained, 

unlinked, or convertible designs. Unlike the original 
rigid hinge designs, these devices permit some secondary 
motions, including internal-external (IE) and varus-valgus 
rotations as well as small translations. An allowable varus-
valgus range of motion of 7° is common across several 
different designs, mimicking the coronal laxity of the intact 
elbow (40). Linked semi-constrained TEA implants employ 
a “sloppy” hinge-type linkage between the humeral and 
ulnar components, which allows them to be used in the 
presence of significant bone or ligamentous deficiencies 
without dislocating (41). Unlinked TEA implants rely on 
surrounding soft tissue integrity to stabilize the joint and 
prevent subluxation, and convertible designs, as the name 
suggest, are those which can be converted from unlinked to 
linked articulations intra- or post-operatively, as needed. 

A study of 838 TEA recipients reported implant survival 
rates of 92%, 81%, 71%, and 61% at 5, 10, 15, and 20-year 
follow-up, respectively, with the most common reasons for 
revision being aseptic loosening, defective polyethylene, 
infection, and dislocation (3).
Alterations to elbow kinematics
The post-operative kinematics and stability of TEA 
depends on factors such as the congruency and shape of the 
articulations, whether or not a linked hinge is employed, the 
integrity of surrounding soft tissues (particularly the collateral 
ligaments), alignment and the status of the radial head.

An in vitro study by Kamineni et al. (42) examined the 
intrinsic constraint (varus-valgus torque versus rotation) of 
various designs of unlinked TEA implants in comparison 
with the native elbow. They reported the interesting 
conclusion that designs resembling the human elbow (in 
appearance) do not necessarily replicate normal behavior, 
whereas other implants which do not resemble the 
human elbow are able to reproduce normal behavior. A 
computational study by Willing et al. (43) compared the 
intrinsic constraint of three different linked TEA designs, 
and demonstrated how total laxity envelopes and torque-
versus-rotation profiles can be decoupled from one-another; 
different profiles would influence how stable the joint feels 
between its laxity limits.

Valgus instability is a concern for TEA, and the 
likelihood of instability tends to increase with time (44). 
This emphasizes the importance of achieving proper 
valgus stability during surgery and converting to a linked 
TEA if there is any doubt that valgus stability is adequate. 
Convertible TEA designs have permitted the direct in vitro  
comparison of the stability of linked versus unlinked 
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prostheses. De Vos et al. (45) confirmed that linking 
convertible prostheses primarily influences valgus laxity, and 
that linking is particularly important for valgus stability in 
the absence of a radial head. Collateral ligaments contribute 
to the stability of TEA, and their contributions towards 
stabilizing both linked (46) and unlinked (47) TEA has been 
investigated. An in vitro cadaver study by Brownhill et al. (48)  
investigated the effects of linking on TEA stability in 
collateral ligament-deficient elbows. With the collateral 
ligaments intact, the linked TEA had less varus-valgus 
laxity than in their unlinked configuration; however, these 
differences were not statistically significant. On the other 
hand, in the absence of collateral ligaments, the unlinked 
elbows were grossly unstable in both the varus and valgus 
directions. Their use of a custom instrumented stem 
allowed measurement of torques transmitted through the 
TEA articulation, which nearly doubled when a linked 
configuration was used, including for varus loadings which 
are common during many activities of daily living. This has 
implications regarding the potential for loosening of linked 
TEA, both due to the transmission of these greater forces 
through the stem-bone interface, as well as the increased 
likelihood of UHMWPE wear and related aseptic loosening. 

Prosthesis alignment can also have an influence on 
joint biomechanics following TEA. Schuind et al. (49) 
measured changes in muscle moment arms after TEA 
with varus-valgus and IE rotational malalignments of 
the humeral component. IE malrotations of the humeral 
component were found to increase muscle moment arms 
and significantly alter joint kinematics, such that the linked 
hinge components used in their study travelled along 
their varus-valgus structural limits. These findings were 
supported by another study from the same group, which 
indicated that malrotations of the humeral component 
altered joint kinematics and forced the prosthesis to its 
structural limits (50). A later study by Brownhill et al. (51)  
found that TEA malalignment of ±6° varus-valgus and 
±8° internal-external rotation resulted in changes in 
implant kinematics, muscle loading patterns and loads 
transmitted through the implant components. Thus, these 
studies indicate that prosthesis malalignment will alter 
joint biomechanics and contact mechanics of the TEA 
components, which could accelerate wear and loosening. 
Interestingly, a study by Lenoir et al. did not associate 
implant malalignment with loosening; however, their mean 
follow-up was just 23 months, and they did find that implant 
positioning errors seemed to affect functional outcomes, 
possibly due to increased stresses on soft tissues (52).

Replacement of the radial head as part of a TEA remains 
controversial. The radial head also plays an important role 
as a valgus stabilizer in the intact elbow (secondary to the 
medial collateral ligament) (53), and contributes to axial 
load bearing. Most linked and unlinked TEA involve radial 
head resection; although in some systems the native radial 
head can be preserved (54). Previous studies have measured 
the effects of radial head excision on unlinked TEA varus-
valgus laxity, with some reporting only a small effect [e.g., 
Wagener et al. (55)] and others reporting a large increase 
in valgus laxity [e.g., Inagaki et al. (56), Ramsey et al. (57),  
and King et al. (47)]; these studies had similar soft-tissue 
management but different implant designs. Thus, the 
importance of the radial head relates to the intrinsic 
constraint of the prosthesis. For linked TER, its importance 
decreases further, as demonstrated by De Vos et al. (45).
Implant articular wear
Premature wear has historically been a problem for 
TEA prostheses, and a recent report based on data from 
the Norwegian Arthroplasty Register identified aseptic 
loosening (41.8%) and bearing damage (17.7%) as leading 
primary causes for TEA revision (3). Wear issues persist at 
the UHMWPE bushings (58), and complete deformation 
or wear-through can lead to unintended metal-on-metal 
contact. The underlying mechanisms responsible for the 
relatively high wear rates of TEA prostheses are not well 
understood. Goldberg et al. (59) presented a detailed 
assessment of the typical damage patterns observed on 
retrieved Coonrad-Morrey linked semi-constrained TEA 
implants and observed multiple wear modes present on 
all samples including damage to the humeral and ulnar 
polyethylene bushings showing asymmetric thinning and 
plastic deformation, and unintended metal-on-metal wear 
between bearing and nonbearing surfaces. Day et al. (60) 
performed detailed analyses of wear debris, which were of 
a size and shape shown to result in activation of cell lines 
involved in osteolysis (bone resorption causing loosening). 
Separate wear testing studies by Popoola et al. (61) and 
Willing (62) resulted in damage patterns on lab worn 
specimens under varied loading conditions that showed 
similarities with damage patterns of worn retrievals. More 
recent TEA designs feature more congruent articular 
surfaces and modern polyethylene blends which promise to 
reduce the amount damage due to wear. 

Summary

Post-operative changes in cartilage contact area and stress 
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following DHH and RHH are affected by implant articular 
geometry and material. Clearly the replacement of one side 
of a cartilage-on-cartilage joint with a stiff material results 
in negative consequences in terms of reduced articular 
contact area and increased contact stress. The optimization 
of articular geometry through further computational and 
in vitro investigation combined with the use of softer, more 
complaint materials may improve elbow hemiarthroplasty 
outcomes, although the long-term wear and fatigue 
performance of such compliant materials needs to be 
further investigated in the application of hemiarthroplasty. 
In addition to alterations in cartilage contact mechanics, 
hemiarthroplasty has also been shown to have the potential 
to alter elbow kinematics due to the replacement of native 
geometry with an implant, which may further exacerbate 
cartilage degeneration due to changes in load transfer at the 
joint.

TEA is capable of restoring native elbow kinematics; 
however, the functional stability of the joint is dependent 
on surrounding soft tissues, implant shape and the degree 
of constraint selected for use. In the case of healthy soft 
tissue in the elbow, an unlinked design can be sufficient, 
however if the collateral ligaments are deficient, a linked 
design can help to mitigate stability issues. Similarly, radial 
head condition can affect stability, particularly for unlinked 
implants which rely on this structure to provide stability, 
particularly in the case when collateral ligaments are 
deficient. This is less important in the use of linked designs, 
as they are capable of supporting varus-valgus moments. 
TEA wear continues to be an issue, as many previous 
designs which are still in patients today exhibited high 
articular contact stresses resulting in wear and deformation 
of the polymer articulation. This effect may have been 
mitigated with the introduction of more congruent designs 
and the inclusion of advanced materials, but the long-term 
performance of these changes is yet to be determined. 
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