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Cardiac remodelling leads to heart failure (HF) which 
represents a growing disease problem worldwide. Patients 
with HF have a high frequency of hospitalization and 
available pharmacological therapies are not sufficient to 
significantly reduce the high mortality. As standard care, 
physicians use potent blockers of e.g., single receptors in 
cardiac tissue thus impairing a single signalling cascade 
counteracting maladaptive cardiac deterioration. The 
identification of novel disease targets and the establishment 
of higher potency medication is thus an important aim in 
cardiovascular drug development. This strategy is supported 
by novel technologies sequencing whole genomes and 
highlighting the great majority of non-coding areas.

Since the last decade, post-transcriptional regulation 
via small non-coding microRNAs (miRNA, miR) has been 
reported in various HF conditions (1,2). The mode of action 
(MOA) for miRs is based on the repression of a set of target 
genes the so-called miRNA targetome, by way of example in 
cardiac ischemic conditions (2). First discovered in C. elegans 
(3,4), Watson-Crick mediated base pairing from nucleotides 
2 to 8 (the seed sequence) of the miR and nucleotides of 
3'-untranslated region (3'-UTR) in target genes mediate 
either mRNA degradation or translational inhibition. In line, 
single cardiac miRs like miR-34a and miR-132 are powerful 
regulators of cardiac performance and hold great promise for 
therapeutic modulation via antagonistic binding properties 
(5,6). Several clinical trials are already begun to study the 
effect of (mostly) anti-miR treatments in different HF 
settings (see clinicaltrials.gov) underlining the great potential 
of such pharmacological intervention.

To identify downstream miR effectors, researchers have 
to screen different bioinformatics tools available each with 
distinct feature or algorithm. Seed match between a miR 
and its targets as well as the conservation in seed region are 
the two major considerations contribute to the development 
of most miR target prediction tools, including the classical 
miRanda (7) and Targetscan (8). The stability of seed pairing 
sites is then estimated and scored based on the change in free 
energy (ΔG) since a negative ΔG indicates increased stability 
of system. Unlike most target prediction tools that accept 
only known miR and/or mRNA IDs, the plain sequences of 
miRs and the putative targets can also be utilized as input in 
RNA22 (9) and RNAhybrid (10), which provide the users 
a more free circumstance to evaluate any combination of 
miRNA:mRNA pairs. More recently, the accessibility of 
target region and the abundance of target sites in a given 
gene are also considered in tools such as PITA (11) and 
DIANA-microT-CDS (12). Although numerous miR 
targets prediction tools are available and easily applicable, 
cautions still need to be taken since each computational 
approach bears unique feature and limitation. Use of multiple 
prediction tools in parallel and carefully comparison of the 
different output is strongly recommended. 

On the other hand, based on the sequencing of mRNA 
sites bound by the Argonaute (AGO) protein, high though 
put screen technology such as PAR-CLIP (13) improves 
the efficiency and the accuracy of experimentally miRNA 
target identification. Several publicly available databases 
incorporating large scale of experimentally validated 
miRNA-mRNA interactions e.g., Tarbase (14) have also 
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been released. The increasing meta-data amount as well 
as the improved interface offered by public databases 
will tremendously facilitate the exploration of validated 
interaction between miRNAs and their targets.

In a recent issue of Circulation, Heggermont et al. (15) 
report that miR-146a and its downstream effector gene 
dihydrolipoyl succinyltransferase (DLST) are therapeutic 
targets in cardiac disease. Modelling of cardiac disease in 
a murine setting was accomplished applying transverse 
aortic constriction (TAC) or constant angiotensin-II (Ang-
II) infusion via minipumps. Heggermont and colleagues 
identified enhanced miR-146a expression after disease 
stimulation and interestingly postulated an additional 
exosomal-based cell-to-cell communication pathway between 
endothelial cells and cardiomyocytes. To validate the 
importance of miR-146a abundancy for cardiac performance, 
Ang-II disease conditions were tested in mice with knockout 
for miR-146a (miR-146a ko). Of note, miR-146a ko 

animals were protected from the development of cardiac 
remodelling underlining a maladaptive function of elevated 
miR-146a expression levels. Mimicking the ko situation 
with a pharmacological intervention strategy applying small 
molecule blockers against miR-146a also demonstrated the 
effectiveness of blunted miR-146a expression to support 
cardiac healing. In contrast, cardiomyocyte-specific miR-
146a overexpression led to cardiac hypertrophy already 
in resting conditions, thus response during cardiac stress 
was worsened. Mechanistically, several in silico and in vitro 
assays were performed to identify the metabolic factor 
dihydrolipoyl succinyltransferase (DLST) as a direct 
miR-146a target gene. Interestingly miR-146a has three 
potential binding sites in DLST 3'-UTR thereby mediating 
decay. Since DLST is a key factor within fatty acid and 
glucose metabolism, subsequent metabolome studies were 
performed in wildtype or miR-146a ko cardiomyocytes  
in vitro. Analysis clearly indicated an effect of lowered miR-
146a expression on energy metabolism. Next to that, DLST 
protein expression was sustained in animals receiving anti-
miR-146a highlighting an alternative approach to balance 
cardiac output. Using this observation nicely controlled 
studies were conducted applying a cardiotrophic adeno-
associated virus serotype 9 (AAV9) to overexpress DLST 
in preventive manner. Early DLST overexpression could 
block the Ang-II induced effects on cardiac remodelling and 
impaired hypertrophic response. 

Taken together, this combined study of (I) anti-miR-
146a treatment and (II) the use of gene therapy to sustain 
the miR-146a target gene DLST suggest so-far unknown 
therapeutic approaches to improve functional cardiac 
parameters and to heal the diseased heart (Figure 1). These 
findings are of support to develop innovative miRNA-based 
therapeutics or AAV9-based vector systems in cardiovascular 
disease conditions. Accordingly, many open issues remain 
to address in future studies especially with respect towards 
the intrinsic translational potential. MOA in the current 
study is based on a targeted miR-146a-DLST-metabolome 
alteration axis in cardiomyocytes. The miR-146a inhibition 
strategy, however, is systemic thus other organs and cellular 
subtypes are affected where also MOA can be activated and 
presumably in an unwanted manner. To study potential 
off-target effects detailed studies (pharmacokinetics and 
pharmacodynamics) are needed to address such questions 
before completing translational evaluation. Taking this 
into account, site-specific delivery of anti-miR chemistry 
also calls for improvement, e.g. via the use of coupling 
oligonucleotides to antibody structures or encapsulating 
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Figure 1 Cardiac stress leading to diastolic heart failure (e.g., 
hypertension, pressure overload) triggers miR-146a expression in 
cardiomyocytes. Molecules of miR-146a have intrinsic capacity to 
block DLST mRNA which ultimately hampers cardiac metabolism 
and functional cardiac parameters. At therapeutic level, either 
anti-miR-146a based intervention or AAV9-mediated cardiac 
overexpression of DLST can rescue detrimental cardiac signalling. 
Anatomic heart picture was taken from smart.servier.com. DLST, 
dihydrolipoyl succinyltransferase; AAV9, adeno-associated virus 
serotype 9.
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with activatable envelopes. In addition to the discovery of 
potent miR regulators, other cardiac non-coding RNAs 
alike long non-coding RNAs (16) or circularized RNAs (17),  
so-called circRNA, came into heavy research focus for 
the last years. To see which RNA subspecies makes up the 
winner in the race of novel innovative therapeutic drugs for 
HF is one of the great challenges in future cardiovascular 
medicine. Use of gene therapy alone, as it was stated for 
DLST in the herein discussed study, leaves enough space 
for discussion since it is unclear if this therapy is applicable 
in a human scenario where immune reaction is one of the 
biggest problems caused by synthetic gene supplementation. 

Despite aforementioned minor limitations, the study 
from Heggermont and co-workers highlights a novel 
strategy to target miR-146a and/or its downstream effector 
DLST to strengthen the diseased heart.
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